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Heavy Tailed Distributions, Especially Power Laws

Heavy tails The difference between light and heavy tails;
some examples

Pure power laws: Pareto and Zipf distributions
Impure power laws

Further reading: Newman (2005) — but this was assigned, so you already read it,

right?; Schroeder (1991) (fun); Arnold (1983) (reference); Resnick (2006) for the really

ambitious

R files for these lectures:
http://www.santafe.edu/~aaronc/powerlaws/
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Highly Skewed Distributions and Heavy Tails

Recall that the skew of a random variable X is

s =
E
[
(X − E [X ])3

]
(Var [X ])3/2

Distributions with s = 0 are symmetric
think about positive s
“long thin tail to the right”
much more probability mass at extreme values than one would
expect from a Gaussian or exponential
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Survival Function/Upper CDF

Usual or lower CDF

F (x) = Pr (X ≤ x) =

∫ x

−∞
f (y)dy

Upper CDF or survival function

F ↑(x) = F+(x) = Pr (X ≥ x) =

∫ ∞

x
f (y)dy
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What You Are Used To
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standard Gaussian (black) and standard exponential (blue); log-log scale
With extremely high probability, all observations fall within some
bounded typical range
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Suppose the tails decay slower than exponential
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Red = Pareto distribution with xmin = 0.75, α = 3.5

Red distribution has mean = variance, just like exponential (= 1.25)

much higher probability of being very far from mean
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Heavy Tails

In a loose sense, heavy tailed means slower-than-exponential
decay of the survival function
In a stricter sense, it means that for some a > 1,

F ↑(x) = O(x−a+1)

or
f (x) = O(x−a)

Heavy tails ⇒ high probability of very large values
Heavy tails 6⇒ high mean, high variance, etc.
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Light-tailed Well-described by mean (or median) and variance,
typical observations within a few standard
deviations of the mean

Heavy-tailed If mean and variance exist, not necessarily
representative, lots of probability mass far from the
mean

Chebyshev inequality:

Pr (|X − E [X ] | ≥ ε) ≤ Var [X ]

ε2

this is very slow
Heavy-tailed in the strict sense: E [X m] exists only if m < a− 1
assumes X can get arbitrarily large, but so does the Gaussian!
Let’s look at some examples — for data sources see Clauset
et al. (2009).
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Word Frequencies — Zipf’s Law
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a ≈ 2 (Moby Dick — but this is typical)
the (14086), of (6414), and (6260), a (4573), to (4484), in (4040), that (2917), his (2483), it (2374), i (1942), . . .
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Net Worth — Pareto’s Law
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US, 2003, richest 400 — other countries, times, income, . . . similar
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Sizes of Cities — Zipf’s Law
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a ≈ 2 Similarly for other countries and times
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Papers per Author — Lotka’s Law
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Papers authored or co-authored, listed in American Mathematical Society’s
MathSciNet database
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Citations of Scientific Papers — Price’s Law
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1981–1997, Science Citation Index
omitting 368110 papers, out of 6716198, never cited
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Sales of U.S. Bestselling Books
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Calls Received by Telephone Numbers
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Number of calls received in one day by AT&T customers
Only showing part ≥ 120 so it doesn’t take forever to plot
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HTTP File Sizes
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Bytes received, one day in 1996, one lab
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Web Downloads
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Number of downloads of given URLs by AOL users, one day in
1999
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Web Links
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Incoming links to 2× 108 web-pages in 1997 (only those
≥ 3680)
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Blog Links
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Incoming links to weblogs, late 2003 (Farrell and Drezner,
2008)
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Earthquakes — Gutenberg-Richter Law
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Maximum amplitude, California, 1910–1992
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Solar Flares
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Peak γ-ray intensity, 1980–1989
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Wars — Richardson’s Law
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Deaths per 104 population, 1816–1980
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Terrorism
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Total deaths per incident, 1968–2006
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Per 1990 US Census
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Pure Power Laws — Pareto and Zipf

Pareto Distribution Continuous x , two parameters, xmin and α,
range [xmin,∞)

f (x) = (α− 1)xα−1
min x−α =

α− 1
xmin

(
x

xmin

)−α

F ↑(x) =

(
x

xmin

)−(α−1)

Zipf Distribution Discrete x , again xmin and α

p(x) =
x−α

ζ(α, xmin)

ζ(α, xmin) ≡
∞∑

k=xmin

k−α

this is Hurwicz zeta function
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Variants — Pareto II and Yule

Pareto II

f (x) ∝
(

1 +
x −m

s

)−α

or 1 + (X −m)/s ∼ Pareto(α, 1)

Zipf II As Pareto II but for pmf
Yule/Yule-Simon discrete

p(x) = (α− 1)
Γ(x)Γ(α)

Γ(x + α)

mean (α− 1)/(α− 2), mean square
(α− 1)2/[(α− 2)(α− 3)], etc.

