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The Story So Far

Deterministic dynamics can produce stable distributions of
behavior
Discretizing with partitions gives symbol sequences
These need a statistical description

Inference for Markov chains
Inference for higher-order Markov chains
Inference for stochastic machines

FURTHER READING: Everyone steals the theory of likelihood inference for Markov

chains from Billingsley (1961). But Guttorp (1995) is easier reading. For hidden Markov

models, see Fraser (2008).
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Likelihood for Markov chains

Basic case: m states/symbols, transition matrix p0 unknown
Parameters: matrix entries pij
observe xn

1 ≡ x1, x2, . . . xn
Th probability of this sequence is

Pr (X n
1 = xn

1 ) = Pr (X1 = x1)
n∏

t=2

Pr (Xt = xt |Xt−1 = xt−1)

(by Markov property)
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Re-write in terms of pij

L(P) = Pr (X1 = x1)
n∏

t=2

pxt−1xt

Define Nij ≡ number of times i is followed by j in X n
1

L(P) = Pr (X1 = x1)
m∏

i=1

m∏
j=1

pnij
ij

L(P) = log Pr (X1 = x1) +
∑
i,j

nij log pij

Maximize as a function of all the pij
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The Maximum Likelihood Estimator

Solution to constrained maximization problem (see handout):

p̂ij =
nij∑
j nij

What about x1? Use conditional likelihood to ignore it!
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Why the MLE Works

By the ergodic theorem,

Nij

n
→ p0

i p0
ij

(where did p0
i come from?)

also ∑
j

Nij

n
→ p0

i

so
p̂ij → p0

ij

as we’d like
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Parametrized Markov Chains

May not be able to vary all the transition probabilities
separately
May have an actual theory about how the transition
probabilities are functions of underlying parameters

Either way, P is really P(θ), with θ the r -dimensional vector of
parameters
Again, maximize the likelihood:

∂L
∂θu

=
∑

ij

∂L
∂pij

∂pij

∂θu
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For this to work, we need Guttorp’s “Conditions A”
which he got from Billingsley (1961, p. 23)

1 The allowed transitions are the same for all θ
technical convenience

2 pij(θ) has continuous θ-derivatives up to order 3
authorizes Taylor expansions to 2nd order

can sometimes get away with just 2nd partials

3 The matrix ∂pij/∂θu always has rank r
no redundancy in the parameter space

4 The chain is ergodic without transients for all θ
trajectories are representative samples
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Assume all this; also, θ0 = true parameter value
Then:

1 MLE θ̂ exists
2 θ̂ → θ0 (consistency)
3 Asymptotic normality:

√
n

(
θ̂ − θ0

)
 N (0, I−1(θ0))

with expected (Fisher) information

Iuv (θ) ≡
∑

ij

pi(θ)

pij(θ)

∂pij

∂θu

∂pij

∂θv
= −

∑
ij

pi(θ)pij(θ)
∂2 log pij(θ)

∂θu∂θv

(2nd equality is not obvious)
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Error of the MLE

Error estimates based on I(θ0) are weird: if you knew θ0, why
would you be calculating errors?
Option 1: use I(θ̂)
Option 2: use the observed information

Juv = −
∑

ij

nij

n
∂2 log pij(θ̂)

∂θu∂θv

(Guttorp’s Eq. 2.207, but he’s missing the sum over state pairs.)
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Notice that

Juv = −1
n

∂2L(θ̂)

∂θu∂θv

nJ = how much the likelihood changes with a small
change in parameters from the maximum
J−1 = how much we can change the parameters before
the change in likelihood is noticeable
If the model is right, then J → I(θ̂), because both → I(θ0)
∴ use J − I(θ̂) to test for mis-specification (White, 1994)
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Alternative error estimates

Can get standard errors and confidence intervals from these
Gaussian distributions
but they’re asymptotic
Generally no simple formulas for the finite-sample distributions
This doesn’t matter (much) because we can simulate
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Parametric bootstrapping

