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Further reading: Clauset et al. (2009)
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“The Fundamental Theorem of Statistics”

per Pitman (1979)

Theorem (Glivenko-Cantelli)

Let X1,X2, . . . be IID with CDF F. Let F̂n be their empirical CDF
from n samples.

sup
x
|F̂n(x)− F (x)| −−−→

n→∞
0

EXERCISE: Who was Glivenko? Who was Cantelli?
Notice that this is a KS-distance:

lim
n→∞

dKS(F̂n,F )→ 0
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Goodness-of-Fit Testing

The logic: If F is the true CDF, then

dKS(F̂n,F )→ 0

but if the true CDF is F ′ 6= F , then

dKS(F̂n,F )→ dKS(F ′,F ) > 0

The data fits the model F when dKS is small, but not if it’s large
We never expect dKS to be zero, even if our model is exactly
right
need to know how big we should expect dKS to be, if our model
is right
p-value: probability of getting a discrepancy at least as big as
the one we observe in the data, if our model is right
Lack of fit if p-value is very small
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Getting p-values means getting the distribution of dKS, under
the assumption the model is right
For the true F , dKS(F̂n,F ) has a known distribution, which does
not depend on F (when n is large)

Pr
(√

ndKS(F̂n,F ) ≤ x
)
→ 1− 2

∞∑
k=1

(−1)k−1e−2k2x2

So: we can calculate p-values, if F is fixed
If we do not fix F but estimate it from the data, we cannot use
the usual formula to calculate p-values
of course our estimated F is close to the data, we made it that way
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Illustration of these points:

1 Draw X1,X2, . . .X1000 from N (0,1)

2 Calculate dKS for X vs. N (0,1) and N (X , s2
X )

3 Repeat (1) and (2) 10,000 times to get two sampling
distributions

4 Draw Y1,Y2, . . .Y1000 from Exp(1)

5 Calculate dKS for Y vs. Exp(1) and Exp(1/X )

6 Repeat (4) and (5) 10,000 times to get two more sampling
distributions

Results on next slide — see 16.R on website for code
N.B.: for a given value of dKS, the true p-value is smaller with
estimation than without it; ignoring estimation makes you think
the fit is better than it really is!
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Finding Goodness-of-Fit p-values Through Simulation

Wanted: The sampling distribution of dKS when F is estimated
Problem: The probability theory is very hard
Solution:

1 Estimate model Fest from real data; calculate real dKS = d∗

2 Use Fest to generate simulated data
3 Treat simulated data as if real, estimate model on it and

calculate dKS

4 Repeat steps (2) and (3) many times to get sampling
distribution of dKS

5 p-value is fraction of dKS values ≥ d∗

To get p-value accurate to ±ε, use ≈ 1
4ε2 simulations (⇐

binomial)
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Application to Fit of Power-Law Tails

Given: n data points x1, . . . xn

1 Estimate α and xmin; ntail = # of data points ≥ xmin

2 Calculate dKS for data and best-fit power law = d∗
3 Draw n random values b1, . . .bn as follows:

1 with probability ntail/n, draw from power-law
2 otherwise, pick one of the xi < xmin uniformly

4 Estimate α and xmin for the simulation, calculate its dKS
5 Repeat many times to get distribution of dKS values
6 p-value = fraction of simulations where d ≥ d∗

Coded as pareto.tail.ks.test in R file for this lecture
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If the model is right and p-values are properly calculated, they
should be ∼ Uniform(0,1)
CDF of uniform distribution is the diagonal
Using rpareto.tail (random variables from a distribution
with a power-law tail) and pareto.tail.ks.test

> sample.of.p.values <- replicate(100,
pareto.tail.ks.test(rpareto.tail(1e2,1,2.5,0.5),100))

> plot(ecdf(sample.of.p.values),xlim=c(0,1),
main="Distribution of p-values")

> abline(0,1,lty=2)

samples of size 100, 100 simulations per p-value, 100 replications — all comparatively

small, to save time
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Cautions about Goodness of Fit Tests

or: “Does this data make me look fat?”

