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The topological entropy rate is a basic measure of how much flexibility
there is in the dyamics — how many different kinds of patterns it can produce,
and how much the past of the process constrains its future behavior. This note
tries to clarify this idea.

In lecture, we considered the symbolic dynamics we get by combining a
continuous map Φ with a discrete partitionB— we turn continuous trajectories
in the state space, S1, S2, S3, . . ., into discrete symbol sequences, X1, X2, X3, . . . ≡
X∞

1 ; we said that Xt = b(St). We also noted that X∞
1 is completely determined

by the initial state, S1. We will say X∞
1 = b∞1 (S1).

A word is a finite sequence of symbols. A word is allowed by the symbolic
dynamics if it can occur as a subsequence. That is, a word w of length n is
allowed if there is some s and some t such that bt+n−1

t (s) = w. If a word is not
allowed then it is forbidden.

Every allowed word w of length n has a “parent” which is a word of length
n − 1 — this is the word formed of its first n − 1 symbols. So the number of
allowed words of length n must be at least equal to the number of allowed
words of length n− 1. On the other hand there could be more than one way to
continue a given word, i.e., two or more words of length n could share the same
prefix of n− 1 symbols. Thus at least sometimes the number of allowed words
grows with n. In fact, for many symbolic dynamical systems, the number of
allowed words grows exponentially with n.

Let’s write Wn for the number of allowed words of length n. In lecture we
defined the topological entropy rate to be1

h0 ≡ lim
n→∞

1
n

log Wn (1)

(If you want to know why this is written h0, see the notes by Feldman on in-
formation theory, in the readings.) This is, as we said, the long-run rate of
exponential growth in the number of allowed words. Let’s first re-write Eq. 1
in a way which may make that more transparent, and then look at its values
for different kinds of dynamics.

1Writing the subscript on log2 all the time gets tiresome, so all logarithms will be to base 2.
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Begin by doing something pointless-looking, which is to add and subtract
a lot of canceling terms, creating a “telescoping sum”:

log Wn = (2)
= log Wn − log Wn−1 + log Wn−1 − log Wn−2 + log Wn−2 − . . .− log W1 + log W1 − log 1

=
n∑

t=1

log Wt − log Wt−1 (3)

=
n∑

t=1

log
Wt

Wt−1
(4)

where we conveniently define W0 = 1, and remember of course that log 1 = 0.
Now stick Eq. 4 into 1.

h0 = lim
n→∞

1
n

n∑
t=1

log
Wt

Wt−1
(5)

Wt

Wt−1
is the ratio by which the number of allowed words expands when going

from t − 1 to t. So this looks rather like the time-average of the log of that
expansion factor. This suggests that h0 tells us by what factor, on average, the
number of allowed words keeps expanding. This is why we can, roughly, think
of 2h0 as the number of choices we have for how to extend a word which is
already very long. — Note however that h0 is not a real average over time, since
Wt isn’t something we calculate for a particular state, but rather is a property of
the whole state space.

One place we have already seen a (real) time-average of a log expansion
factor is the Lyapunov exponent in one dimension:

λ = lim
n→∞

1
n

n∑
t=1

log |Φ′(xt)| (6)

This might lead you to guess that there is some kind of connection between λ
and h0. This guess is sometimes right (which is why I bring it up, of course).
In one dimension, it turns out that h0 ≥ λ. This is not obvious, and a proper
demonstration is pretty intricate.

How does this play out in terms of the kind of dynamics we already know
about?

Attracting fixed point Any trajectory at a fixed point must stay in the same
cell of the partition forever, so a fixed point s∗ produces a symbol se-
quence which is an infinite repetition of a single letter. Since all trajec-
tories are attracted to the fixed point, eventually they all enter the same
cell of the partition as the fixed point and stop changing. So, while Wn

never shrinks, eventually Wn = Wn+1, and so from Eq. 5 we can see that
h0 must be zero.
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Attracting limit cycle Cycles can produce more than one word because we can
start them in different phases. A cycle of period p can produce, at most,
p distinct words of any length. (“At most”, because multiple points in
the cycle can belong to the same cell of the partition. For instance, with
a non-generating partition, every point of the cycle could be in the same
cell.2) Now the same kind of argument applies as in the previous case —
having p different allowed words instead of just one doesn’t really change
things. The important point is that after a certain length, the number of
allowed words isn’t growing.

Chaotic attractor What we want to say is that h0 > 0 on a chaotic attractor.
This requires a little care. If the partition B is chosen stupidly, it could
put the entire attractor in a single cell. Then h0 = 0. So let’s suppose
the attractor occupies at least two cells. What we want to say is that no
matter how close s and r might be, eventually, for some n, Φn(s) and
Φn(r) will be on totally different places on the attractor, in particular one
of them will be in one cell and the other will be in the other cell. So even
if bn−1

1 (s) = bn−1
1 (r), we have bn(s) 6= bn(r). This means there is at least

one word of length n − 1 which can be extend into at least two words
of length n. So Wn/Wn−1 > 1. Similarly, there will be another point in
the state space, call it q, which is closer to s and so bn

1 (s) = bn
1 (q), but

eventually the orbit of q will diverge from the orbit of s, so at some time
n + m, bn+m(s) 6= bn+m(q), meaning that Wn+m/Wn > 1. And so on.

While plausible, this line of argument is only roughly right — to really
turn it into a proof one would need to nail down a lot of details, like
showing that nearby trajectories always have to eventually wind up on
opposite sides of a cell boundary. But the spirit of it is right, for not-too-
unfortunate partitions.

To sum up: periodic attractors mean h0 = 0, because eventually there is no
choice about how to continue any symbol sequence. Chaotic attractors (pretty
much) need h0 > 0, because sensitive dependence on initial conditions will
eventually give us a choice between symbols, and once it does that once it
keeps doing so over and over, so even asymptotically there is always still some
room for choices, and the number of allowed words grows exponentially.

There are weird situations where h0 = 0 but the behavior is not periodic,
because Wn grows forever with n, but less than exponentially — say Wn ∝ n2.
You will not, inshallah, have to deal with such things.

2Convince yourself that this is not possible with a generating partition.
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