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Estimating Heavy-Tailed Distributions

Maximum likelihood The good way to get power law parameter
estimates

Log-log regression The bad way to get power law parameter
estimates

Non-parametric density estimation Do you care if you have a
power law?

Further reading: Clauset et al. (2009)
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Maximum Likelihood

Start with the Pareto (continuous) case
probability density:

p(x ;α, xmin) =
α− 1
xmin

(
x

xmin

)−α

Assuming IID samples, log-likelihood is easy

L(α, xmin) = n log
α− 1
xmin

− α

n∑
i=1

log
xi

xmin

36-462 Lecture 15



Maximum Likelihood
Log-Log Regression

Finding the Scaling Region
Nonparametric Density Estimation

References

Take derivative and set equal to zero at the MLE:

∂

∂α
L =

n
α− 1

−
n∑

i=1

log xi/xmin

α̂ = 1 +
n∑n

i=1 log xi/xmin

What about xmin? If we know that it’s really a Pareto, then the
MLE for xmin is min xi . Otherwise, see later.
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Zipf or Zeta Distribution

Same story:

p(x ;α, xmin) =
x−α

ζ(α, xmin)

L(α, xmin) = −n log ζ(α, xmin)− α

n∑
i=1

log xi

ζ ′(α̂, xmin)

ζ(α̂, xmin)
= −1

n

n∑
i=1

log xi

In practice it’s easier to just maximize L numerically than to
solve that equation
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When xmin > 6 or so,

α̂ ≈ 1 +
n∑n

i=1 log xi
xmin−0.5

Result due to M. E. J. Newman, see Clauset et al. (2009)
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Properties of the MLE

1. Consistency: easiest to see for Pareto. By LLN,

1
n

n∑
i=1

log xi/xmin → E [log X/xmin] =
1

α− 1

so α̂ → α; similarly for Zipf
2. Standard error

Var [α̂] =
(α− 1)2

n
+ O(n−2)

Can plug in α̂, or do jack-knife or bootstrap
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Nonparametric Bootstrap in One Slide

Wanted: sampling distribution of some estimator Ĝ of a
functional G of a distribution F (e.g., a parameter)
Given: data x1, x2, . . . xn, all assumed IID from F
Procedure: draw n samples, with replacement, from data,
giving b1, b2, . . . bn
Calculate Ĝ(b1, . . . bn) = Ĝb
Repeat many times
Empirical distribution of Ĝb is about the sampling distribution of
Ĝ
(some conditions apply)
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Properties of the MLE (continued)

3. Asymptotically Gaussian and efficient:

α̂ N (α,
(α− 1)2

n
)

and this is the fastest rate of convergence
4. (Pareto) If xmin is known or fixed, (α̂− 1)/n has an inverse
gamma distribution, which gives exact confidence intervals
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Log-Log Regression

Recall that for a power law

F ↑(x) = Pr (X ≥ x) ∝ x−(α−1)

log F ↑(x) ∝ C − (α− 1) log x

Empirical survival function:

F̂ ↑n (x) ≡ 1
n

n∑
i=1

1[x ,∞)(xi)

As n →∞, F̂ ↑n (x)→ F ↑(x).
Estimate α by linearly regressing log F̂ ↑n (x) on log x .
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History

First real investigation of power law data came with Villfredo
Pareto’s work on economic inequality in 1890s
Used log-log regression
Taken up by Zipf in 1920s–1940s
Very widely used in physics, computer science, etc.
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If the data really come from a power law, this is consistent:

α̂LLR → α

but this doesn’t say how fast it converges, and in fact the errors
are large and persistent (compared to MLE)
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Simulated from Pareto(2.5, 1); blue = regression, black = MLE (shifted a bit for clarity);

mean α̂ ± standard deviation
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Why This Is Bad: Improperly Normalized

Notice that F ↑(xmin) = 1, so true log survival function crosses 0
at xmin
But least-squares line does not do so in general! ⇒ estimated
function cannot be a probability distribution!
Could do constrained linear regression — but somehow you never see that

36-462 Lecture 15



Maximum Likelihood
Log-Log Regression

Finding the Scaling Region
Nonparametric Density Estimation

References

Why This Is Bad: Wrong Error Estimates

Usual formulas for standard errors in regression assume
Gaussian noise

Y = β0 + β1Z + ε, ε ∼ N (0, σ2)

so using those formulas here means you’re assuming
log-normal noise for F̂ ↑n
and the central limit theorem says F̂ ↑n has Gaussian noise
i.e., the usual formulas do not apply here
Can get error estimates (if you must) by bootstrap
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Why This Is Bad: Lack of Power

