
Reconstruction
Prediction

References

Chaos, Complexity, and Inference (36-462)
Lecture 4

Cosma Shalizi

22 January 2009

36-462 Lecture 4

Reconstruction
Prediction

References

Reconstruction Inferring the attractor from a time series;
powerful in a weird way

Prediction Using the reconstructed attractor to make
forecasts

36-462 Lecture 4

Reconstruction
Prediction

References

Reconstruction
What can we learn about the dynamical system from observing
a trajectory?
Assume it’s reached an attractor; attractor is a function of the
parameters; invert the function

Function from parameters to attractors can be very ugly
Assumes we know the dynamics up to parameters

Second problem is bigger!

Will see later an approach (“indirect inference”) for parametric estimation with messy

models

Do we need parameters?

36-462 Lecture 4

Reconstruction
Prediction

References

A gross simplification of

Takens’s Embedding Theorem

Suppose Xt is a state vector
Suppose the map/flow is sufficiently smooth
Suppose Xt has gone to an attractor, dimension d
Suppose we observe St = g(Xt), which again is sufficiently
smooth
Pick a time-lag τ and a number of lags k
Time-delay vector R(k)

t = (St , St−τ , St−2τ , . . . St−(k−1)τ)

THEOREM If k ≥ 2d + 1, then, for generic g and τ , R(k)
t acts

just like Xt , up to a smooth change of coordinates

36-462 Lecture 4

Reconstruction
Prediction

References

Determinism

State has d dimensions so knowing d coordinates at once fixes
trajectory
OR knowing one variable at d times fixes trajectory (think of
Henon map)
Don’t get to observe state variables so may need extra
observations
Turn out to never need more than d + 1 extras
Sometimes don’t need the extras
[Packard et al., 1980]

36-462 Lecture 4

Reconstruction
Prediction

References

Geometry

Trajectories are d-dimensional (because they are on the
attractor, and current state fixes future states)
So time series are also only d-dimensional, but they might live
on a weirdly curved d-dimensional space
Geometric fact (Whitney embedding theorem): any curved
d-dimensional space fits into a 2d + 1-dimensional ordinary
Euclidean space
[Takens, 1981]

36-462 Lecture 4

Reconstruction
Prediction

References

An example of reconstruction

Lorenz attractor, a = 10, b = 28, c = 8/3
See last lecture for equations of motion
Solved equations in a separate (non-R) program (see website)

> lorenz.state.ts = read.csv("lorenz-t50-to-t100-by-1e-3",
col.names=c("t","x","y","z"))

> scatterplot3d(lorenz.state.ts$x,lorenz.state.ts$y,
lorenz.state.ts$z,type="l",xlab="x",
ylab="y",zlab="z",lwd="0.2")

> x.ts = lorenz.state.ts$x
> library(tseriesChaos)
> scatterplot3d(embedd(x.ts,3,40),type="l",lwd="0.2")

36-462 Lecture 4

Reconstruction
Prediction

References

Lorenz Attractor: state space

−20 −10 0 10 20

 0
10

20
30

40
50

−30

−20

−10

 0

 10

 20

 30

x1

x 2

x 3

36-462 Lecture 4

Reconstruction
Prediction

References

Time series: first coordinate of state

50 60 70 80 90 100

−
10

0
10

20

Time series of first state variable

t

x 1
(t)

36-462 Lecture 4

Reconstruction
Prediction

References

Reconstruction, k = 3, τ = 0.04

Lorenz Attractor: time−delay of one state variable

s = x1

−20 −10 0 10 20

−
20

−
10

 0
 1

0
 2

0

−20

−10

 0

 10

 20

s(t)

s(
t−

0.
04

)

s(
t−

0.
08

)

36-462 Lecture 4

Reconstruction
Prediction

References

Lorenz Attractor: state space

−20 −10 0 10 20

 0
10

20
30

40
50

−30

−20

−10

 0

 10

 20

 30

x1

x 2

x 3

Lorenz Attractor: time−delay of one state variable

s = x1

−20 −10 0 10 20

−
20

−
10

 0
 1

0
 2

0

−20

−10

 0

 10

 20

s(t)

s(
t−

0.
04

)

s(
t−

0.
08

)

