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Abstract

In the lecture, I used the phrase “smooth change of coordinates” a lot
when talking about attractor reconstruction. As in, the geometry-from-
a-time-series approach doesn’t recover the actual state space, but it does
recover something which is equivalent to it, up to a smooth change of co-
ordinates. This (optional) note explains in more detail what that means.

In lecture, I claimed that attractor reconstruction lets us identify the under-
lying state-space of a dynamical system, “up to a smooth change of coordi-
nates”. What does this mean?

I mean something like going from using Cartesian (rectangular) coordinates
to represent points on the plane to using polar coordinates. The points are the
same, the geometric relationships between them are the same, but our numeri-
cal representation of them has changed. The point whose Cartesian coordinates
are (1, 1) has polar coordinates (

√
2, π/4), but it’s the same point.) If we try to

write down equations of motion in terms of the individual coordinates, we’d
need different equations in the two coordinate systems, even though they’d be
representing the same dynamics.

EXERCISE: Re-write the Hénon map in polar coordinates.
There are two ways to go here; we can call them abstraction and transla-

tion.
The route of abstraction is to try to find a coordinate-free representation of

the dynamics. This is the route that lead to vector calculus: ∇f always means
the same vector field, whether you cash it out in Cartesian coordinates,

∇f =
∂f

∂x
x̂ +

∂f

∂y
ŷ

or in polar coordinates,

∇f =
∂f

∂ρ
ρ̂ +

∂f

ρ∂θ
θ̂

The point of notation like ∇f is to give us rules for reasoning about this object
in a way which abstracts from — that is, hides the details of — particular co-
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ordinate systems.1 We will return to this idea of abstraction, but it’s harder to
pursue here.

The other route is that of translation. We stick with coordinate-dependent
representations of the dynamics, but recognize that some of these are just dif-
ferent representations of the same thing, and study the transformations which
take one representation into another — i.e., the coordinate changes which leave
the dynamics alone. This route has also been followed by a lot of mathemati-
cians. Unfortunately, they have created a truly ugly jargon to go with it.

A morphism is a mapping or transformation which preserves some struc-
ture or property we care about.2 Here the structure in question is the re-
lationship between states at time t and states at time t + 1. To be a little
more concrete, suppose X is our state variable and the update rule is Φ, so
Xt+1 = Φ(Xt). A function G of X is a morphism for this dynamical system
when G(Xt+1) = Ψ(G(Xt)) for some map Ψ. That is, G(Φ(Xt)) = Ψ(G(Xt)) —
we can either apply the change of coordinates G first, and follow a new update
rule Ψ, or we can apply the old update rule Φ and then change coordinates.

A morphism G becomes an isomorphism3 if it is invertible, and the inverse
G−1 also preserves the structure. That is, G−1 exists, and Ψ(Yt) = G(Φ(G−1(Yt))).
With a morphism, we can use either the old or the new coordinates to predict
what will happen in the new coordinates, but we can’t necessarily use the new
coordinates to predict the old ones. With an isomorphism, we can go back
and forth between the two coordinate systems at will. Invariant sets, like fixed
points or periodic cycles, are “preserved” under isomorphisms (e.g., Φ(x) = x
if and only if Ψ(G(x)) = G(x), and similarly for periodic cycles).

An isomoprhism G becomes a homeomorphism4 when it is continuous,
and its inverse G−1 is also continuous. This is useful because mere isomor-
phisms can be very strange, but the continuity of homeomorphisms rules out
some pathological cases. For example, there are one-dimensional maps which
are isomorphic to some two-dimensional maps, but dimension is “preserved
under homeomorphism”. However, there can still be weird singularities in a
homeomorphism, and they don’t necessarily preserve the more quantitative
properties of dynamical systems, like Lyapunov exponents.

A homeomorphism G becomes a diffeomorphism when its derivatives Dc
exist and are continuous, and G−1 also has continuous derivatives.5 This is
what I mean by a “smooth change of coordinates”. Because the derivatives

1Follow this idea far enough and you wind up with modern differential geometry [5], and
dynamical systems on manifolds [2]. This is actually very useful in advanced statistical theory,
under the name of “information geometry” [1, 3, 4].

2The word is from the ancient Greek word morphe, meaning “shape”.
3Iso- = “equal”
4Homeo- = “similar”
5One some-times useful bit of notation is to say that continuous functions belong to the class C0,

functions with a continuous first derivative belong to C1, those with continuous second derivatives
to C2, and so on to C∞, where derivatives of all orders exist and are continuous. Then one says
that a homeomorphism is an isomorphism where G and G−1 are both in C0, a diffeomorphism is
when they are both in C1, etc. There is no special name, so far as I know, for isomorphisms in C2

or higher.
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of G exist and are well-behaved, the quantitative properties of the dynamics
which depend on the derivatives of the update rule, like the stability criteria
and the Lyapunov exponents, are also preserved by diffeomorphisms.

EXERCISE: Use the fact that Ψ(u) = G(Φ(G−1(u))) to Taylor-expand Ψ
around some point G(x). How does this compare to the Taylor expansion of Φ
around x?

Example: The Hénon and Logistic Maps The logistic map is diffeomorphic
to the Hénon map with b = 0. In fact, the diffeomorphism is a linear change of
coordinates.

Remember that the update rule for the Hénon map is

hn+1 = a− h2
n (1)

(because b = 0, we can ignore the second state coordinate), while the update
rule for the logistic map is

ln+1 = 4rln(1− ln) (2)

Set
hn = c + dln (3)

(and similarly for hn+1). Then, substituting Eqs. 3 and 2 into Eq. 1 above, we
have

a− (c + dln)2 = c + d(4rln(1− ln)) (4)

EXERCISE: solve this for a, c, d in terms of r. (Hint: each power of ln must have
the same coefficients on both sides of the equation. [Why?])

Example: the logistic map and the tent map The tent map is another map
from the unit interval [0, 1] into itself. The update rule is

tn+1 =
{

2tn 0 ≤ tn ≤ 1/2
2(1− tn) 1/2 ≤ tn ≤ 1 (5)

(Why is it called the “tent” map?). This is diffeomorphic to the logistic map
with r = 1, and the diffeomorphism is

ln = sin2 πtn
2

(6)

EXERCISE: convince yourself that this actually is a diffeomorphism.
As the last example suggests, if one is given two maps and asked to find a

diffeomorphism between them, things can get ugly. But verifying that a given
coordinate-change G is a diffeomorphism between two given maps is fairly
straightforward, as is finding the Ψ which comes from combining a given G
with a given Φ.
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Attractor Reconstruction

In attractor reconstruction, the k-dimensional vector of time-delayed measure-
ments Rt is diffeomorphic to the original state Xt. This means that Rt = G(Xt)
for some function G, and that there is some mapping in Rk, call it Ψ, such that

Rt+1 = Ψ(Rt)

while
G(Φ(Xt)) = Ψ(G(Xt))

It is not possible to identify the original state-space X any more precisely than
this. The reason is that “diffeomorphisms are closed under composition” —
doing two different smooth changes of coordinates in a row is the same as
doing one, direct change of coordinates. So if R is diffeomorphic to X , and
X is diffeomorphic to Y , then R is also diffeomorphic to Y . In terms of the
examples, we’ll get the same reconstruction whether we start with the logistic
map, or the tent map, or the b = 0 Hénon map.

For purely predictive purposes, identification up to a diffeomorphism is
good enough. Scientifically, of course, we might want to know what the state
variables actually are; to do this we’ll need more than just passive observation
of time series.
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