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Comparing Heavy-Tailed Distributions

Goodness-of-Fit
Relative Distributions
Likelihood-Ratio Tests

Further reading: Clauset et al. (2009)
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Goodness-of-Fit

“The Fundamental Theorem of Statistics”

per Pitman (1979)

Theorem (Glivenko-Cantelli)

Let Xq, Xo, ... be IID with CDF F. Let Fn, be their empirical CDF
from n samples.

sup |Fa(x) — F(x)] —— 0
X

n—oo

EXERCISE: Who was Glivenko? Who was Cantelli?
Notice that this is a KS-distance:

lim_ds(Fn, F) — 0
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Goodness-of-Fit

Goodness-of-Fit Testing
The logic: If F is the true CDF, then
dks(Fn, F) — 0
but if the true CDF is F’ # F, then
dks(Fn, F) — dks(F',F) >0

The data fits the model F when dks is small, but not if it’s large
We never expect dks to be zero, even if our model is exactly
right

need to know how big we should expect dks to be, if our model
is right

p-value: probability of getting a discrepancy at least as big as
the one we observe in the data, if our model is right

Lack of fit if p-value is very small
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Goodness-of-Fit

Getting p-values means getting the distribution of dks, under
the assumption the model is right

For the true F, dks(Fn, F) has a known distribution, which does
not depend on F (when nis large)

Pr (Vnds(Fn, F) < x) =1 2; (—1) T2

So: we can calculate p-values, if F is fixed

If we do notfix F but estimate it from the data, we cannot use
the usual formula to calculate p-values

of course our estimated F is close to the data, we made it that way

36-462 Lecture 16



Goodness-of-Fit

lllustration of these points:

@ Draw X, Xo, ... Xi000 from A/(0, 1)

@ Calculate dks for X vs. N(0,1) and N'(X, s%)

© Repeat (1) and (2) 10,000 times to get two sampling
distributions

@ Draw Y, Ya,. .. Yio00 from Exp(1)

@ Calculate dks for Y vs. Exp(1) and Exp(1/X)

© Repeat (4) and (5) 10,000 times to get two more sampling
distributions

Results on next slide — see 16.R on website for code

N.B.: for a given value of dks, the true p-value is smaller with
estimation than without it; ignoring estimation makes you think
the fit is better than it really is!
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Goodness-of-Fit

Distribution of KS distances

p-value a.k.a. survival function

T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10

dks

black = fixed Gaussian, red = estimated Gaussian, blue = fixed
exponential, green = estimated exponential
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Goodness-of-Fit

Finding Goodness-of-Fit p-values Through Simulation

Wanted: The sampling distribution of dxs when F is estimated
Problem: The probability theory is very hard
Solution:

@ Estimate model Fqs; from real data; calculate real dxs = d*
@ Use Feq to generate simulated data

@ Treat simulated data as if real, estimate model on it and
calculate dkg

© Repeat steps (2) and (3) many times to get sampling
distribution of dksg

©@ p-value is fraction of dyxs values > d*

To get p-value accurate to +¢, use ~ ﬁ simulations (<
binomial)
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Goodness-of-Fit

Application to Fit of Power-Law Tails

Given: ndata points xi,... X
@ Estimate « and Xuin; Ny = # of data points > Xuin

© Calculate dks for data and best-fit power law = d*
© Draw nrandom values by, ... b, as follows:

@ with probability n.;/n, draw from power-law
@ otherwise, pick one of the x; < Xmin Uniformly

© Estimate o and xnn for the simulation, calculate its dks
© Repeat many times to get distribution of dxs values
© p-value = fraction of simulations where d > d*

Coded as pareto.tail.ks.test in Rfile for this lecture
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Goodness-of-Fit

If the model is right and p-values are properly calculated, they
should be ~ Uniform(0, 1)

CDF of uniform distribution is the diagonal
Using rpareto.tail (random variables from a distribution
with a power-law tail) and pareto.tail.ks.test

> sample.of.p.values <- replicate (100,
pareto.tail.ks.test (rpareto.tail (le2,1,2.5,0.5),100))

> plot (ecdf (sample.of.p.values), xlim=c(0,1),
main="Distribution of p-values")

> abline (0,1, 1lty=2)

samples of size 100, 100 simulations per p-value, 100 replications — all comparatively

small, to save time
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Goodness-of-Fit

Distribution of p—values
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Goodness-of-Fit

T T

Log—normal, u=0.3 0=2

Power law, a=2.5
4 Exponential, A=0.125

10 10

Empirical CDFs for samples of size 100 from specified
distributions, with X, = 15

This and next two figures from Clauset et al. (2009)
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Goodness-of-Fit

Average p-values according to our procedure
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Goodness-of-Fit

10 —o— Log—normalj
0 —&— Exponential
10 5 N S Y
10 10 10 10
xmin

Average number of samples required to make the p value < 0.1
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Goodness-of-Fit

Cautions about Goodness of Fit Tests
or: “Does this data make me look fat?”