People often point to a high R2 for the regression as a sign that
it must be right
This is always foolish when it comes to regression
This is especially foolish here — distributions like log-normal
have very high R2 even with infinite samples
The R2 test lacks power and severity against such alternatives
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Example: Log-Log Regressions of Power Laws and
Log-Normals

Simulated from Pareto(2.5, 5) and
logN (0.6626308, 0.65393343) — chosen to come close to the
former. (Also, simulated values < 5 discarded.)
Did log-log regression for both, plot shows distribution of R2

values from simulations.
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Note: R2 stabilizes at over 0.9 for the log-normal!
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Log-Log Regression on the Histogram

Bad as log-log regression of the survival function is, it’s still
better than log-log regression of the histogram

1 Loss of information (unlike survival function)
2 Results depend on choice of bins for histogram
3 Even bigger normalization issues
4 Even worse errors — comparatively larger fluctuations,

especially in the tail where they have the most leverage on
the regression

There may be times when log-log regression on the survival
function is reasonable (though I can’t think of any); there are
none when log-log regression on the histogram is
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Conclusions about Log-Log Regression

1 Do not use it.
2 Do not believe papers using it.
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Estimating xmin

Need to estimate xmin
Simple for a pure power law: to maximize likelihood,
x̂min = min xi
Not useful when it is only the tail which follows a power law
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Hill Plots

One approach: try various xmin, plot α̂ vs. xmin, look for stable
region
Called “Hill plot” after Hill (1975)
Also gives an idea of fragility of results

> hill.estimator <- function(xmin,data)
{pareto.fit(data,xmin)$exponent}

> hill.plotter <- function(xmin,data)
{sapply(xmin,hill.estimator,data=data)}

> curve(hill.plotter(x,cities),from=min(cities),
to=max(cities),log="x",
main="Hill Plot for US City Sizes",
xlab=expression(x_min),
ylab=expression(alpha))
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Kolmogorov-Smirnov Distance

Kolmogorov-Smirnov statistic: measure of distance between
one-dimensional cumulative distribution functions

DKS(F , G) = sup
x
|F (x)−G(x)|

Here look at

DKS(xmin) = sup
x≥xmin

|F̂ ↑n (x)− P(x ; α̂, xmin)|

where P(x ; α̂, xmin) is the Pareto survival function we get by
assuming a given xmin and estimating
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Estimate xmin by Minimizing DKS

Pick the xmin where the distance between data and estimated
distribution is smallest

x̂min = argmin
xmin∈xi

DKS(xmin)

Only considering actual data values is faster and seems to not
miss anything
Another principled approach: BIC (Handcock and Jones, 2004),
but we find that works slightly less well than minimum KS
(Clauset et al., 2009)
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> ks.test.for.pareto <- function(threshold,data) {
model <- pareto.fit(data,threshold)
d <- ks.test(data[data>=threshold],ppareto,

threshold=threshold,exponent=model$exponent)
return(as.vector(d$statistic)) }

> ks.test.for.pareto.vectorized <- function(threshold,data)
{ sapply(threshold,ks.test.for.pareto,data=data) }

> curve(ks.test.for.pareto.vectorized(x,cities),
from=min(cities),to=max(cities),
xlab=expression(x[min]),ylab=expression(d[KS]),
main="KS discrepancy vs. xmin for US cities")
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bxmin is evidently small
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bxmin = 5.246× 104
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Properties

1. In simulations, when there is a power law tail, this is good at
finding it
2. When there isn’t a distinct tail but there is an asymptotic
exponent, choses xmin such that α̂ becomes right
3. Error estimates: bootstrap
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Nonparametric Density Estimation as an Alternative

All of this is assuming a power-law tail, i.e., parametric form
Often this is neither justified nor important, but estimating the
distribution is
Can then use non-parametric density estimation
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Kernel Density Estimation in One Slide

Data x1, x2, . . . xn

p̂n(x) =
1
n

n∑
i=1

1
h

K
(

x − xi

hn

)
where kernel K has K ≥ 0,

∫
K (x)dx = 1,

∫
xK (x)dx = 0,

0 <
∫

x2K (x)dx <∞
and bandwidth hn → 0, nhn →∞ as n →∞
common choice of K : standard Gaussian density φ
Ideally, hn = O(n−1/3)
Generally, pick hn by cross-validation
basic R command: density

better: use the np package from CRAN (Hayfield and Racine, 2008)
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Ordinary non-parametric estimation works poorly with
heavy-tailed data, since it generally produces light tails
Special methods exist, e.g.:

transform data so [0,∞) 7→ [0, 1] monotonically
e.g., 2

π
arctan x

do ordinary density estimation on transformed data
being careful to keep Pr ([0, 1]) = 1

apply reverse transformation to estimated density

See Markovitch and Krieger (2000) or Markovich (2007) (harder
to read)
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Next time: how to tell the difference between power laws and
other distributions
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