“Your distribution doesn’t fit” But where, and enough to matter?
Looking at relative distribution (next section) is a
way to start answering that

“Your distribution fits” Would your test notice if it didn’t? It’s only
evidence if it would
Remember problems with R2 from last time

Look at previous two slides

Need to consider power and severity — much
more about severity after break
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Relative Distributions

After Handcock and Morris (1998, 1999)

Want to compare two distributions, not just mean/variance etc.
Specifically: y1, . . . yn are comparison sample, have either a
reference distribution or a reference sample x1, . . . xm, CDF
= F0
Construct relative data

ri = F0(yi)

relative CDF:
G(r) = F (F−1

0 (r))

relative density

g(r) =
f (F−1

0 (r))

f0(F−1
0 (r))
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Why do this?
Relative data are uniform if and only if distributions are the
same
Invariant under any monotone transformation of the data
(multiplication, taking logs, etc.) so no loss of information
except about absolute values
Can control for covariates much more flexibly than in
regression See Handcock and Morris (1999)

g(r) > 1 ⇒ comparison data is more likely to be close to
F−1

0 (r) than reference — tells us where and how the
distributions differ

Can estimate G(r) by empirical CDF of ri
Can estimate g(r) by non-parametric density estimation on ri
R package: reldist, from CRAN
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Relative Distributions with Power Laws

1. Estimate power law distribution from data
2. Use this as the reference distribution
3. Relative density should shoot up at right (finite maximum)
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> http.mle <- pareto.fit(http,"find")
> F0 <- function(x) {

ppareto(x,http.mle$xmin,http.mle$exponent) }
> F0inv <- function(p) {

qpareto(p,http.mle$xmin,http.mle$exponent) }
> reldist(y=F0(http[http>=http.mle$xmin]),smooth=-1)
> top.ticks = c(0,0.2,0.4,0.6,0.8,F0(max(http)))
> top.tick.values = signif(F0inv(top.ticks),2)
> axis(side=3,at=top.ticks,labels=top.tick.values,

cex.axis=0.75)
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Likelihood-Ratio Tests for Model Selection

After Vuong (1989)

Likelihood ratio of two models θ, ψ

pψ(x1, . . . xn)

pθ(x1, . . . xn)

often easier to use log likelihood ratio

R(ψ, θ) = log pψ(x1, . . . xn)− log pθ(x1, . . . xn)

R(ψ, θ) > 0 means: the data were more likely under ψ than
under θ
Likelihood ratio test: chose between models using R
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Distribution of Likelihood Ratios: Fixed Models

Assume X1,X2, . . . all IID, with true distribution µ
Fix θ and ψ; what is distribution of R(ψ, θ)?

R(ψ, θ) = log pψ(x1, . . . xn)− log pθ(x1, . . . xn)

=
n∑

i=1

log pψ(xi)−
n∑

i=1

log pθ(xi)

=
n∑

i=1

log
pψ(xi)

pθ(xi)

so R(ψ, θ) is a sum of IID terms
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Use LLN:

1
n
R(ψ, θ) =

1
n

n∑
i=1

log
pψ(xi)

pθ(xi)

→ Eµ
[
log

pψ(X )

pθ(X )

]
= D(µ‖θ)− D(µ‖ψ)

R(ψ, θ) > 0 tends to mean: ψ is closer (in relative entropy) to µ
than θ is
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Use CLT:

1√
n
R(ψ, θ) N (

√
n(D(µ‖θ)− D(µ‖ψ)), ω2

ψ,θ)

where

ω2
ψ,θ = Var

[
log

pψ(X )

pθ(X )