“Your distribution doesn't fit” But where, and enough to matter?
Looking at relative distribution (next section) is a
way to start answering that

“Your distribution fits” Would your test notice if it didn’t? It's only
evidence if it would
Remember problems with A2 from last time
Look at previous two slides
Need to consider power and severity — much
more about severity after break
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Relative Distribution

Relative Distributions

After Handcock and Morris (1998, 1999)
Want to compare two distributions, not just mean/variance etc.
Specifically: yy, ...y, are comparison sample, have either a
reference distribution or a reference sample xy, ... x,, CDF
=F
Construct relative data

ri = Fo(yi)

relative CDF:

relative density
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Relative Distribution

Why do this?
@ Relative data are uniform if and only if distributions are the
same

@ Invariant under any monotone transformation of the data
(multiplication, taking logs, etc.) so no loss of information
except about absolute values

@ Can control for covariates much more flexibly than in
regression See Handcock and Morris (1999)

@ g(r) > 1 = comparison data is more likely to be close to
FO‘1 (r) than reference — tells us where and how the
distributions differ

Can estimate G(r) by empirical CDF of r;
Can estimate g(r) by non-parametric density estimation on r;
R package: reldist, from CRAN
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Relative Distribution

Relative Distributions with Power Laws

1. Estimate power law distribution from data
2. Use this as the reference distribution
3. Relative density should shoot up at right (finite maximum)
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Relative Distribution

> http.mle <- pareto.fit (http,"find")
> FO <- function(x) {

ppareto (x,http.mle$xmin, http.mle$exponent) }
> FO0inv <- function(p) {
gpareto (p,http.mle$xmin, http.mleSexponent) }
reldist (y=FO0 (http[http>=http.mle$xmin]), smooth=-1)
top.ticks = ¢(0,0.2,0.4,0.6,0.8,F0 (max (http)))
top.tick.values = signif (FOinv (top.ticks),2)
axis(side=3,at=top.ticks,labels=top.tick.values,
cex.axis=0.75)

vV V V V
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Relative Distribution

37000 43000 52000 69000 110000 1.1e+07
1 | | | | |

1.20

Relative Density

0.0 0.2 0.4 0.6 0.8 1.0

Reference proportion

Relative distribution of HTTP file sizes (in kb) vs. best-fit Pareto; big spikes around
~ 48kb and ~ 64kb
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Likelihood-Ratio Tests for Model Selection

Likelihood-Ratio Tests for Model Selection

After Vuong (1989)
Likelihood ratio of two models 0, ¢

Py(X1, ... Xn)
pg(X~| e Xn)

often easier to use log likelihood ratio
R(w, 9) = log pw(X1, - Xn) —log ,Dg(X1 R Xn)

R(v,0) > 0 means: the data were more likely under v than
under 6
Likelihood ratio test: chose between models using R
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Likelihood-Ratio Tests for Model Selection

Distribution of Likelihood Ratios: Fixed Models

Assume Xi, Xo, ... all lID, with true distribution p
Fix 6 and v; what is distribution of R(¢, 0)?

R(p,0) = Iogp¢(x1, . )—Iogpg(x1,...xn)

= Zlogmp X)) Zlogpe(x,
pd) X/
lo
; gpo(X:)

so R(v,0) is a sum of IID terms
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Likelihood-Ratio Tests for Model Selection

Use LLN:

1 o 1 n pd,(X,')
nr:f) = n 2100 Po(X;)

= D(ull0) = D(pll)

R(v,0) > 0 tends to mean: 1 is closer (in relative entropy) to x
than 6 is
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Likelihood-Ratio Tests for Model Selection

Use CLT:
\%W,@) ~ N(V/n(D(ul|6) = D(p][1)), 5 )

where

Wi,e = Var [Iog pw(X)]

Po(X)
so if the models are equally good, we get a mean-zero

Gaussian
but if one is better R (v, #) — +o0, depending
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Likelihood-Ratio Tests for Model Selection

Distribution of R with Estimated Models

two classes of models W, ©; ¢, § = ML estimated models
¥ — ¥*,  — 6*: converging to pseudo-truth; ¢* £ 6*
some regularity assumptions

then everything works out as if no estimation

TER(G) = N/AO7) = D). 5.
TRELD) — D(ul0*) — D)

&% = Vargm e[Io Pu(X )} — Wi e
e[y
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Likelihood-Ratio Tests for Model Selection

Vuong’s Test for Non-Nested Model Classes

Assume all conditions from before
If the two models are really equally close to the truth,

R

nw?

~ N(0,1)

but if one is better, normalized log likelihood ratio goes to +oo,
telling you which is better
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Likelihood-Ratio Tests for Model Selection

Note: do not need to adjust for which model has more
parameters

caninclude adjustment (AIC, BIC, ...) if it is o(n) without
changing asymptotics

Note: does not assume that either ¥ or © contains the truth
Note: does assume that ¢* # 6*
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Likelihood-Ratio Tests for Model Selection

Procedure

@ Estimate) e Vandd € ©

O Calculate p; = log p;(x;)/Ps(xi)

Q R =3 pi, @* = Varample [pi]

Q V=R/Vni?