Note: reconstruction procedure knew nothing about what the
state variables were or what the equations of motion were, it
just worked with the original time-series

36-462 Lecture 4

Reconstruction
Prediction

References

Attractor Reconstruction

“It’s inference, Jim, but not as we know it”
Gets information about the larger system generating the data
from partial data (inference)
No parametric model form
No nonparametric model form either
No likelihood, no prior
Requires very complete determinism
Reconstructs the attractor up to a smooth change of
coordinates

36-462 Lecture 4

Reconstruction
Prediction

References

Coordinate change

old, new state = Xt , Rt
old, new map = Φ, Ψ
coordinate change = G so Rt = G(Xt)
If the coordinate change works, then it doesn’t matter whether
we apply it or the map first

Xt+1 = Φ(Xt) Rt+1 = Ψ(Rt)

Rt+1 = G(Φ(Xt)) = Ψ(G(Xt)) = Rt+1

36-462 Lecture 4

Reconstruction
Prediction

References

Xt
Φ−−−−→ Xt+1

G

y G

y
Rt

Ψ−−−−→ Rt+1

New coordinates are a perfect model of the old coordinates
time-delay vectors give a model of states, at least on the
attractor
many quantities (like Lyapunov exponents) aren’t affected by
change of coordinates

36-462 Lecture 4

Reconstruction
Prediction

References

Lorenz Attractor: nonlinear observable

s = (x1 + 7)3

−5000 0 5000 10000 15000 20000

−
50

00

 0
 5

00
0

10
00

0
15

00
0

20
00

0

−5000

 0

 5000

10000

15000

20000

s(t)

s(
t−

0.
04

)

s(
t−

0.
08

)

36-462 Lecture 4

Reconstruction
Prediction

References

Lorenz Attractor: Nonlinear observable

s = x1
2x2

−6000 −4000 −2000 0 2000 4000 6000 8000

−
60

00
−

40
00

−
20

00

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0

−6000

−4000

−2000

 0

 2000

 4000

 6000

 8000

s(t)

s(
t−

0.
04

)

s(
t−

0.
08

)

36-462 Lecture 4

Reconstruction
Prediction

References

It even works with observation noise

Lorenz Attractor: Nonlinear observable+noise

s = x1
2x2 + ε, σ(ε) = 100

−6000 −4000 −2000 0 2000 4000 6000 8000

−
60

00
−

40
00

−
20

00

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0

−6000

−4000

−2000

 0

 2000

 4000

 6000

 8000

s(t)

s(
t−

0.
04

)

s(
t−

0.
08

)

36-462 Lecture 4

Reconstruction
Prediction

References

Lorenz Attractor: Nonlinear observable+noise

s = x1
2x2 + ε, σ(ε) = 400

−8000 −6000 −4000 −2000 0 2000 4000 6000 8000

−
80

00
−

60
00

−
40

00
−

20
00

 0

 2
00

0
 4

00
0

 6
00

0
 8

00
0

−8000

−6000

−4000

−2000

 0

 2000

 4000

 6000

 8000

s(t)

s(
t−

0.
04

)

s(
t−

0.
08

)

36-462 Lecture 4

Reconstruction
Prediction

References

but not too much

Lorenz Attractor: Nonlinear observable+noise

s = x1
2x2 + ε, σ(ε) = 1000

−10000 −5000 0 5000 10000−
10

00
0

 −
50

00

 0
 5

00
0

 1
00

00

−10000

 −5000

 0

 5000

 10000

s(t)

s(
t−

0.
04

)

s(
t−

0.
08

)

36-462 Lecture 4

Reconstruction
Prediction

References

Choice of reconstruction settings

Need to choose k (number of delays, embedding dimension)
and τ (delay between observations) — typically the observable
is given to us by the problem situation
These involve a certain amount of uncertainty
Software: used tseriesChaos from CRAN
Hegger, Kantz, & Schreiber’s TISEAN has an R port, RTisean,
also on CRAN, couldn’t get it to work