]
so if the models are equally good, we get a mean-zero
Gaussian
but if one is better R(ψ, θ)→ ±∞, depending
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Distribution of R with Estimated Models

two classes of models Ψ,Θ; ψ̂, θ̂ = ML estimated models
ψ̂ → ψ∗, θ̂ → θ∗: converging to pseudo-truth; ψ∗ 6= θ∗

some regularity assumptions
then everything works out as if no estimation

1√
n
R(ψ̂, θ̂)  N (

√
n(D(µ‖θ∗)− D(µ‖ψ∗)), ω2

ψ∗,θ∗)

1
n
R(ψ̂, θ̂) → D(µ‖θ∗)− D(µ‖ψ∗)

ω̂2 ≡ Varsample

[
log

pψ(X )

pθ(X )

]
→ ω2

ψ∗,θ∗
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Vuong’s Test for Non-Nested Model Classes

Assume all conditions from before
If the two models are really equally close to the truth,

R√
nω̂2

 N (0,1)

but if one is better, normalized log likelihood ratio goes to ±∞,
telling you which is better
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Note: do not need to adjust for which model has more
parameters
can include adjustment (AIC, BIC, . . . ) if it is o(n) without
changing asymptotics
Note: does not assume that either Ψ or Θ contains the truth
Note: does assume that ψ∗ 6= θ∗

36-462 Lecture 16



Goodness-of-Fit
Relative Distribution

Likelihood-Ratio Tests for Model Selection
The Flight of the Albatross

References

Procedure

1 Estimate ψ̂ ∈ Ψ and θ̂ ∈ Θ

2 Calculate ρi ≡ log pψ̂(xi)/pθ̂(xi)

3 R =
∑
ρi , ω̂2 = Varsample [ρi ]

4 V = R/
√

nω̂2

5 Go with Ψ if V � 0, Θ if V � 0, no choice if |V | ≈ 0
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Nested Hypotheses

Θ ⊂ Ψ means R ≥ 0, but now when they are equally good
ψ∗ = θ∗, and ω2 = 0
Can’t use that argument
Can show that

2R χ2
dim Ψ−dim Θ

If µ (the true distribution) = θ∗ this is a classic result (Wilks, 1938), but Vuong shows it

holds even under mis-specification
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The Flight of the Albatross

Edwards et al. (2007): an exemplary paper in several senses:
what it does
the way it does it
how it came about

Requires some background from more advanced probability
first
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Beyond the Normal Central Limit Theorem

Ordinary CLT: IID variables with finite variance ⇒ mean is
Gaussian
Reason: Gaussian is stable under averaging (sum of
independent Gaussians is again Gaussian)
Not IID: may or may not be Gaussian (rate of mixing)
IID, infinite variance: not Gaussian, but must be another stable
distribution
LÉVY (1930s): Characterization of the stable distributions
Obvious alternatives to Gaussian in CLT have power-law tails
(Schroeder, 1991; Embrechts and Maejima, 2002; Gnedenko
and Kolmogorov, 1954)

36-462 Lecture 16



Goodness-of-Fit
Relative Distribution

Likelihood-Ratio Tests for Model Selection
The Flight of the Albatross

References

Lévy Flights

Lévy flights: random walks where the distribution of step sizes
has power-law tails
Gaussian random walks produce fractal patterns, but region
covered grow slowly and fairly steadily (diffusion)
Lévy flights produce sparser, more irregular fractals, big leaps
between clusters (anomalous diffusion)
Lévy flights are at least good approximations to lots of diffusion
processes
possibly with some truncation to keep variances finite
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Jamie Watts at British Antarctic Survey

Diomedea exulans: long-range marine predator, skims over
water to scoop up fish, squid, etc.
prey are patchy so it travels very long distances
how long?
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Experiment (1992): attach monitor to albatrosses’ legs, record
when the leg is in the water (to the hour); gives indication of
flight length (dry == flying)
Viswanathan et al. (1996):
did log-log regression on binned histogram of flight times
saw straight line
concluded: power law, therefore Lévy flight
Much subsequent work on (i) replicating this kind of analysis for
other animals, people, etc. and (ii) explaining why Lévy flights
are a Good Thing when looking for food
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. . . a dozen years later: new data!
Better timer on the monitor + GPS 1/hr to tell when the birds
came back to their island
Longest new trip < 15 hr, at least 6% of old trips supposedly longer