1 Have real data xn
1 , get parameter estimate θ̂

2 Simulate from θ̂, get fake data Y n
1 (“bootstrap”)

3 Estimate from faked data, get θ̃

Approximately,
(θ̂ − θ0) ∼ (θ̃ − θ̂)

We want the distribution on the left; we can get arbitrarily close
to the distribution on the right, by repeating steps 2 and 3 as
many times needed
(Connections between bootstrap and maximum likelihood: Efron (1982))
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Higher-order Markov Chains

Markov property: for all t ,

Pr
(

Xt |X t−1
1

)
= Pr (Xt |Xt−1)

k th-order Markov: for all t ,

Pr
(

Xt |X t−1
1

)
= Pr

(
Xt |X t−1

t−k

)
In a Markov chain, the immediate state determines the
distribution of future trajectories
Extended chain device: Define Yt = X t+k−1

t
Y t

1 is a Markov chain
The likelihood theory is thus exactly the same, only we need to
condition on the first k observations
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Hypothesis Testing

Likelihood-ratio testing is simple, for nested hypotheses
θ̂small = MLE under the smaller, more restricted hypothesis
dsmall degrees of freedom
θ̂big = MLE under larger hypothesis
d.o.f. = dbig

If the smaller hypothesis is true,

Λ = 2[L(θ̂big)− L(θ̂small)] χ2
dbig−dsmall

which gives significance level
If the bigger hypothesis is true, a non-central χ2 distribution
(can give power)
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What about small n? Distribution won’t have converged
Use parametric bootstrapping again:

1 Calculate log likelihood ratio Λ on real data, call this λ

2 Simulate from θ̂small, get fake data Y n
1

3 Estimate θ̃small, θ̃big from Y n
1

4 Calculate Λ̃ from θ̃small, θ̃big

5 Repeat (2)–(4) B times to get sample of Λ̃

6 p-value = #
{

Λ̃ ≥ λ
}

/B

Getting power is similar but simulate from θ̂big
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Everything is nested inside the non-parameterized estimate
d.o.f. = m(m − 1) for a first-order chain

d.o.f. = mk (m − 1) for a k -order chain

fixed transition matrix, or fixed θ0, has d.o.f. = 0

lower-order chains are nested inside higher-order chains, so
you can test for order restrictions
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A Little Bit Beyond Markov Chains

Partially-observable Markov chain process where we observe
a random function of a Markov chain

Xt = f (St , Nt), St Markov, Nt ⊥ St

Hidden Markov model observation Xt independent of
everything else given state St

Stochastic finite automaton Xt plus St uniquely determine St+1
a.k.a. chain with complete connections
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HMMs and SFAs are both special cases of POMCs
HMMs are more common in signal processing
SFAs are more useful for dynamics, and easier to analyze:
stochastic counterparts to the machines from last lecture
Good intros to HMMs: Rabiner (1989); Charniak (1993), and especially Fraser (2008)

Good advanced reference on HMMs: Cappé et al. (2005)
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Specifying an SFA

1 Set of states S, alphabet of symbols A
2 Transition function T (i , j) = state reached starting from i on

symbol j
3 Emission probabilities Qij = probability of state i producing

symbol j
4 Initial distribution over states

Graph: circles and arrows, as before; add probabilities Qij to
the arrows
Skeleton or structure of SFA: just (1) and (2)
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Likelihood for SFA

Observe xn
1

Assume skeleton is known, initial state s1 is known
Then state sequence is known recursively: st+1 = T (st , xt)
Log-likelihood:

L(Q) =
n∑

t=1

log Qst xt =
∑
i∈S

∑
j∈A

nij log Qij

with Nij = emission counts
Once again,

Q̂ij =
nij∑

j∈A nij

and once again
Q̂ij → Q0

ij
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If the initial state is not known:
Likelihood = weighted sum of state-conditional likelihoods
ugly but numerically maximizable

Synchronization: Write st+1 = T (s1, x t
1) (abuse of notation)