36-462 Lecture 4

Reconstruction
Prediction

References

Choice of delay τ

In principle, almost any τ will do
but if the attractor is periodic, multiples of the period are bad!
In practice, want to try and get as much new information about
the state as possible from each observation
⇒ Heuristic 1: make τ the first minimum of the autocorrelation
⇒ Heuristic 2: make τ the first minimum of the mutual
information
Will return to heuristic 2 after we explain “mutual information”

36-462 Lecture 4

Reconstruction
Prediction

References

Autocorrelation function

ρ(t , s) =
cov[Xt , Xs]

σ(Xt)σ(Xs)

For weakly stationary or second-order stationary processes,
ρ(t , s) = ρ(|t − s|), i.e., depends only on time-lag, not on
absolute time
Standard R command: acf

36-462 Lecture 4

Reconstruction
Prediction

References

Space-time separation plot

Distance between two random points from the trajectory will
depend on how far apart in time we make the observations
For each h > 0, calculate the empirical distribution of
‖Xt − Yt+h‖
Plot the quantiles as a function of h
Example: logistic map

stplot(x.ts,3,40,mdt=2000)

36-462 Lecture 4

Reconstruction
Prediction

References

showing deciles; time in units of 1/1000

0 500 1000 1500 2000

0
10

20
30

40
50

Space−time separation plot

time

di
st

an
ce

note growth (separation) + periodicity
36-462 Lecture 4

Reconstruction
Prediction

References

correlations are reasonably decayed at around ≈ 250, before
then observatons are correlated because not enough time to
disperse around attractor

36-462 Lecture 4

Reconstruction
Prediction

References

Choice of embedding dimension k : False Neighbor Method

Take points which really live in a high-dimensional space and
project into a low-dimensional one: many points which are
really far apart will have projections which are close by
These are the false neighbors

Random dots near the unit sphere

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5−
1.

5
−

1.
0

−
0.

5
 0

.0
 0

.5
 1

.0
 1

.5

−1.5
−1.0

−0.5
 0.0

 0.5
 1.0

 1.5

x

y

z

●
●●

●
●

●●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

● ●

●●

●
●

●
●

●
●

●●

●

●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●● ●●

●

●

●

●

●

●●
●

●

●

●
●

● ●
●

● ●

●
●●

●

●

●

●
●

● ●●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●●●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●● ●

●● ●
●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

● ●●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●

●●

●●●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●
●

●●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Projection on to plane

x

y

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

36-462 Lecture 4

Reconstruction
Prediction

References

Keep increasing the dimensionality until everything which was a
neighbor in k dimensions is still a neighbor in k + 1 dimensions

36-462 Lecture 4

Reconstruction
Prediction

References

Need to exclude points which are nearby just because the
dynamics hasn’t had time to separate them — calculate this
Theiler window from space-time plot

plot(false.nearest(x.ts,6,40,250))

i.e. use τ = 40 in embedding, consider up to 6 dimensions, and
use an Theiler exclusion window of 250 time-steps

36-462 Lecture 4

Reconstruction
Prediction

References

●

● ● ● ● ●

1 2 3 4 5 6

0
20

40
60

80
10

0

False nearest neighbours

embedding dimension

%
 o

f f
al

se
 n

ea
re

st
 n

ei
gh

bo
ur

s

Conclusion: k = 3 it is

36-462 Lecture 4

Reconstruction
Prediction

References

Prediction

Determinism: there is a mapping from old states to new states
Prediction: learn that mapping, then apply it
Work in the reconstructed state space

36-462 Lecture 4

Reconstruction
Prediction

References

Nearest-neighbor methods

Also called method of analogs in dynamics
Given: points x1, x2, x3, . . . xn−1 and their sequels, x2, x3, . . . xn
Wanted: prediction of what will happen after seeing new point x
Nearest neighbor: find xi closest to x ; predict xi+1
k -nearest neighbors: find k points xi1 , xi2 , xik closest to x ,
predict the average of xi1+1, xi2+1, . . . xik+1
Notation: Uk (x) = k nearest neighbors of x
Note: this k is not the k of the embedding dimension, but the
phrase “k -nearest neighbors” is traditional
Computation: finding the nearest neighbors fast is tricky; leave
it to a professional

