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Reconstruction Inferring the attractor from a time series;
powerful in a weird way

Prediction Using the reconstructed attractor to make
forecasts
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Reconstruction
What can we learn about the dynamical system from observing
a trajectory?
Assume it’s reached an attractor; attractor is a function of the
parameters; invert the function

Function from parameters to attractors can be very ugly
Assumes we know the dynamics up to parameters

Second problem is bigger!

Will see later an approach (“indirect inference”) for parametric estimation with messy

models

Do we need parameters?
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A gross simplification of

Takens’s Embedding Theorem

Suppose Xt is a state vector
Suppose the map/flow is sufficiently smooth
Suppose Xt has gone to an attractor, dimension d
Suppose we observe St = g(Xt), which again is sufficiently
smooth
Pick a time-lag τ and a number of lags k
Time-delay vector R(k)

t = (St , St−τ , St−2τ , . . . St−(k−1)τ )

THEOREM If k ≥ 2d + 1, then, for generic g and τ , R(k)
t acts

just like Xt , up to a smooth change of coordinates
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Determinism

State has d dimensions so knowing d coordinates at once fixes
trajectory
OR knowing one variable at d times fixes trajectory (think of
Henon map)
Don’t get to observe state variables so may need extra
observations
Turn out to never need more than d + 1 extras
Sometimes don’t need the extras
[Packard et al., 1980]
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Geometry

Trajectories are d-dimensional (because they are on the
attractor, and current state fixes future states)
So time series are also only d-dimensional, but they might live
on a weirdly curved d-dimensional space
Geometric fact (Whitney embedding theorem): any curved
d-dimensional space fits into a 2d + 1-dimensional ordinary
Euclidean space
[Takens, 1981]
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An example of reconstruction

Lorenz attractor, a = 10, b = 28, c = 8/3
See last lecture for equations of motion
Solved equations in a separate (non-R) program (see website)

> lorenz.state.ts = read.csv("lorenz-t50-to-t100-by-1e-3",
col.names=c("t","x","y","z"))

> scatterplot3d(lorenz.state.ts$x,lorenz.state.ts$y,
lorenz.state.ts$z,type="l",xlab="x",
ylab="y",zlab="z",lwd="0.2")

> x.ts = lorenz.state.ts$x
> library(tseriesChaos)
> scatterplot3d(embedd(x.ts,3,40),type="l",lwd="0.2")
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Lorenz Attractor: state space
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Time series: first coordinate of state
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Reconstruction, k = 3, τ = 0.04

Lorenz Attractor: time−delay of one state variable

s = x1
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Lorenz Attractor: state space
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Lorenz Attractor: time−delay of one state variable

s = x1
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Note: reconstruction procedure knew nothing about what the
state variables were or what the equations of motion were, it
just worked with the original time-series
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Attractor Reconstruction

“It’s inference, Jim, but not as we know it”
Gets information about the larger system generating the data
from partial data (inference)
No parametric model form
No nonparametric model form either
No likelihood, no prior
Requires very complete determinism
Reconstructs the attractor up to a smooth change of
coordinates
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Coordinate change

old, new state = Xt , Rt
old, new map = Φ, Ψ
coordinate change = G so Rt = G(Xt)
If the coordinate change works, then it doesn’t matter whether
we apply it or the map first

Xt+1 = Φ(Xt) Rt+1 = Ψ(Rt)

Rt+1 = G(Φ(Xt)) = Ψ(G(Xt)) = Rt+1
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Xt
Φ−−−−→ Xt+1

G

y G

y
Rt

Ψ−−−−→ Rt+1

New coordinates are a perfect model of the old coordinates
time-delay vectors give a model of states, at least on the
attractor
many quantities (like Lyapunov exponents) aren’t affected by
change of coordinates
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Lorenz Attractor: nonlinear observable

s = (x1 + 7)3
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Lorenz Attractor: Nonlinear observable

s = x1
2x2
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It even works with observation noise

