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Complexity measures
Complexity of optimal prediction
Results in cyclic CA

Further reading: Shalizi et al. (2004, 2006)
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More and Better Notions of Complexity

Kolmogorov complexity randomness
but pure noise is easy to describe (“toss a coin”)
also, uncomputable

Sophistication Split minimal algorithm for x into program and
data, s.t. x is a typical output for the program
(Gács et al., 2001)
“the ultimate model of a cat is of course another
cat” (Rosenblueth et al., 1943)
still uncomputable

Logical depth How long does the minimal algorithm take to
run? (Bennett, 1986, 1990)
still uncomputable

Thermodynamic entropy S, “improbability” randomness issue
again
also, it’s very probable that the BZ reaction makes
spiral waves
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S
Smax

(1− S
Smax

) a “so what?” quantity (Feldman and Crutchfield,
1998; Crutchfield et al., 2000)

Probabilistic description Take two-part idea but use
probabilistic descriptions (Rissanen, 1989;
Grünwald, 2005)
breaks DL into (program/model part) + (noisy data
details part)
we care about first part
What exactly needs describing and how?
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Three Kinds of Complexity of Prediction

1 Induction/learning
2 Description/estimation
3 Computational/calculating

These are distinct!
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Inductive complexity

How hard is to learn the right predictive model
units of samples or data-points
Depends on our choice of representation, not just the system
Huge & wonderful theory: take 36-702, or read Kearns and
Vazirani (1994); Vapnik (2000)
Tangential to us
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Descriptive complexity

How hard is to to estimate the the right state of the right model?
units of bits
How much information about the past is necessary for optimal
prediction of the future? (Grassberger, 1986; Crutchfield and
Young, 1989)
Does not depend on our models
Does depend on level of description; can’t be helped
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Computational complexity

How hard is to calculate the prediction from the right state in
the right model?
units of time-steps
Many fascinating results
Machta (2006); Griffeath and Moore (1996); Lindgren et al. (1998); Moore
(1997); Moore and Nordahl (1997); Machta and Machta (2005); Machta and
Greenlaw (1994); Machta and Li (2001); Moore and Machta (2000); Moore
and Nilsson (1999); Tillberg and Machta (2004)
Won’t go into this further
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“Statistics”

Given: data, say past behavior X t
−∞

Wanted: guess unobserved, say future X∞t+1
A statistic: a calculable function of the data we use for our
inference
Rt = ρ(X t

−∞)
mean, variance, moving average over last three steps, Fourier amplitude,
maximum likelihood estimate, ...
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Information in Statistics; Sufficiency

How much does ρ tell us about the future? Predictive
information

I[X∞t+1; Rt ] = H[X∞t+1]− H[X∞t+1|Rt ]

Basic observation:

I[X∞t+1; Rt ] ≤ I[X∞t+1; X t
−∞]

R is predictively sufficient when I[X∞t+1; Rt ] = I[X∞t+1; X t
−∞]

Fact: optimal prediction only needs a sufficient statistic
no matter how you measure “optimal”
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Minimal Sufficiency

St = σ(ρ(X t
−∞)) = σ(Rt)

St is a statistic but coarser, retains less, of data

I[X∞t+1; St ] ≤ I[X∞t+1; Rt ] ≤ I[X∞t+1; X t
−∞]

but also
I[St ; X t

−∞] ≤ I[Rt ; X t
−∞]

information about past needed to make prediction
Minimal sufficient: St is sufficient but is a function of every
other sufficient statistic Rt
Minimal sufficient statistics give us the forecasting complexity

36-462 Lecture 12



References

Another way to say this: Necessary statistics

A statistic is necessary if it can be calculated from all sufficient
statistics
If you are going to do optimal prediction, you have to know
every necesssary statistic
Maximum likelihood estimates are generally necessary
statistics (but not always sufficient)
“Minimal sufficient” = “necessary and sufficient”
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Building the minimal sufficient statistic

Particular pasts x , y , . . .
Equivalent: x ∼ y if and only if

Pr
(
X∞t+1|X t

−∞ = x
)

= Pr
(
X∞t+1|X t

−∞ = y
)

Equivalence class: [x ] = all y such that x ∼ y
Statistic:

ε(x) = [x ]

Maps particular histories to their distribution over future events,
or to the set of histories with the same prediction
Value of statistic is predictive state or causal state St
Crutchfield and Young (1989); Shalizi and Crutchfield (2001)
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Complexity

Grassberger/Crutchfield-Young statistical forecasting
complexity:

C ≡ I[St ; X t
−∞]

= H[St ] for discrete predictive states
How many (statistically) different things can the process do?
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Some basic cases:
IID: one conditional distribution = unconditional distribution ⇒ 1
state, C = 0
Periodic: p conditional distributions, 1 per phase ⇒ C = log2 p
Markov chains: states are their own predictive states
unless space is redundant
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histories, colored by predictive distributions
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partitioning into predictive states

36-462 Lecture 12



References

Properties: Sufficiency, Markov

SUFFICIENCY:

Pr
(
X∞t+1|St = ε(x t

−∞)
)