36-462 Lecture 4

Reconstruction
Prediction

References

Assume the map Φ is smooth
If xi is very close to x , then Φ(xi) = xi+1 will be close to, but not
exactly, Φ(x)

Φ(xi) = Φ(x) + (xi − x)Φ′(x) + small

If xi1 , xi2 , xik are all very close to x , then xi1+1, xi2+1, . . . xik+1
should all be close to Φ(x)

36-462 Lecture 4

Reconstruction
Prediction

References

1
k

∑
j∈Uk (x)

Φ(xj) =
1
k

∑
j∈Uk (x)

Φ(x)+

1
k

∑
j∈Uk (x)

xj − x

 Φ′(x)+small

1
k

∑
j∈Uk (x)

Φ(xj)− Φ(x) ≈

1
k

∑
j∈Uk (x)

xj − x

 Φ′(x)

k > 1: the error averages a bunch of individual terms from the
neighbors, which should tend to be smaller than any one of
them, if they’re not too correlated themselves
One reason this works well together with mixing!

36-462 Lecture 4

Reconstruction
Prediction

References

As n grows, we get more and more samples along the attractor
If x itself is from the attractor, it becomes more and more likely
that we are sampling from a place where we have many
neighbors, and hence close neighbors, so the accuracy should
keep going up
Another reason this works well with mixing

36-462 Lecture 4

Reconstruction
Prediction

References

knnflex from CRAN lets you do nearest-neighbor prediction
(as well as classification)
R is weak and refuses to do really big distance matrices

> lorenz.rcon = embedd(x.ts[1:5000],3,40)
> nrow(lorenz.rcon)
[1] 4920
> lorenz.dist = knn.dist(lorenz.rcon)
> lorenz.futures = x.ts[2:5001]
> train = sample(1:nrow(lorenz.rcon),0.8*nrow(lorenz.rcon))
> test = (1:nrow(lorenz.rcon))[-train]
> preds = knn.predict(train,test,lorenz.futures,lorenz.dist,

k=3,agg.meth="mean")
> plot(test,preds,col="red",xlab="t",ylab="x",type="p",

main="3NN prediction vs. reality")
> lines(test,lorenz.futures[test])
> plot(test,lorenz.futures[test] - preds,xlab="t",

ylab="reality - prediction",main="Residuals")

36-462 Lecture 4

Reconstruction
Prediction

References

●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●●
●●●
●●●●●●●
●●

●●●
●●
●●●
●
●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●●
●●●

●●
●●●
●
●
●●
●●
●●
●●●
●●●●
●
●●●
●
●
●●●
●●●●●●
●●●●●●●
●●●●●
●●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●
●●●
●●●
●●●●
●●●●
●●
●●●●●
●●●
●●●
●●●
●●●
●●
●●
●●●●
●
●●
●●●●●●●●●

●●●●
●●●
●●●●
●●
●
●●●●●●●●●●●●
●●●●●
●●●

●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●
●●●●
●●●
●●●
●●
●●
●●
●
●●
●●
●●
●●
●
●●●
●●
●
●
●●●
●●
●●●
●●●●●●●●●●●
●
●●
●●●●
●

●●
●●

●●●●
●●●●●●
●
●
●●●●
●●●●●●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●
●●●●●
●●●
●
●●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●
●●●
●
●●●●
●●●
●
●●●
●●●
●●●●●
●●●●●
●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●
●●
●
●●●●
●●
●●●●
●●●
●
●●●
●●●●●
●●●
●●●●
●●●●●●●●
●●●●●●●●
●●●