Lorenz Attractor: Nonlinear observable+noise

s = x1
2x2 + ε, σ(ε) = 100
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Lorenz Attractor: Nonlinear observable+noise

s = x1
2x2 + ε, σ(ε) = 400
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but not too much

Lorenz Attractor: Nonlinear observable+noise

s = x1
2x2 + ε, σ(ε) = 1000
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Choice of reconstruction settings

Need to choose k (number of delays, embedding dimension)
and τ (delay between observations) — typically the observable
is given to us by the problem situation
These involve a certain amount of uncertainty
Software: used tseriesChaos from CRAN
Hegger, Kantz, & Schreiber’s TISEAN has an R port, RTisean,
also on CRAN, couldn’t get it to work
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Choice of delay τ

In principle, almost any τ will do
but if the attractor is periodic, multiples of the period are bad!
In practice, want to try and get as much new information about
the state as possible from each observation
⇒ Heuristic 1: make τ the first minimum of the autocorrelation
⇒ Heuristic 2: make τ the first minimum of the mutual
information
Will return to heuristic 2 after we explain “mutual information”
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Autocorrelation function

ρ(t , s) =
cov[Xt , Xs]

σ(Xt)σ(Xs)

For weakly stationary or second-order stationary processes,
ρ(t , s) = ρ(|t − s|), i.e., depends only on time-lag, not on
absolute time
Standard R command: acf
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Space-time separation plot

Distance between two random points from the trajectory will
depend on how far apart in time we make the observations
For each h > 0, calculate the empirical distribution of
‖Xt − Yt+h‖
Plot the quantiles as a function of h
Example: logistic map

stplot(x.ts,3,40,mdt=2000)
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showing deciles; time in units of 1/1000
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correlations are reasonably decayed at around ≈ 250, before
then observatons are correlated because not enough time to
disperse around attractor
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Choice of embedding dimension k : False Neighbor Method

Take points which really live in a high-dimensional space and
project into a low-dimensional one: many points which are
really far apart will have projections which are close by
These are the false neighbors

Random dots near the unit sphere
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Keep increasing the dimensionality until everything which was a
neighbor in k dimensions is still a neighbor in k + 1 dimensions
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Need to exclude points which are nearby just because the
dynamics hasn’t had time to separate them — calculate this
Theiler window from space-time plot

plot(false.nearest(x.ts,6,40,250))

i.e. use τ = 40 in embedding, consider up to 6 dimensions, and
use an Theiler exclusion window of 250 time-steps
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Conclusion: k = 3 it is
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Prediction

Determinism: there is a mapping from old states to new states
Prediction: learn that mapping, then apply it
Work in the reconstructed state space
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Nearest-neighbor methods

Also called method of analogs in dynamics
Given: points x1, x2, x3, . . . xn−1 and their sequels, x2, x3, . . . xn
Wanted: prediction of what will happen after seeing new point x
Nearest neighbor: find xi closest to x ; predict xi+1
k -nearest neighbors: find k points xi1 , xi2 , xik closest to x ,
predict the average of xi1+1, xi2+1, . . . xik+1
Notation: Uk (x) = k nearest neighbors of x
Note: this k is not the k of the embedding dimension, but the
phrase “k -nearest neighbors” is traditional
Computation: finding the nearest neighbors fast is tricky; leave
it to a professional
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Assume the map Φ is smooth
If xi is very close to x , then Φ(xi) = xi+1 will be close to, but not
exactly, Φ(x)

Φ(xi) = Φ(x) + (xi − x)Φ′(x) + small

If xi1 , xi2 , xik are all very close to x , then xi1+1, xi2+1, . . . xik+1
should all be close to Φ(x)
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1
k

∑
j∈Uk (x)

Φ(xj) =
1
k

∑
j∈Uk (x)

Φ(x)+

1
k

∑
j∈Uk (x)

xj − x

 Φ′(x)+small

1
k

∑
j∈Uk (x)