In all these cases, the density/pmf is ∝ x−α for very large x
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Some Properties of Power Law Distributions

(stick with Pareto for simplicity)
Log-log plots are linear:

f (x) = Cx−α

log f (x) = log C − α log x

Moments:
E [X m] =

α− 1
α− 1−m

xm
min

EXERCISE: Calculate the variance. What does your answer
mean when α < 3?
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Sample maximum:

X(n) ≡ max
i=1,...n

Xi

f(n)(x) = n
α− 1
xmin

(
x

xmin

)−α
(

1−
(

x
xmin

)−(α−1)
)n−1

E
[
X(n)

]
= nxminB(n,

α− 2
α− 1

)

= nxmin
Γ(n)Γ(α−2

α−1)

Γ(n + α−2
α−1)

≈ xminn1/(a−1)

note: rises rapidly forever
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Scale-Free

Fix x0 > xmin, pick any x ≥ x0

Pr (X ≥ x |X ≥ x0) =
Pr (X ≥ x , X ≥ x0)

Pr (X ≥ x0)

=
Pr (X ≥ x)

Pr (X ≥ x0)

=

(
x

xmin

)−(α−1)

(
x0

xmin

)−(α−1)
=

(
x
x0

)−(α−1)

The conditional distribution looks just like the marginal
distribution, only with x0 in place of xmin
In a sense there is no natural “scale” to the distribution
(In another sense: most samples are close to the minimum)
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The 80/20 Rule

“80% of the things have 20% of the stuff”
Larger half of population must have at least half the stuff —
how much more?
Median = x̃ = 21/(α−1)xmin
EXERCISE: Prove this∫∞

x̃ xf (x)dx∫∞
xmin

xf (x)dx
= 2−(α−2)/(α−1)

EXERCISE: Prove this, too
Nothing special about 1/2; the top P fraction holds a fraction W
of the stuff,

W = P(α−2)/(α−1)

so the literal 80/20 rule means α = 2.16
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Application of 80/20 Rule and Scale-Freedom: Inequality

α for US wealth ≈ 2.3 (maximum likelihood estimate)
Median household net worth in 2000, $ 5.5× 104

http://www.census.gov/prod/2003pubs/p70-88.pdf

7.9× 104 for white households, 7.5× 103 for black
≈ 108 households in US
Total household net worth ≈ 1.9× 1013

400 richest Americans (2003), smallest net worth 6.0× 108,
total net worth 9.5× 1011

Or: top 4.0× 10−6 holds 5.0× 10−2 of the wealth
So α = 2.31 = MLE
Also: xmin = 4.4× 104, x̃ = 7.4× 104 — pretty good
inaccuracies: household vs. individual, 2000 vs. 2003, error in total because there are

a small number of really rich people
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Fraction of wealth held by top percentiles, assuming α = 2.31
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Black: data on 400 richest Americans; blue: extrapolated Pareto distribution

Grey (L to R): median black household worth; Pareto xmin; median; white median; mean; Richard Mellon Scaife
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Scale-free: from any point, looking right, the curve looks the
same!
Population-based surveys miss the tail completely
Middle class vs. upper-middle class vs. upper class vs. rich vs.
really rich vs. really, really rich vs. . . .

If you’re not inside, you are outside, OK? I’m not
talking about some $400,000-a-year Wall Street stiff,
flying first class and being comfortable. I’m talking
about liquid. Rich enough to have your own jet. Rich
enough not to waste time. Fifty, a hundred million
dollars, Buddy.