●●●●

0 1000 2000 3000 4000 5000

−
15

−
10

−
5

0
5

10
15

3NN prediction vs. reality

t

x

36-462 Lecture 4

Reconstruction
Prediction

References

●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●●
●●●
●●●●●●●
●●

●●●
●●
●●●
●
●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●●
●●●

●●
●●●
●
●
●●
●●
●●
●●●
●●●●
●
●●●
●
●
●●●
●●●●●●
●●●●●●●
●●●●●
●●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●
●●●
●●●
●●●●
●●●●
●●
●●●●●
●●●
●●●
●●●
●●●
●●
●●
●●●●
●
●●
●●●●●●●●●

●●●●
●●●
●●●●
●●
●
●●●●●●●●●●●●
●●●●●
●●●

●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●
●●●●
●●●
●●●
●●
●●
●●
●
●●
●●
●●
●●
●
●●●
●●
●
●
●●●
●●
●●●
●●●●●●●●●●●
●
●●
●●●●
●

●●
●●

●●●●
●●●●●●
●
●
●●●●
●●●●●●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●
●●●●●
●●●
●
●●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●
●●●
●
●●●●
●●●
●
●●●
●●●
●●●●●
●●●●●
●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●
●●
●
●●●●
●●
●●●●
●●●
●
●●●
●●●●●
●●●
●●●●
●●●●●●●●
●●●●●●●●
●●●

●●●●

0 1000 2000 3000 4000 5000

−
15

−
10

−
5

0
5

10
15

3NN prediction vs. reality

t

x

36-462 Lecture 4

Reconstruction
Prediction

References

Not just a programming error!

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●●

●
●
●●●●

●

●

●

●●

●

●
●●●●
●
●
●●●●●●●
●●●●
●
●
●
●●

●
●●●
●
●●●
●

●●

●

●●●●●●●●
●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●●
●●●
●
●
●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●

●

●

●●●●
●●●

●

●

●

●

●

●

●

●

●●●
●●●
●●●●

●

●●

●

●

●

●
●
●●

●

●●●●

●

●●●

●●●●●●

●

●
●

●
●
●
●●

●

●●

●

●●●●

●

●
●●●
●

●

●●●●●

●

●●

●

●

●
●

●●
●
●

●

●

●

●●
●

●

●●

●●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●
●
●●●

●

●

●●

●

●●

●●●●●●

●

●

●●

●

●

●

●●

●

●●●

●

●●

●

●●●●●

●

●

●

●●

●
●
●
●●●●●
●●
●

●
●
●
●●

●●●●●●●●●●
●
●
●●

●

●●
●
●●●●

●

●
●●

●

●

●

●●●

●

●●●

●

●
●

●

●

●

●

●●●

●●

●

●

●●

●

●

●

●●●
●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●●●
●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●●●

●

●

●●●●

●

●
●●●

●

●

●

●

●

●

●

●
●●●●

●
●

●●●
●
●

●

●●●

●

●

●
●

●

●
●
●●

●●
●
●
●

●

●●
●

●
●●●●●●

●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●
●
●●

●

●●●●

●

●
●
●●●●●●
●

●

●●●●

●

●●●●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●●

●

●
●●●●●●●

●
●
●●●●●●●●●●●

●
●●●

●

●
●

●

●

●
●●●●●
●●●

●

●

●

●

●

●

●

●
●

●

●●

●●●
●

●

●

●

●

●●●

●

●
●●●

●

●

●

●●

●

●
●●

●●●

●

●●
●
●●●
●●●●●
●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●
●●●●●

●

●
●
●●●

●

●

●

●

●●●
●
●
●
●●●●
●●●●●●●●●
●●●
●
●
●
●
●
●●
●

●●

●

●

●

●●●
●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

●●●

●

●
●●●
●
●●●

●

●●●●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●●●

●

●●●

●

●

●

●●
●

●

●

●

●
●
●

●

●●●●●

●
●
●
●
●
●●
●●●●●●●●●●

●
●●●●●
●
●

●
●
●
●●●●●●●●

●

●

●

●
●

●

●

0 1000 2000 3000 4000 5000

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Residuals

t

re
al

ity
 −

 p
re

di
ct

io
n

36-462 Lecture 4

Reconstruction
Prediction

References

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●●

●
●
●●●●

●

●

●

●●

●

●
●●●●

●
●
●●●●●●●

●●●●
●
●
●
●●

●
●●●

●
●●●

●

●●

●

●●●●●●●●
●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●●
●●●
●
●
●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

