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@ In what senses can we say that chaos gives us
deterministic randomness?

@ Explaining “random” in terms of information

@ Chaotic dynamics and information

All ideas shamelessly stolen from Ruelle (1991)
Single most important reference on algorithmic definition of
randomness: Li and Vitanyi (1997)

But see also Badii and Politi (1997) on detailed connections to
dynamics
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Randomness and Algorithmic Information

Probability Theory and Its Models

Probability theory is a theory — axioms & logical
consequences

Something which obeys that theory is one of its realizations
E.g., r = 1 logistic map, with usual generating partition, realizes the theory of Bernoulli

processes
Can we say something general about realizations of probability

theory?
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Randomness and Algorithmic Information

Compression

Information theory last time: looked at compact coding of
random objects

Coding and compression can define randomness

Lossless compression: Encoded version is shorter than
original, but can uniquely & exactly recover original

Lossy compression: Can only get something close to original
Stick with lossless compression
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Randomness and Algorithmic Information

Lossless compression needs an effective procedure —
definite steps which a machine could take to recover the
original

Effective procedures = algorithms

Algorithms = recursive functions

Recursive functions = Turing machines

finite automaton with an unlimited external memory

Think about programs written in a universal language (R, Lisp,
Fortran, C, C++, Pascal, Java, Perl, OCaml, Forth, ...)
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Randomness and Algorithmic Information

X is our object, size |x|

Desired: a program in language L which will output x and then
stop

some trivial programs eventually output everything

e.g. 01234567891011121314 . ..

those programs are descriptions of x

What is the shortest program which will do this?

N.B.: print (x) ; is the upper bound on the description length
finite # programs shorter than that

so there must be a shortest

Length of this shortest program is K (x)
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Randomness and Algorithmic Information

Why the big deal about universal computer?

1. Want to handle as general a situation as possible

2. Emulation: for any other universal language M, can write a
compiler or translator from L to M, so

Ku(x) < |Cr—m| + Ki(x)

Which universal language doesn’t matter, much; and could use
any other model of computation
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Randomness and Algorithmic Information

Kolmogorov Complexity
The Kolmogorov complexity of x, relative to L, is

Ki(x) = pénp'nx)| Pl

where D(x) = all programs in L that output x and then halt
This is the algorithmic information content of x

a.k.a. Kolmogorov-Chaitin complexity,
Kolmogorov-Chaitin-Solomonoff complexity...

1<K (x)<|x|+c

where c is the length of the “print this” stuff
If KL(x) ~ |x|, then x is incompressible
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Randomness and Algorithmic Information

Examples

“0mK<1+c

“0” ten thousand times: K < 1 +log, 10*+c=1+4log,10+¢
“0” ten billion times: K <1+ 10log, 10+ ¢

“10010010” ten billion times: K <8+ 10log, 10 + ¢

m, first n digits: K < g+ log, n

In fact, any number you care to name contains little algorithmic
information

Why?
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Randomness and Algorithmic Information

Incompressibility and randomness

Most objects are not very compressible

Exactly 2" objects of length n bits

At most 2% programs of length k bits

No more than 2 n-bit objects can be compressed to k bits
Proportion is < 2k—"

At most 2-"/2 objects can be compressed in half

Vast majority of sequences from a uniform 11D source will be
incompressible

“uniform [ID” = “pure noise” for short
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Randomness and Algorithmic Information

More compressibility and randomness

Suppose x is a binary string of length n, with n > 1
If proportion of 1sin x is p, then

K(x) < —n(plogz p+ (1 — p)log, 1 — p) + o(n) = nH(p) + o(n)

nH(p) < nifp # %
Similarly for statistics of pairs, triples, ...
Suggests:

@ Most sequences from non-pure-noise sources will be
compressible

© Incompressible sequences look like pure noise

ANY SIGNAL DISTINGUISHABLE FROM NOISE IS INSUFFICIENTLY
COMPRESSED

36-462 Lecture 8



Randomness and Algorithmic Information

Incompressible sequences look random

CLAIM 1: Incompressible sequences have all the effectively
testable properties of pure noise

CLAIM 2: Sequences which fail to have the testable properties
of pure noise are compressible

Redundancy |x| — K| (x) is distance from pure noise

If X is pure noise,

Pr(|X| — K.(X) >¢c)<27°

Power of this test is close to that of any other (computable) test
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Randomness and Algorithmic Information