“Gordon Gekko” in Wall Street

All market economies are highly unequal...
but some are more unequal than others
there have never been any rich, equal, non-market economies
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Non-Power Laws

The pure power law is implausible
some moments are infinite
positive probability of an American richer than the US
So: distributions which are heavy-tailed in the loose sense but
not so badly behaved

Truncated power law
Stretched exponential/Weibull
Log-normal
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Truncated Power Law/Power Law with Exponential Cut-Off

f (x) ∝ x−αe−λx

=
λ

Γ(1− α, λxmin)
(λx)−αe−λx

over-all dimension of λ, right for a density

Looks like a power law if xmin ≤ x � λ−1

Looks like an exponential if x � λ−1

λ−1 acts like upper limiting scale
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black: Pareto, xmin = 1, α = 2.31
blue: truncated Pareto, xmin = 1, α = 2.31, λ = 10−3

red: exponential, λ = 10−3; grey: 1/λ
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Stretched Exponential or Weibull Distribution

xβ ∼ Exp(λ), “stretched” if β < 1

f (x) = βλxβ−1e−λxβ

λ1/β must have same units as x , so over-all units are x−1

Typical scale of X is λ−1/β

36-462 Lecture 13



Highly Skewed Distributions and Heavy Tails
Pure Power Laws

Heavy Tails without Power Laws
References

1e+00 1e+03 1e+06 1e+09 1e+12

1e
−

52
1e

−
41

1e
−

30
1e

−
19

1e
−

08

Stretched exponentials

x

S
ur

vi
va

l f
un

ct
io

n

Stretched exponentials with λ = 1
black: β = 1 (ordinary exponential); blue: β = 0.5; green:
β = 0.25; red: β = 0.1
note: more and more of a slope to the tail
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Lognormal Distribution

ln X ∼ N (µ, σ2)

f (x) =
1
x

√
1

2πσ2 e−
(ln x−µ)2

2σ2

ln f (x) = − ln x + C − (ln x − µ)2

2σ2

= C − µ2

2σ2 +
( µ

σ2 − 1
)

ln x − (ln x)2

2σ2

≈ ln f (x0) +

[
µ

σ2 − 1 +
ln x0

σ2

]
(ln x − ln x0) + h.o.t.
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all with µ = 5; black: σ2 = 1; blue: σ2 = 0.5; red: σ2 = 2
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Coming attractions:
Generating mechanisms a.k.a. origin myths for heavy-tailed

distributions
Estimation

Testing Comparing different heavy-tailed distributions, with
more general morals

36-462 Lecture 13



Highly Skewed Distributions and Heavy Tails
Pure Power Laws

Heavy Tails without Power Laws
References

Arnold, Barry C. (1983). Pareto Distributions. Fairland,
Maryland: International Cooperative Publishing House.

Clauset, Aaron, Cosma Rohilla Shalizi and M. E. J. Newman
(2009). “Power-law distributions in empirical data.” SIAM
Review , forthcoming. URL
http://arxiv.org/abs/0706.1062.

Farrell, Henry and Daniel Drezner (2008). “The Power and
Politics of Blogs.” Public Choice, 134: 15–30. URL
http://www.utsc.utoronto.ca/~farrell/
blogpaperfinal.pdf.

Newman, M. E. J. (2005). “Power laws, Pareto distributions and
Zipf’s law.” Contemporary Physics, 46: 323–351. URL
http://arxiv.org/abs/cond-mat/0412004.

Resnick, Sidney I. (2006). Heavy-Tail Phenomena: Probabilistic
and Statistical Modeling. New York: Springer-Verlag.

36-462 Lecture 13

http://arxiv.org/abs/0706.1062
http://www.utsc.utoronto.ca/~farrell/blogpaperfinal.pdf
http://www.utsc.utoronto.ca/~farrell/blogpaperfinal.pdf
http://arxiv.org/abs/cond-mat/0412004


Highly Skewed Distributions and Heavy Tails
Pure Power Laws

Heavy Tails without Power Laws
References

Schroeder, Manfred (1991). Fractals, Chaos, Power Laws:
Minutes from an Infinite Paradise. San Francisco: W. H.
Freeman.

36-462 Lecture 13


	Highly Skewed Distributions and Heavy Tails
	Examples of Heavy Tailed/Highly Skewed Distributions

	Pure Power Laws
	Variants --- Pareto II, Yule
	Properties of Power Laws
	Inequality in America

	Heavy Tails without Power Laws
	Truncated Power Law
	Stretched Exponential or Weibull Distribution
	Lognormal

	References