Turned out there were satellite location measurements for some
of the old trips

heavy tail, or (2) there is long-range persistence in direction or time.
The term Lévy flight is usually reserved4 for case (1). Reference 7 used
a Lévy walk model that assumes constant velocity, yielding a power
law probability density function of flight durations. The gamma
distribution (equation (2)) has m5 12 s5 0.69. This is such a slow
power-law decay that it is non-normalizable unless there is trun-
cation. Hence, unlike the truncated Lévy flight3 where 1,m# 3,
equation (2) cannot be interpreted as a power law with exponential
truncation. Superdiffusion remains possible, but through directional
persistence only, not Lévy flights.

The longest flight in 2004 was 14.9 h, whereas for the original 1992
data7, 25 of the 363 flights were.15 h. In 1992, for six of the trips the
birds were also fitted with a satellite transmitter (Platform Terminal
Transmitter, PTT), which provided locations at irregular intervals.
Although these data are also too coarse to determine flight distances
between landings (and were not available for ref. 7), we use them here
to determine when each bird left and returned to Bird Island (see
Methods). Figure 2 shows thewet/dry data for these six trips, together
with the estimated departure and return times on the basis of the PTT
data. For trip 3B, for example, the first dry sequence, based solely on
the salt-water-logger data, is 46 h. However, the PTT data reveal that
the bird did not leave Bird Island until 41 h after the logger was
switched on. Thus, the true duration of the first flight was only 5 h.

For the remaining five trips, the original dry sequences from the
loggers (in the order of Fig. 2) of 44 h, 69 h, 26 h, 67 h and 23 h
represent, in reality, flight records of only 4 h, 3 h, 1 h,,1 h and,1 h,
respectively. Similarly, for final flights the raw logger data values of
4 h, 8 h, 13 h, 9 h, 34 h and 9 h get corrected to true flight records of
4 h, 5 h, 8 h, 2 h, 3 h and 7 h, respectively.

However, in ref. 7 the raw logger data were assumed to represent
true flights. We adjust the data for the remaining 13 trips, for which
no PTT data were collected, by eliminating the initial and final dry
sequences (see Methods). Using these adjusted data, in Fig. 3a we
compute a corrected version of the original log–log histogram shown
in Fig. 3a of ref. 7. There are now no flight durations in the two largest
bins, and the longest flight is only 20 h compared to the original 99 h.
The data thus no longer span two orders ofmagnitude, and the points

clearly lie on a curve, not a straight line that would indicate a power
law.

The data are also consistent with coming from a shifted gamma
distribution of the form of equation (2), illustrated in Fig. 3b. The
resulting confidence intervals for s and r are much larger than those
for the 2004 data, because of the smaller sample size, lack of
data,1 h, and lower resolution of the data. Figure 3c shows the
uncorrected and corrected data as a rank/frequency plot, as in
Fig. 1. We conclude that, when time spent by the birds on the nests
is accounted for, the original 1992 albatross data do not support Lévy
flight behaviour.

The original albatross study7 was followed by reports of Lévy
flight behaviour by deer (Dama dama)10 and bumblebees (Bombus
terricola)10. The deer data were plotted as a standard histogram log-
transformed (LT in the terminology of ref. 24), the bumblebee data as
a smoothed histogram log-transformed10, and straight lines were
compared to the tails. The problematic24,25 LT method was then used
to conclude Lévy flight behaviour in other studies13,15–17,26, and the
logarithmic binning with normalization24 (LBN) method used in
ref. 14. In no cases were alternative distributions properly considered,
or goodness-of-fit tests performed. In Box 1we present a newmethod
to overcome these shortcomings. We now illustrate this approach by
re-analysing the deer and bumblebee data10.