Why the L doesn’t matter

Take your favorite sequence x

In new language L', the program “!I” produces x, any program
not beginning “!” is in L

Can make K;/(x) = 1, but makes others longer

But the trick doesn’t keep working

can translate between languages with constant complexity
still true that large incompressible sequences look like pure
noise
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Randomness and Algorithmic Information

ANY DETERMINISM DISTINGUISHABLE FROM RANDOMNESS IS
INSUFFICIENTLY COMPLEX

Poincaré (2001) said as much 100 years ago, without the math
Excerpt on website

Extends to other, partially-compressible stochastic processes
The maximally-compressed description is incompressible

so other stochastic processes are transformations of noise
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Randomness and Algorithmic Information

The Problem

There is no algorithm to compute K| (x)

Suppose there was such a program, U for universal
Use it to make a new program V which compresses the
incompressible:

@ Sort all sequences by length and then alphabetically
@ For the it sequence x;, use U to find K (x;)

Q If Ki(x;) < | V], keep going

© Else set z to x;, return z, and stop

So K (z) > | V|, but V outputs z and stops: contradiction
Due to Nohre (1994), cited by Rissanen (2003).
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Randomness and Algorithmic Information

There is no algorithm to approximate K (x)
In particular, gzip does not approximate Kj (x)

Can never say: x is incompressible

Can say: most things are random

don’t know x isn’t random yet
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Randomness and Algorithmic Information

Mean Algorithmic Information and Entropy Rate

For an IID source
1 n
Jim —E[K(X])] = HIX]
For a general stationary source

o1 my
nILmOO BE [K(X{)] = hy
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Randomness and Algorithmic Information

Algorithmic Information of Dynamical Systems
Kolmogorov complexity of a continuous state from symbolic
dynamics:

1
K(s) = sup lim K(b”( s))

B n—oo N
with
b(s) = b(s), b(®(s)), b($?(8)), .. b(P"(8))

If & is ergodic, then
BRUDNO’S THEOREM: with probability 1,

K(s) = hks

independent of the initial state s
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Randomness and Algorithmic Information

In every testable way, typical chaotic symbol sequences look
like they’re generated by a stochastic process (Galatolo et al.,
2008)

Once again:

ANY DETERMINISM DISTINGUISHABLE FROM RANDOMNESS IS
INSUFFICIENTLY COMPLEX

The key is the sensitive dependence on initial conditions:

d
ks <Y Ailxso(A)
i—

Instability reads out the algorithmic information which went into
the initial condition
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Randomness and Algorithmic Information

Why Does Attractor Reconstruction Need Determinism?

Attractor reconstruction only works if the attractor has finite
dimension

A random process is basically an infinite-dimensional
dynamical system

Use the shift-map representation

Attractor reconstruction breaks down when used on stochastic
processes
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Randomness and Algorithmic Information

Hand-waving about continuous variables

There’s a theory of universal computation on real numbers &
such

See Prof. Lenore Blum in SCS (Blum, 2004, 1990; Blum et al., 1989)

Or see Cris Moore

Works basically like discrete theory

Incompressibility results still there (more or less)

So 3 incompressible sequences of continuous values

These come from chaotic infinite-dimensional dynamics

But: don’t know of rigorous proofs

36-462 Lecture 8


http://www.cs.cmu.edu/~lblum/
http://www.santafe.edu/~moore

Randomness and Algorithmic Information

What About Finite-Dimensional Dynamics?

Three kinds of results:
@ About ensemble distributions, as in mixing

© About projections — if we ignore some coordinates, the
others look like a stochastic process
© About approximations — real trajectories are close to
those of stochastic processes (Eyink, 1998)
Always some departures from randomness if we can see exact
state
E.g., always some function of s; which gives us s, ;4100
even St+10101oo
but function becomes harder and harder to evaluate, needs
more and more data
This gets into subtle topics in approximation theory
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Randomness and Algorithmic Information

Summing Up

Probability tells us what random processes look like
Incompressibility gives us realizations of those theories
Coarse-graining of unstable deterministic dynamics gives us
incompressibility

Randomness can be produced by fully deterministic processes
Stochastic modeling works even in a fully deterministic but
chaotic world

ANY SIGNAL DISTINGUISHABLE FROM NOISE IS INSUFFICIENTLY
COMPRESSED

ANY DETERMINISM DISTINGUISHABLE FROM RANDOMNESS IS
INSUFFICIENTLY COMPLEX
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