Φ(xj)− Φ(x) ≈

1
k

∑
j∈Uk (x)

xj − x

 Φ′(x)

k > 1: the error averages a bunch of individual terms from the
neighbors, which should tend to be smaller than any one of
them, if they’re not too correlated themselves
One reason this works well together with mixing!
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As n grows, we get more and more samples along the attractor
If x itself is from the attractor, it becomes more and more likely
that we are sampling from a place where we have many
neighbors, and hence close neighbors, so the accuracy should
keep going up
Another reason this works well with mixing
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knnflex from CRAN lets you do nearest-neighbor prediction
(as well as classification)
R is weak and refuses to do really big distance matrices

> lorenz.rcon = embedd(x.ts[1:5000],3,40)
> nrow(lorenz.rcon)
[1] 4920
> lorenz.dist = knn.dist(lorenz.rcon)
> lorenz.futures = x.ts[2:5001]
> train = sample(1:nrow(lorenz.rcon),0.8*nrow(lorenz.rcon))
> test = (1:nrow(lorenz.rcon))[-train]
> preds = knn.predict(train,test,lorenz.futures,lorenz.dist,

k=3,agg.meth="mean")
> plot(test,preds,col="red",xlab="t",ylab="x",type="p",

main="3NN prediction vs. reality")
> lines(test,lorenz.futures[test])
> plot(test,lorenz.futures[test] - preds,xlab="t",

ylab="reality - prediction",main="Residuals")
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Not just a programming error!
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Why not just use huge k?
bias/variance trade-off

small k : tracks local behavior, big change in prediction
depending on which point just happens to be closest to you
big k : smooth predictions over state space, less sensitive
to sampling, less informative locally
k = n: same prediction all over state space!

Can we somehow increase k with n, to take advantage of
filling-in along the attractor? — See handout on kernel
prediction.
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Cross-Validation

Standard and useful way of selecting control settings
Principle: we don’t just want to fit old data, we want to predict
new data
i.e., don’t just optimize in-sample error, optimize
out-of-sample error
Problem: we don’t know the distribution of future data!
Would we be trying to learn a predictor if we did?
Observation: we do have a sample from that distribution — our
sample
⇐ ergodicity: long trajectories are representative
Solution: fake getting a new sample by sub-dividing our existing
one at random
Chose the settings which generalize best, which can
cross-validate
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Random division into training and testing sets needs to respect
the structure of the data
e.g. divide points in the embedding space, not observations
from the original time series
note: did this already with the Lorenz example — that was an out-of-sample
prediction
Good idea to use a couple of random divisions and average
out-of-sample errors
This multi-fold cross-validation also gives you an idea of the
uncertainty due to sampling noise
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5-fold cross-validation of kNN prediction of Lorenz, k ∈ 1:10
Warning: slow!

fold = sample(1:5,nrow(lorenz.rcon),replace=TRUE)
cvpred = matrix(NA,nrow=nrow(lorenz.rcon),ncol=10)
cvprederror = matrix(NA,nrow=nrow(lorenz.rcon),ncol=10)
for (k in 1:10) {
for (i in 1:5) {
train=which(fold!=i)
test=which(fold==i)
cvpred[test,k] = knn.predict(train=train,test=test,

lorenz.futures,lorenz.dist,
k=k,agg.meth="mean")

cvprederror[test,k] = lorenz.futures[test]-cvpred[test,k]
}

}
mean.cv.errors = apply(abs(cvprederror),2,mean)
plot(mean.cv.errors,xlab="k",ylab="mean absolute prediction

error", main="5-fold CV of kNN prediction",type="b")
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Add the individual “fold” values to the previous plot
graphics hygiene: have vertical scale run to zero

plot(mean.cv.errors,xlab="k",ylab="mean absolute prediction
error", main="5-fold CV of kNN prediction",type="l",
ylim=c(0,0.04))

error.by.fold = matrix(NA,nrow=5,ncol=10)
for (i in 1:5) {
for (k in 1:10) {
test=which(fold==i)
error.by.fold[i,k] = mean(abs(cvprederror[test,k]))
points(k,error.by.fold[i,k])

}
}
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Conclusion: 2 is best, but they’re all pretty good
note bigger scatter at bigger k
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