Following ref. 10, we digitized data from ref. 27 concerning for-
aging times of deer in unfenced and fenced areas, and digitized data
from ref. 28 concerning flights of bumblebees between flower heads
in high- and low-food situations. In ref. 10 these data were all
assumed to relate to distances travelled between food items.
Likelihood functions modified from those in Box 1 are calculated
in the Supplementary Information (requiring numerical maximiza-
tion) to account for the data only being available already binned. The
resulting Akaike weights w1 for the unbounded power-law tail
were,1028 for both deer data sets, and 0.40 and 0.001 for the bees,
respectively (for the 0.40 case, m is outside the Lévy range). Given
such negligible support for the unbounded power law in the Lévy
range, we also tested both models over the bounded ranges [a, b]
assumed in ref. 10; see Table 1.

We find that for the deer scenarios the exponential distribution is
favoured by Akaike weights of 0.9994 and 0.95. Furthermore, the
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Figure 2 | Data for the six wandering albatross trips in 1992 that have
known departure and return times. Red lines are hours for which a logger
was completely dry; blue lines indicate hours when a logger was wet for some
part of that hour; and grey lines indicate switches between these regimes.
Black lines indicate when each bird departed from and returned to Bird
Island, on the basis of the PTTdata. Time 0 is when the loggerswere switched
on at a computer—thus intervals before the first black lines include time
taken to affix the logger to a bird plus time spent by the bird sitting on its nest
before departing. All birds remained on Bird Island for long periods before
departing, but such periods were considered to be flights in the original
study7. Intervals after the final black lines correspond to time the bird sat on
its nest after returning plus time spent retrieving the logger, but these were
also originally considered as flights7.
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Figure 1 | Rank/frequency plot23 of 2004 wandering albatross data,
showing no evidence for Lévy flight behaviour. Circles show number of
flights $t for each flight duration t (calculated by ranking flights by size).
The red curve is the fit to the shifted gamma distribution (equation (2)) with
maximum likelihood estimates (MLEs) of s5 0.31 (95% confidence
interval (CI): 0.27–0.34) and r5 0.41 h21 (95% CI: 0.36–0.46), obtained by
maximizing the multinomial likelihood function that takes into account the
discrete sampling nature of the loggers (see Supplementary Information).
The data are consistent with coming from this distribution (n5 1,416,
degrees of freedom5 37, G5 28.9, P5 0.83). Flights are correct to
within610 s (see Supplementary Information). If the flights$1 h followed
the power law with exponent m5 2 as in ref. 7, the points would lie on the
straight blue line23 (that has been vertically shifted slightly for clarity)—this
is clearly not the case. The inset shows the 2004 data as a conventional
histogram on linear axes, with number of flights against flight duration in
hours.

NATURE |Vol 449 |25 October 2007 LETTERS

1045
Nature   ©2007 Publishing Group

red: dry; blue: wet; black depart from/return to island
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i.e., some of the really long “flights” were just spent sitting
around on the island

reported power-law m values10 lie outside the 95% confidence inter-
vals (CIs) for the maximum likelihood estimates (MLEs), and are
inconsistent with the data. Figure 4 shows the log–log histograms of
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Figure 3 | When corrected, the 1992 wandering albatross flight durations
no longer follow a power law. a, Blue open circles show the original log–log
histogram of 1992 data (Fig. 3a of ref. 7). Breakpoints of bins are at 1, 2, 4, 8,
16, 32, 64 and 128 h (with bin intervals 1# t, 2, 2# t, 4, and so on), and
results are plotted at the geometric means. The frequencies are each
normalized by their respective bin widths to yield frequency densities that
compensate for the increasing bin widths30 (termed logarithmic binning
with normalization, LBN, in ref. 24). The straight line indicates a power law
of exponent m5 2 (ref. 7). Red filled circles are adjusted flight durations that
take into account time spent on Bird Island, binned in the same manner,
showing no power-law behaviour. b, The gamma distribution fitted to the
(unbinned) flight durations (red curve) has MLE values s5 0.73 (95% CI:
0.19–1.32) and r5 0.33 h21 (95%CI: 0.22–0.46), and the data are consistent
with coming from this distribution (n5 335, degrees of freedom5 8,
G5 11.9, P5 0.16). This distribution yields expected counts in each bin
(black open circles), which are what should be compared with the binned
data. Our multinomial likelihood approach accounts for the fact that the
loggers’memory limitationsmeant that a record of 1 h could correspond to a
flight anywhere in the range 1–3 h. This fact, plus the effects of the binning
procedure, result in the differences between the red curve and black circles
(note the log scale); see Supplementary Information. c, Original (blue open
circles) and adjusted (red filled circles) data as a rank/frequency plot. Each
record yields a point, and because the resolution of the logger data was 1 h,
there can be multiple points for each given flight duration t. The ordinate
shows proportion rather than number of flights, because of the different
sizes of the data sets.