@ Gowithvif V> 0,0if V<« 0, nochoice if |V|~ 0
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Likelihood-Ratio Tests for Model Selection

Vuong test statistic from samples

10
I

iR R

Normalized log-likelihood ratio

-10

T T T T T
le+01 1e+02 1e+03 le+04 1e+05

sample size
black=Pareto, blue=lognormal, 5000 replicates at each sample size

smallest V, 5th percentile, median, 95th percentile, max
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Likelihood-Ratio Tests for Model Selection

Nested Hypotheses

© C ¥V means R > 0, but now when they are equally good
Y =6%,andw? =0
Can’t use that argument
Can show that
2R ~ XGimv_dimo
If o (the true distribution) = 6* this is a classic result (Wilks, 1938), but Vuong shows it

holds even under mis-specification
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The Flight of the Albatross

The Flight of the Albatross

Edwards et al. (2007): an exemplary paper in several senses:
@ what it does
@ the way it does it
@ how it came about

Requires some background from more advanced probability
first
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The Flight of the Albatross

Beyond the Normal Central Limit Theorem

Ordinary CLT: IID variables with finite variance = mean is
Gaussian

Reason: Gaussian is stable under averaging (sum of
independent Gaussians is again Gaussian)

Not 1ID: may or may not be Gaussian (rate of mixing)

[ID, infinite variance: not Gaussian, but must be another stable
distribution

LEVY (1930s): Characterization of the stable distributions
Obvious alternatives to Gaussian in CLT have power-law tails
(Schroeder, 1991; Embrechts and Maejima, 2002; Gnedenko
and Kolmogorov, 1954)

36-462 Lecture 16



The Flight of the Albatross

Lévy Flights

Lévy flights: random walks where the distribution of step sizes
has power-law tails

Gaussian random walks produce fractal patterns, but region
covered grow slowly and fairly steadily (diffusion)

Lévy flights produce sparser, more irregular fractals, big leaps
between clusters (anomalous diffusion)

Lévy flights are at least good approximations to lots of diffusion
processes

possibly with some truncation to keep variances finite
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The Flight of the Albatross

Jamie Watts at British Antarctic Survey

Diomedea exulans: long-range marine predator, skims over
water to scoop up fish, squid, etc.

prey are patchy so it travels very long distances
how long?
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http://www.photo.antarctica.ac.uk/external/guest/detail/cart/10008184/1/8

The Flight of the Albatross

Experiment (1992): attach monitor to albatrosses’ legs, record
when the leg is in the water (to the hour); gives indication of
flight length (dry == flying)

Viswanathan et al. (1996):

did log-log regression on binned histogram of flight times

saw straight line

concluded: power law, therefore Lévy flight

Much subsequent work on (i) replicating this kind of analysis for
other animals, people, etc. and (ii) explaining why Lévy flights
are a Good Thing when looking for food
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The Flight of the Albatross

... adozen years later: new data!

Better timer on the monitor + GPS 1/hr to tell when the birds
came back to their island

Longest new trip < 15 hr, at least 6% of old trips supposedly longer

Turned out there were satellite location measurements for some
of the old trips

Trip code

B6A | |
sc| ™1 mnmt

B e e B e e e m s
0 50 100 150 200
Hours since logger switched on

red: dry; blue: wet; black depart from/return to island
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The Flight of the Albatross

i.e., some of the really long “flights” were just spent sitting
around on the island
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Flight duration, t (h)

blue: uncorrected CDF of flight times; red: corrected
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The Flight of the Albatross
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The Flight of the Albatross

AIC Approach to Comparison

AIC = Akaike Information Criterion (Akaike, 1973)
Model class ©, estimated with maximum likelihood ()

AIC(©) = L(0) — d

d = number of parameters estimated for ¢

Supposed to be unbiased estimate of expected likelihood on new data from same
source

Can give relative weights for different models, prefer one with
higher AIC

Could also use BIC — near-theological debates about which is
better (or others)

“Practice is the sole criterion of truth”: The best criterion is the one which most
efficiently and reliably selects the right model; we’ll come back to this

Here AIC strongly favors gamma distribution over power law
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The Flight of the Albatross

Conclusions

1. Apparent result was really due to an artifact (wrong flight
times) and a weak analysis method (log-log regression)

2. Corrected and properly analyzed, data support gamma
distribution much more strongly than the power law

3. Now the theoretical to task is to explain why, if Lévy flights
are so wonderful, albatrosses (and bumblebees, and deer, and
...) do not take them
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The Flight of the Albatross

Morals

1. THE REAL FOUNDATIONS OF STATISTICS: You must
understand your data intimately before you start to do statistics
2. FESs UP: The problem with the flight times was discovered
by the same collaboration as made the original claims; this
shows class

3. ZOMBIES: Some ideas are like zombies: they come back
from the dead and they eat your brains. There are signs that
Lévy flight foraging may be undead in this way (Sims et al.,
2008)
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