
Side Note: Algorithmic Information Content
of Symbol Sequences and Marginal Entropies

36-462, Spring 2009

9 February 2009, in connection with lecture 8

Consider a long sequence of discrete symbols x1, x2, . . . xn ≡ xn
1 . Each sym-

bol can take one of k distinct values, say to be concrete the whole numbers
0, 1 . . . k − 1. How can we bound K(xn

1 ), the algorithmic information content
of the string?

Let’s start with the k = 2 case, where the book-keeping is simplest. If we
think back to elementary probability (or elementary combinatiorics), we real-
ize that there are only so many ways of combining a given number of zeroes
and a given number of ones. Suppose we knew that there were n0 zeroes and
n1 = n− n0 ones in the sequence. The number of such sequences is

(
n
n0

)
, a.k.a.

a “binomial coefficient”. We could order the sequences however we like, and
then encode the given string by saying where it falls in that ordering, i.e., that
enumeration. The number of bits needed for this is the log of binomial coeffi-
cient. Of course we also have to say what n0 is, but the allowed values are just
the integers from 0 to n, so that takes log2 n + 1 bits. So

K(xn
1 ) ≤ log2

(
n

n0

)
+ log2 n + 1 + c

where c is the overhead for recovering the sequence from its serial number,
printing, etc. So what can we say about the log of the binomial coefficients?

Well, (
n

n0

)
=

n!
n0!n1!

and there is Stirling’s approximation for log q!:

log q! = q log q + o(q)

so

log
(

n

n0

)
= log n!− log n0!− log n1! + o(n)

= n log n− n0 log n0 − n1 log n1 + o(n)
= n0 log n + n1 log n− n0 log n0 − n1 log n1 + o(n)

1



= −n0 log n0/n− n1 log n1/n + o(n)

= −n
n0

n
log

n0

n
− n

n1

n
log

n1

n
+ o(n)

= −np0 log p0 − np1 log p1 + o(n)
= nH(p0) + o(n)

where pi = ni/n is the actual relative frequency of the symbol i in xn
1 , and H(p)

is the Shannon entropy of a binary variable where one symbol has probability
p. Let’s plug this back in to our bound on the algorithmic information:

K(xn
1 ) ≤ nH(p0) + o(n)

where the remainder term o(n) has absorbed log2 n + 1 + c. Since H(p) = 1
when and only when p = 1/2, if the relative frequencies of the two symbols are
not equal, then the sequence is compressible.

What if k > 2? The same kind of reasoning applies. If we know n0, n1, . . . nk−1,
then there are

n!∏k−1
i=0 ni!

possible sequences. Specifying the counts takes at most k log n + 1 bits1. So

K(xn
1 ) ≤ c + k log n + 1 + log n!−

k−1∑
i=1

log ni!

Pulling the same trick with Stirling’s approximation, we get

K(xn
1 ) ≤ nH(p0, p1, . . . pk−1) + o(n)

where now H() is the entropy of a random k-valued multinomial random vari-
able with a given distribution. In this case the distribution is just pi = ni/n.

EXERCISE: step through the algebra.
The same argument works for symbol pairs. Start with the binary case once

again. Divide xn
1 into n/2 non-overlapping blocks of two symbols. (If n is not

even, we just need at most one extra bit to encode the last symbol, which will
be negligible.) Each of these must be either 00, 01, 10, or 11. This is however
just the previous case, with an alphabet of size k = 4, so that

K(xn
1 ) ≤ n

2
H(p00, p01, p10, p11) + o(n)

in the obvious notation.2 But the same trick will work with an arbitrary-sized
alphabet k and and arbitrary block sizes m:

K(xn
1 ) ≤ n

m
H[X̂m

1 ] + o(n)

1If we were really worried about this, we could use the fact that
∑

ni = n to reduce this encod-
ing length, but we’re about to absorb everything which isn’t at least linear in n into a remainder
term.

2To see this, note that the number of ways of arranging these blocks is
(n/2)!

n00!n01!n10!n11!

2



where X̂m
1 is a (fictitious) random variable which follows the distribution of

length-m blocks from xn
1 .

Two things seem to be worth noting here.

1. If we had a stationary sequence of random variables X1, . . . Xn, it would
be true that

H(Xn
1 ) ≤ n

m
H[Xm

1 ]

with equality if and only if successive length-m blocks were statistically
independent. For fixed m, as n grows, H[X̂m

1 ] → H[Xm
1 ] by ergodicity, so

the algorithmic information of long sequences should be upper bounded
by the entropy of blocks from that sequence. It turns out that it can’t be
much lower, either, on average.

2. The naive or literal encoding length of xn
1 is n log k bits. The sequence

is incompressible if its algorithmic information content is close to its lit-
eral length. But notice that H[X̂m

1 ] ≤ m log k. In fact, recall from the
slides on defining entropy in terms of relative entropy that H[X̂m

1 ] =
m log k − D(U‖P̂ (m)) where U is the uniform distribution and P̂ (m) is
the distribution of m-blocks in xn

1 . So the sequence will be compressible
unless all blocks are uniformly distributed.

Of course if we let m get large enough, for fixed n, the remainder terms
we’ve buried in o(n) come back to haunt us.

with the obvious notation for the counts of the blocks, and of course the adding-up constraint that
n00 + n01 + n10 + n11 = n/2. Now we get

log
(n/2)!

n00!n01!n10!n11!
= −

n

2
[p00 log p00 + p01 log p01 + p10 log p10 + p11 log p11]

which is what we’d get from a four-symbol alphabet.

3