Box 1 | When is a power law not a power law?

The approach widely used to test for biological Lévy flight search
patterns has been: (1) plot the move-length data as some form of
histogram on log–log axes; (2) draw or fit a straight line across the full
range of data or just the tail; (3) define m to be the negative of the slope
of the line; (4) conclude that the data follow a power law of exponent m
(across the full range or just the tail); (5) then if 1,m# 3 conclude that
the organism performs a Lévy flight with exponent m.

It is well known that log–log axes tend to make relationships look
straight, and so it is problematic to only plot the data on a log–log plot
and then conclude that the data lie on a straight line. One should at
least consider an alternative move-length distribution, such as the
exponential that corresponds to a simple uncorrelated Poisson random
process. Reference 16 did also test the exponential, although used the
unreliable24,25 LT method for the power law and compared the
distributions by comparing coefficients of variation29 (R2), which is not
useful for choosing between models19.

Here we summarize how to use modern statistical methods of
model selection19,20 to test whether a given data set x5 {x1, x2, x3, …,
xn} provides more evidence for a power-law tail or an exponential tail.
Considering the tail to start at a, the power-law tail has probability
density function

f1(x)~Cx{m, x§a ð3Þ
where the normalization constant C5 (m2 1)am21, and the exponential
tail has probability density function

f2(x)~le{l(x{a), x§a ð4Þ

The log-likelihood function18,19 for the power law is23

log L1 m data xjð Þ½ $~n log m { 1ð Þ z n m { 1ð Þ log a{m
Xn

j~1

log xj ð5Þ

where L1(mjdata x) is the likelihood of a particular value of the unknown
parameter m given the known data x (and log is natural log). For the
exponential model the unknown parameter is l, and

log L2 l data xjð Þ½ $~n log lznla{l
Xn

j~1

xj ð6Þ

SolvingfortheMLEsanalytically23givesm̂m~1{n
.

n log a{
Pn

j~1 log xj
! "

and l̂l~1
. Pn

j~1 xj
#
n{a

! "
. Akaike’s information criterion18, 19 (AIC) for

model i (i5 1, 2) is

AICi~{2 log Li ĥhi data xj
! "h i

z2Ki ð7Þ

where ĥh1 ~ m̂m, ĥh2 ~ l̂l, andKi is the number of parameters being estimated
formodel i (K15K2 here). The bestmodel is the onewith theminimumAIC,
AICmin. Then,AIC differences are given byDi5AICi2AICmin. TheAkaike
weights19 are relative likelihoods of eachmodel, given by

wi~
e{Di=2

e{D1=2ze{D2=2
ð8Þ

normalizedsotheweightssumto1.Theweightwi isconsideredastheweightof
evidence infavourofmodel ibeingthebestmodel for thegivendata,outof the
models considered.Multiplemodels of varying complexitymay also be
simultaneously considered19. Natural data that follow apower lawmust be
finitely truncated; any approach that neglected thiswould suffer to some
degree (see Supplementary Information). Futurework could explore the
problemof inference of truncated3 Lévy flights.