= Pr
(
X∞t+1|X t

−∞ = x t
−∞

)
I[X∞t+1; St ] = I[X∞t+1; X t

−∞]

RECURSIVE UPDATING: for some function T ,

ε(x t+1
−∞) = T (ε(x t

−∞), xt+1)

St+1 = T (St , Xt+1)

MARKOV:
S∞t+1 ⊥ St−1

−∞|St

Predictive states give us a stochastic automaton
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Properties: Minimality

For any other sufficient statistic Rt = ρ(X t
−∞),

I[Rt ; X t
−∞] ≥ I[St ; X t

−∞]

If I[Rt ; X t
−∞] < I[St ; X t

−∞] then Rt is not sufficient
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A partition which is not sufficient (cuts across predictive states)
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Effect of insufficiency on predictions
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A sufficient, but not minimal, partition (2 blue states)
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Properties: Uniqueness

If Rt is sufficient and I[Rt ; X t
−∞] = I[St ; X t

−∞], then or some
function f ,

Rt = f (St), St = f−1(Rt)
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Upshot

(GCY) Statistical complexity is well-defined and depends only
on the process
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Complexity is not entropy

Logistic map (193 parameter values between 0.75 and 1), from
Crutchfield and Young (1989)
Vertical axis is complexity, horizontal axis is entropy rate
Peak occurs at period-doubling accumulation point
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Going to higher dimensions

One of them has to be time (but see Young et al. (2005))
Idea: repeat the same construction, only use the local past
around a point to predict the local future around that point
(Shalizi, 2003)

past

future
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Results for cyclic CA
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Defining Self-Organization

(Shalizi et al., 2004)
An assemblage has self-organized between t1 and t2 if

1 C(t1) > C(t2)
2 Not all of the increase is due to an external organizer

In CA we don’t need to worry about item (2); in general need to
“exorcise demons”
One approach: replace actual outside driver by noise with a
similar distribution, see what difference it makes (Delgado and
Solé, 1997)
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Coherent Structures

Examples from last time: spirals, targets, ...
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Order Parameters

Structure means: Symmetry is broken ≡ picture does not look
the same in everyt direction
But also: Symmetry is only partially broken
Identify a function which measures this symmetry breaking =
order parameter
Guess how order parameter contributes to energy, check that it
gives right distribution
Find singularities in order parameter field = structures
Sethna (1991) is great on this, can be read with minimal
knowledge of physics
Sethna (2006) is not quite so easy to read
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Finding Order Parameters Is Hard

Usual approach: trial and error, tradition, analogy
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Local Statistical Complexity

Define
c(r , t) = − log2 Pr (S(r , t) = ε(x(r , t)))

shows where complexity is localized, as opposed to just how
much
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Hand-found order parameter (much insight needed) vs.
automatically-calculated local complexity (no insight needed)
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Table 1: Timings for Isotropic Diffusion (Diffusion), Swirling Flow (Swirl), and Flow Around a Cylinder (Cylinder). The following abbreviations
are used: the different Fields used for the analysis are vector (v) or scalar (s) valued; the different Implementations used are simple (none of the
efficient implementation strategies is used), or efficient (all strategies are used); Past and Future Depth denote the depth of the past and future
light-cones respectively; # Representatives is the number of representative used in the classification process; Size of List gives the number of
candidates in the classification; # Omitted denotes the number of time steps being omitted, when classifying the representatives.

Dataset Fields Implementation Past Depth Future Depth # Representatives Size of List # Time Steps # Omitted Time

Cylinder 2s, 1v simple 3 3 200 - 5 0 1 h 20 min
Cylinder 2s, 1v efficient 3 3 200 700 5 0 14 min

Cylinder 2s, 1v efficient 2 2 5000 1 1 0 58 min
Cylinder 2s, 1v efficient 2 2 5000 700 1 0 12 min
Cylinder 2s, 1v efficient 2 2 9000 700 300 20 4h 5min

Swirl 1s, 1v efficient 2 2 5000 600 1 0 6 min
Diffusion 1s efficient 2 2 5000 600 1 0 4 min
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Figure 7: Illustrations of the swirling flow: (top) (left) LIC of the ve-
locity of the swirling flow. The conical shear region is outlined in
blue. Several ringlike vortex structures can be observed, one being
marked by red points. (right) The LIC is overlayed by a transparent
mask, hiding regions of small velocity. Thus, the structure of the flow
is clarified. (middle) (left) Colormap of the norm of the velocity. (right)
The norm of the velocity mapped on the LIC. (bottom) (left) Colormap
of the vorticity. (right) Vorticity mapped on the LIC.
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Figure 8: Local statistical complexity fields of the swirling flow from
top to bottom: velocity and vorticity, velocity, and vorticity. The im-
portant structure, i.e., the conical shear region and the ringlike vortex
structures, are clearly highlighted in the right images, showing a LIC
of the flow overlayed with the local statistical complexity field.

Numerical simulation of fluid flow past a cylinder (flow-lines in grey) + local
complexity (blue) Jänicke et al. (2007)
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