
Side-Note: Nonparametric Nonlinear
Prediction

36-462, Spring 2009

22 January 2009, to accompany Lecture 4

Parametric prediction is, in principle, easy: (1) estimate the parameters of
the model, (2) estimate the state, and then (3) plug in to the model to calcu-
late what should happen in the future. (To make things easy on ourselves,
let’s suppose we’re only trying for a point prediction, rather than to predict a
distribution of outcomes.) Of course all three steps are easier said than done...

We are not blessed with a parametric model — or would like some kind
of additional check on one we have. What are some non-parametric ways of
making predictions?

There are three big ones, of which we will look at two.

1. Massively-parametric regression. With a high-enough order polynomial,
you can match any smooth function arbitrarily well. So use a lot of pa-
rameters, by including higher-order nonlinear terms. What is usually
meant by “non-parametric regression”; figure out the order you need (at
least to within the noise level), then fit. Polynomials are usually a bad
choice (they have this nasty habit of zooming off to infinity outside your
sampling range, which is implausible), so better-behaved things are used
likes splines [7], neural networks [6], support-vector machines [3], addi-
tive models [4], etc., but the principle is the same. We won’t cover this
because it needs, a whole course (which I teach in the fall).

2. Nearest-neighbor methods. Observe a whole bunch of states and their sub-
sequent behavior. To predict what will happen at a new state, not pre-
viously observed, find the most similar state you have seen, and predict
it will do likewise. Maybe, for safety, find a few of the closest states and
predict the average of their behavior. (How this leads to safety is dis-
cussed in the slides.)

Assumes: future behavior varies smoothly with state; that you have seen
enough states that the new ones are reasonably close to the old ones; that
you can figure out states from observations.

3. Kernel prediction. This lies somewhere between the other two. Instead of
predicting the average of the k nearest neighbors, average all previously
observed points, but with a weight that falls off the further the old point

1

is from the one where we’re trying to predict. This weighting function is
called the kernel. As more and more data comes in, give further-away
points less and less weight.
You can think of this as giving us a regression function where the order
grows with each data point.

The hand-out from Kantz and Schreiber [5] talks about nearest-neighbor
methods; we will be using them in R, rather than their custom software. I want
to say a little about the kernel methods. (For much more, see [1, 2].

1 Kernel Methods

Suppose Ut is our time-series of inputs and Vt is our time-series of outputs,
both of length n. The kernel predictor is then

Rn,h,K(u) =
n∑

t=1

Vt

K
(

u−Ut

h

)∑n
s=1 K

(
u−Ut

h

) (1)

where K is the kernel function and h is called the bandwidth. That is, to pre-
dict the value of V at the input point u, we take the average of all the observed
values of Vt, weighting them by how far their inputs were from u, with weights
which are proportional to the kernel function.

A good kernel function, then, should be symmetric, non-negative and go
to zero at infinity; in fact it’s conventional and convenient to make a kernel a
probability density function, so it integrates to 1. The bandwidth h re-scales the
kernel function; it should go to zero as n → ∞, so that when we have a lot of
data, we really emphasize points which are close to u, and pay little attention
to points which are far from u.

In our case, a natural choices for “input” and “output” are the time-delay
vector of our observed time series, Ut = (st, st−1, . . . st−k+1), and the next ob-
servation, Vt = st+1.

We also need to choose a kernel. Two common ones are the rectangular
or uniform kernel (= 1 on the unit cube centered at zero, = 0 elsewhere), the
ball kernel (= 1 on the unit ball, = 0 elsewhere)1 and the standard Gaussian
density, = (2π)−k/2

e−‖x‖
2/2.

How then to choose k and h? Well, if we have succeeded in convincing our-
selves that we’ve found a good embedding dimension, use that k. Otherwise,
a good practice is to use cross-validation.

2 Cross-validation

Here’s how it works. (There are many variations.) Pick 10% of the data points
at random and hold them aside as the test set. Pick an arbitrary combination

1This doesn’t integrate to 1, but rather to 4
3
π. But the normalization constant would just cancel

out.

2

of k and h from a range of values you decide a priori are plausible. Take the
remaining 90% of the data, the training set, and use it to estimate R by plug-
ging in to Equation 1. Now use this R̂ to predict the test set. Calculate the
out-of-sample error,

err(h, k) =
∑

t∈test set

|Vt − R̂(Ut)|

(You might want to use the squared error, rather than the absolute error, if
you have good reason to believe in Gaussian distributions.) Repeat this for a
couple of different random splits into training and test sets, and average the
out-of-sample errors. Finally, pick the combination of h and k which has the
best out-of-sample performance, i.e., the smallest error.

This is obviously very computationally intensive. It is also a pretty stan-
dard method in statistical learning. Notice that nothing really depends on us-
ing the kernel-predictor here; we could use it to fix control settings for any
other predictor, provided that we have a way of calculating its out-of-sample
performance.

References

[1] Bosq, Denis (1998). Nonparametric Statistics for Stochastic Processes: Estima-
tion and Prediction. Berlin: Springer-Verlag, 2nd edn.

[2] Caires, S. and J. A. Ferreira (2005). “On the Non-parametric Prediction
of Conditionally Stationary Sequences.” Statistical Inference for Stochastic
Processes, 8: 151–184. doi:10.1007/s11203-004-0383-2. Correction, vol. 9
(2006), pp. 109–110.

[3] Cristianini, Nello and John Shawe-Taylor (2000). An Introduction to Sup-
port Vector Machines: And Other Kernel-Based Learning Methods. Cambridge,
England: Cambridge University Press.

[4] Hastie, Trevor, Robert Tibshirani and Jerome Friedman (2001). The Elements
of Statistical Learning: Data Mining, Inference, and Prediction. New York:
Springer-Verlag.

[5] Kantz, Holger and Thomas Schreiber (2004). Nonlinear Time Series Analysis.
Cambridge, England: Cambridge University Press, 2nd edn.

[6] Ripley, Brian D. (1996). Pattern Recognition and Neural Networks. Cambridge,
England: Cambridge University Press.

[7] Wahba, Grace (1990). Spline Models for Observational Data. Philadelphia:
Society for Industrial and Applied Mathematics.

3

http://dx.doi.org/10.1007/s11203-004-0383-2

	Kernel Methods
	Cross-validation