● ●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●●

●

●

●

●
●
●●

●

●●●●

●

●●●

●●●●●●

●

●
●

●
●
●
●●

●

●●

●

●●●●

●

●
●●●
●

●

●●●●●

●

●●

●

●

●
●

●●
●
●

●

●

●

●●
●

●

● ●

●●●●

●

●

●

●● ●

●

●

●●

●

●

●

●

●
●
●●●

●

●

●●

●

●●

●●●●●●

●

●

●●

●

●

●

●●

●

●●●

●

●●

●

●●●●●

●

●

●

●●

●
●

●
●●●●●

●●
●

●
●
●
●●
●●●●●●●●●●

●
●
●●

●

●●
●
●●●●

●

●
●●

●

●

●

●●●

●

●●●

●

●
●

●

●

●

●

●●●

●●

●

●

●●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●●●
●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●●●

●

●

●●●●

●

●
●●●

●

●

●

●

●

●

●

●
●●●●

●
●

●●●
●
●

●

●●●

●

●

●
●

●

●
●
●●

●●
●

●
●

●

●●
●

●
●●●●●●

●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●
●
●●

●

●●●●

●

●
●
●●●●●●
●

●

●●●●

●

●●●●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●●

●

●
●●●●●●●

●
●
●●●●●●●●●●●

●
●●●

●

●
●

●

●

●
●●●●●

●●●

●

●

●

●

●

●

●

●
●

●

●●

●●●
●

●

●

●

●

●●●

●

●
●●●

●

●

●

●●

●

●
●●

●●●

●

●●
●
●●●
●●●●●
●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●
●●●●●

●

●
●
●●●

●

●

●

●

●●●
●
●
●
●●●●
●●●●●●●●●
●●●
●
●
●

●
●
●●
●

●●

●

●

●

●●●
●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

●●●

●

●
●●●
●
●●●

●

●●●●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●●●

●

●●●

●

●

●

●●
●

●

●

●

●
●
●

●

●●●●●

●
●
●
●
●
●●
●●●●●●●●●●
●
●●●●●
●
●

●
●
●
●●●●●●●●

●

●

●

●
●

●

●

−15 −10 −5 0 5 10 15

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Residuals vs. first history component

lag 0

re
si

du
al

36-462 Lecture 4

Reconstruction
Prediction

References

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●●

●
●
●●●●

●

●

●

●●

●

●
●●●●

●
●
●●●●●●●

●●●●
●
●
●
●●

●
●●●

●
●●●

●

●●

●

●●●●●●●●
●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●●
●●●

●
●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

● ●●●●●●

●

●

●

●

●

●

●

●

●●●●●
●●●●●

●

●●

●

●

●

●
●
●●

●

●●●●

●

●●●

●●●●●●

●

●
●

●
●
●
●●

●

●●

●

●●●●

●

●
●●●
●

●

●●●●●

●

●●

●

●

●
●

●●
●
●

●

●

●

●●
●

●

● ●

●●●●

●

●

●

●● ●

●

●

●●

●

●

●

●

●
●
●●●

●

●

●●

●

●●

●●●●●●

●

●

●●

●

●

●

●●

●

●●●

●

●●

●

●●●●●

●

●

●

●●

●
●

●
●●●●●

●●
●

●
●
●
●●
●●●●●●●●●●

●
●
●●

●

●●
●
●●●●

●

●
●●

●

●

●

●●●

●

●●●

●

●
●

●

●

●

●

●●●

●●

●

●

●●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●●●
●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●●●