The likelihood approach clarifies what is meant by the ‘tail’ of the
data (permitting goodness-of-fit tests), eliminates binning problems
associated with log–log histograms (outlined in ref. 24), and yields
95% CIs (computed using the profile likelihood-ratio test18).
Furthermore, if the power law is supported by the data, then the MLE
for m is more accurate (A.M.E., manuscript in preparation) than the
estimate obtained from the LBN method.
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heavy tail, or (2) there is long-range persistence in direction or time.
The term Lévy flight is usually reserved4 for case (1). Reference 7 used
a Lévy walk model that assumes constant velocity, yielding a power
law probability density function of flight durations. The gamma
distribution (equation (2)) has m5 12 s5 0.69. This is such a slow
power-law decay that it is non-normalizable unless there is trun-
cation. Hence, unlike the truncated Lévy flight3 where 1,m# 3,
equation (2) cannot be interpreted as a power law with exponential
truncation. Superdiffusion remains possible, but through directional
persistence only, not Lévy flights.

The longest flight in 2004 was 14.9 h, whereas for the original 1992
data7, 25 of the 363 flights were.15 h. In 1992, for six of the trips the
birds were also fitted with a satellite transmitter (Platform Terminal
Transmitter, PTT), which provided locations at irregular intervals.
Although these data are also too coarse to determine flight distances
between landings (and were not available for ref. 7), we use them here
to determine when each bird left and returned to Bird Island (see
Methods). Figure 2 shows thewet/dry data for these six trips, together
with the estimated departure and return times on the basis of the PTT
data. For trip 3B, for example, the first dry sequence, based solely on
the salt-water-logger data, is 46 h. However, the PTT data reveal that
the bird did not leave Bird Island until 41 h after the logger was
switched on. Thus, the true duration of the first flight was only 5 h.

For the remaining five trips, the original dry sequences from the
loggers (in the order of Fig. 2) of 44 h, 69 h, 26 h, 67 h and 23 h
represent, in reality, flight records of only 4 h, 3 h, 1 h,,1 h and,1 h,
respectively. Similarly, for final flights the raw logger data values of
4 h, 8 h, 13 h, 9 h, 34 h and 9 h get corrected to true flight records of
4 h, 5 h, 8 h, 2 h, 3 h and 7 h, respectively.

However, in ref. 7 the raw logger data were assumed to represent
true flights. We adjust the data for the remaining 13 trips, for which
no PTT data were collected, by eliminating the initial and final dry
sequences (see Methods). Using these adjusted data, in Fig. 3a we
compute a corrected version of the original log–log histogram shown
in Fig. 3a of ref. 7. There are now no flight durations in the two largest
bins, and the longest flight is only 20 h compared to the original 99 h.
The data thus no longer span two orders ofmagnitude, and the points

clearly lie on a curve, not a straight line that would indicate a power
law.

The data are also consistent with coming from a shifted gamma
distribution of the form of equation (2), illustrated in Fig. 3b. The
resulting confidence intervals for s and r are much larger than those
for the 2004 data, because of the smaller sample size, lack of
data,1 h, and lower resolution of the data. Figure 3c shows the
uncorrected and corrected data as a rank/frequency plot, as in
Fig. 1. We conclude that, when time spent by the birds on the nests
is accounted for, the original 1992 albatross data do not support Lévy
flight behaviour.

The original albatross study7 was followed by reports of Lévy
flight behaviour by deer (Dama dama)10 and bumblebees (Bombus
terricola)10. The deer data were plotted as a standard histogram log-
transformed (LT in the terminology of ref. 24), the bumblebee data as
a smoothed histogram log-transformed10, and straight lines were
compared to the tails. The problematic24,25 LT method was then used
to conclude Lévy flight behaviour in other studies13,15–17,26, and the
logarithmic binning with normalization24 (LBN) method used in
ref. 14. In no cases were alternative distributions properly considered,
or goodness-of-fit tests performed. In Box 1we present a newmethod
to overcome these shortcomings. We now illustrate this approach by
re-analysing the deer and bumblebee data10.