Skeleton synchronizes if, after some τ , T (s1, xτ
1 ) = T (s′1, xτ

1 )
or, xτ

1 is enough to pin down the state, never mind starting point

All finite-type processes synchronize (τ = order of process)
Many strictly sofic processes synchronize after a random time
(e.g. all three examples from Lecture 5)

Can do likelihood conditional on synchronization
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What do if the skeleton is not known?
1 Try multiple skeletons, cross-validate
2 Try multiple skeletons, use BIC

BIC = L(θ̂)− d
2

log n

Hand-waving:

Large n ⇒ θ̂ Gaussian around θ0, s.d. ∝ n−1/2

Parameters with more impact on likelihood more precisely estimated
− d

2 log n comes out as expected over-fitting

BIC is consistent for estimating the order of Markov chains
(Csiszár and Shields, 2000)

3 Other model-selection tests/heuristics (e.g. bootstrap
tests)
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Model Discovery/Construction

Systematically build a model to match the data
Basic idea goes back to the JANET algorithm (Foulkes, 1959)
Each state contains a word s; a sequence of observations
should land us in that state if they end with that word
Each state has a conditional distribution Pr (Xt |s).
Each state also has Pr (Xt |as), for each one-symbol extension
as.
If Pr (Xt |s) differs significantly from Pr (Xt |as), split into multiple
states.
Keep going until no more splits are called for
Result: variable-length Markov chain

36-462 Lecture 6



Inference for Markov chains
Beyond Markov Chains

References

Variable-Length Markov Chain

Tree representation
Equivalent to higher-order Markov chain
order = length of longest path from root to leaf

So why bother with VLMCs?
Computation and comprehensibility
Use the tree to predict, and to see what the states “mean” in terms of history

Statistical efficiency
m − 1 degrees of freedom ≤ mk (m − 1) d.o.f. for full chain

fewer d.o.f. ⇒ less variance in estimates

weaker “curse of dimensionality”

BIC works for selecting VLMCs (Csiszár and Talata, 2006)
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AAAB

BA

A  :  0.1875

BB

B  :  0.8125 BAB

B  :  0.4375

BAA

A  :  0.5625

A  :  0.9375

B  :  0.0625

AAA

B  :  0.8125

A  :  0.1875

A  :  0.250

B  :  0.750

A  :  0.5625

BAAB

B  :  0.4375

A  :  0.750

B  :  0.250

AAAB,
3/16, 13/16

AAA
3/16, 13/16

BB
15/16, 1/16

BAB
1/4, 3/4

BA
9/16, 7/16

BAAB
3/4, 1/4

BAA
9/16, 7/16

e

A

A

B

B

B

AA

A B

AB

A

A B B

AAB

A

A B

Foulkes’s example: 7 state machine, word length ≤ 4
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Periodic re-discoveries of Foulkes’s idea
(Rissanen, 1983; Ron et al., 1996; Bühlmann and Wyner, 1999; Kennel and Mees,

2002)

Check out the VLMC package from CRAN
Some evidence that people (or at least mid-1960s undergrads
in Michigan) do something like this (Feldman and Hanna, 1966)
More exactly, people seem to learn the states, but don’t make the right predictions in

those states

This would be a nice topic for someone to re-visit
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What about sofic processes?

Learning strictly sofic machines is more tricky
One approach is CSSR (“causal state-splitting reconstruction”)
(Shalizi and Klinkner, 2004)

1 Learn states (tree-like) which predict one step ahead,
much like Janet

Pr (Xt+1|St) = Pr
(
Xt+1|X t

1
)

2 Then sub-divide states until they are resolving, i.e. must
have Rt+1 = T (Rt , Xt), and St = f (Rt) for some T , f

Can learn even strictly sofic processes if they are synchronizing
Must not learn strict tree in (1), and must do (2)
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2 1B  |  1.0
B  |  0.5

A  |  0.5

2 1B  |  1.0
B  |  0.497

A  |  0.503

exact even process vs. CSSR with n = 104
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Error estimates: bootstrap
(paper in preparation on analytical theory but it is very tricky)
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