●

●

●●●●

●

●
●●●

●

●

●

●

●

●

●

●
●●●●

●
●

●●●
●
●

●

●●●

●

●

●
●

●

●
●
●●

●●
●

●
●

●

●●
●

●
●●●●●●

●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●
●
●●

●

●●●●

●

●
●
●●●●●●

●

●

●●●●

●

●●●●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●●

●

●
●●●●●●●

●
●
●●●●●●●●●●●

●
●●●

●

●
●

●

●

●
●●●●●

●●●

●

●

●

●

●

●

●

●
●

●

●●

●●●
●

●

●

●

●

●●●

●

●
●●●

●

●

●

●●

●

●
●●

●●●

●

●●
●
●●●

●●●●●
●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●
●●●●●

●

●
●
●●●

●

●

●

●

●●●
●
●
●
●●●●
●●●●●●●●●

●●●
●
●
●

●
●
●●
●

●●

●

●

●

●●●
●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

●●●

●

●
●●●
●

●●●

●

●●●●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●●●

●

●●●

●

●

●

●●
●

●

●

●

●
●
●

●

●●●●●

●
●
●
●
●
●●
●●●●●●●●●●

●
●●●●●

●
●

●
●
●

●●●●●●●●

●

●

●

●
●

●

●

−15 −10 −5 0 5 10 15

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Residuals vs. second history component

lag 40

re
si

du
al

36-462 Lecture 4

Reconstruction
Prediction

References

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●●

●
●
●●●●

●

●

●

●●

●

●
●●●●

●
●
●●●●●●●

●●●●
●
●
●
●●

●
●●●

●
●●●

●

●●

●

●●●●●●●●
●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●●

●●●
●
●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●
●

●

●

●

●

●

●

●

●

●●●
●●●

●●●●

●

●●

●

●

●

●
●
●●

●

●●●●

●

●●●

●●●●●●

●

●
●

●
●
●
●●

●

●●

●

●●●●

●

●
●●●
●

●

●●●●
●

●

●●

●

●

●
●

●●
●
●

●

●

●

●●
●

●

● ●

●●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●
●
●●●

●

●

●●

●

●●

●●●●●●

●

●

●●

●

●

●

●●

●

●●●

●

●●

●

●●●●●

●

●

●

●●

●
●
●
●●●●●
●●
●

●
●
●
●●

●●●●●●●●●●
●
●
●●

●

●●
●
●●●●

●

●
●●

●

●

●

●●●

●

●●●

●

●
●

●

●

●

●

●●●

●●

●

●

●●

●

●

●

●●● ●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●●●
●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●●●

●

●

●●●●

●

●
●●●

●

●

●

●

●

●

●

●
●●●●

●
●

●●●
●
●

●

●●●

●

●

●
●

●

●
●
●●

●●
●

●
●

●

●●
●

●
●●●●●●

●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●
●
●●

●

●●●●

●

●
●
●●●●●●

●

●

●●●
●

●

●●●●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●●

●

●
●●●●●●●

●
●
●●●●●●●●●●●

●
●●●

●

●
●

●

●

●
●●●●●

●●●

●

●

●

●

●

●

●

●
●

●

●●

●●●
●

●

●

●

●

●●●

●

●
●●●

●

●

●

●●

●

●
●●

●●●

●

●●
●
●●●

●●●●●
●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●
●●●●●

●

●
●
●●●

●

●

●

●

●●●
●
●
●
●●●●
●●●●●●●●●

●●●
●
●
●

●
●
●●

●

●●

●

●

●

●●●
●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

●●●

●

●
●●●

●
●●●

●

●●●●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●●●

●

●●●

●

●

●

●●
●

●

●

●

●
●
●

●

●●●●●

●
●
●
●
●
●●
●●●●●●●●●●

●
●●●●●

●
●

●
●
●

●●●●●●●●

●

●

●

●
●

●

●

−15 −10 −5 0 5 10 15

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Residuals vs. third history component

lag 80

re
si

du
al

36-462 Lecture 4

Reconstruction
Prediction

References

Why not just use huge k?
bias/variance trade-off

small k : tracks local behavior, big change in prediction
depending on which point just happens to be closest to you
big k : smooth predictions over state space, less sensitive
to sampling, less informative locally
k = n: same prediction all over state space!

Can we somehow increase k with n, to take advantage of
filling-in along the attractor? — See handout on kernel
prediction.

36-462 Lecture 4

Reconstruction
Prediction

References

Cross-Validation

Standard and useful way of selecting control settings
Principle: we don’t just want to fit old data, we want to predict
new data
i.e., don’t just optimize in-sample error, optimize
out-of-sample error
Problem: we don’t know the distribution of future data!
Would we be trying to learn a predictor if we did?
Observation: we do have a sample from that distribution — our
sample
⇐ ergodicity: long trajectories are representative
Solution: fake getting a new sample by sub-dividing our existing
one at random
Chose the settings which generalize best, which can
cross-validate

36-462 Lecture 4

Reconstruction
Prediction

References

Random division into training and testing sets needs to respect
the structure of the data
e.g. divide points in the embedding space, not observations
from the original time series
note: did this already with the Lorenz example — that was an out-of-sample
prediction
Good idea to use a couple of random divisions and average
out-of-sample errors
This multi-fold cross-validation also gives you an idea of the
uncertainty due to sampling noise

36-462 Lecture 4

Reconstruction
Prediction

References

5-fold cross-validation of kNN prediction of Lorenz, k ∈ 1:10
Warning: slow!

fold = sample(1:5,nrow(lorenz.rcon),replace=TRUE)
cvpred = matrix(NA,nrow=nrow(lorenz.rcon),ncol=10)
cvprederror = matrix(NA,nrow=nrow(lorenz.rcon),ncol=10)
for (k in 1:10) {
for (i in 1:5) {
train=which(fold!=i)
test=which(fold==i)
cvpred[test,k] = knn.predict(train=train,test=test,

lorenz.futures,lorenz.dist,
k=k,agg.meth="mean")

cvprederror[test,k] = lorenz.futures[test]-cvpred[test,k]
}

}
mean.cv.errors = apply(abs(cvprederror),2,mean)
plot(mean.cv.errors,xlab="k",ylab="mean absolute prediction

error", main="5-fold CV of kNN prediction",type="b")

36-462 Lecture 4

Reconstruction
Prediction

References

●

●

●

●

●

●

●
●

●

●

2 4 6 8 10

0.
01

5
0.

02
0

0.
02

5
0.

03
0

0.
03

5

5−fold CV of kNN prediction

k

 e

rr
or

36-462 Lecture 4

Reconstruction
Prediction

References

Add the individual “fold” values to the previous plot
graphics hygiene: have vertical scale run to zero

plot(mean.cv.errors,xlab="k",ylab="mean absolute prediction
error", main="5-fold CV of kNN prediction",type="l",
ylim=c(0,0.04))

error.by.fold = matrix(NA,nrow=5,ncol=10)
for (i in 1:5) {
for (k in 1:10) {
test=which(fold==i)
error.by.fold[i,k] = mean(abs(cvprederror[test,k]))
points(k,error.by.fold[i,k])

}
}

36-462 Lecture 4

Reconstruction
Prediction

References

2 4 6 8 10

0.
00

0.
01

0.
02

0.
03

0.
04

5−fold CV of kNN prediction

k

 e

rr
or

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

Conclusion: 2 is best, but they’re all pretty good
note bigger scatter at bigger k

36-462 Lecture 4

Reconstruction
Prediction

References

Norman H. Packard, James P. Crutchfield, J. Doyne Farmer,
and Robert S. Shaw. Geometry from a time series. Physical
Review Letters, 45:712–716, 1980.

Floris Takens. Detecting strange attractors in fluid turbulence.
In D. A. Rand and L. S. Young, editors, Symposium on
Dynamical Systems and Turbulence, pages 366–381, Berlin,
1981. Springer-Verlag.

36-462 Lecture 4

	Reconstruction
	Takens's Embedding Theorem
	Reconstruction example
	Attractor Reconstruction
	Choice of reconstruction settings

	Prediction
	Nearest-neighbor methods
	Cross-Validation

	References