Following ref. 10, we digitized data from ref. 27 concerning for-
aging times of deer in unfenced and fenced areas, and digitized data
from ref. 28 concerning flights of bumblebees between flower heads
in high- and low-food situations. In ref. 10 these data were all
assumed to relate to distances travelled between food items.
Likelihood functions modified from those in Box 1 are calculated
in the Supplementary Information (requiring numerical maximiza-
tion) to account for the data only being available already binned. The
resulting Akaike weights w1 for the unbounded power-law tail
were,1028 for both deer data sets, and 0.40 and 0.001 for the bees,
respectively (for the 0.40 case, m is outside the Lévy range). Given
such negligible support for the unbounded power law in the Lévy
range, we also tested both models over the bounded ranges [a, b]
assumed in ref. 10; see Table 1.

We find that for the deer scenarios the exponential distribution is
favoured by Akaike weights of 0.9994 and 0.95. Furthermore, the
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Figure 2 | Data for the six wandering albatross trips in 1992 that have
known departure and return times. Red lines are hours for which a logger
was completely dry; blue lines indicate hours when a logger was wet for some
part of that hour; and grey lines indicate switches between these regimes.
Black lines indicate when each bird departed from and returned to Bird
Island, on the basis of the PTTdata. Time 0 is when the loggerswere switched
on at a computer—thus intervals before the first black lines include time
taken to affix the logger to a bird plus time spent by the bird sitting on its nest
before departing. All birds remained on Bird Island for long periods before
departing, but such periods were considered to be flights in the original
study7. Intervals after the final black lines correspond to time the bird sat on
its nest after returning plus time spent retrieving the logger, but these were
also originally considered as flights7.
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Figure 1 | Rank/frequency plot23 of 2004 wandering albatross data,
showing no evidence for Lévy flight behaviour. Circles show number of
flights $t for each flight duration t (calculated by ranking flights by size).
The red curve is the fit to the shifted gamma distribution (equation (2)) with
maximum likelihood estimates (MLEs) of s5 0.31 (95% confidence
interval (CI): 0.27–0.34) and r5 0.41 h21 (95% CI: 0.36–0.46), obtained by
maximizing the multinomial likelihood function that takes into account the
discrete sampling nature of the loggers (see Supplementary Information).
The data are consistent with coming from this distribution (n5 1,416,
degrees of freedom5 37, G5 28.9, P5 0.83). Flights are correct to
within610 s (see Supplementary Information). If the flights$1 h followed
the power law with exponent m5 2 as in ref. 7, the points would lie on the
straight blue line23 (that has been vertically shifted slightly for clarity)—this
is clearly not the case. The inset shows the 2004 data as a conventional
histogram on linear axes, with number of flights against flight duration in
hours.
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AIC Approach to Comparison

AIC = Akaike Information Criterion (Akaike, 1973)
Model class Θ, estimated with maximum likelihood (θ̂)

AIC(Θ) = L(θ̂)− d

d = number of parameters estimated for θ
Supposed to be unbiased estimate of expected likelihood on new data from same

source

Can give relative weights for different models, prefer one with
higher AIC
Could also use BIC — near-theological debates about which is
better (or others)
“Practice is the sole criterion of truth”: The best criterion is the one which most

efficiently and reliably selects the right model; we’ll come back to this

Here AIC strongly favors gamma distribution over power law
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Conclusions

1. Apparent result was really due to an artifact (wrong flight
times) and a weak analysis method (log-log regression)
2. Corrected and properly analyzed, data support gamma
distribution much more strongly than the power law
3. Now the theoretical to task is to explain why, if Lévy flights
are so wonderful, albatrosses (and bumblebees, and deer, and
...) do not take them
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Morals

1. THE REAL FOUNDATIONS OF STATISTICS: You must
understand your data intimately before you start to do statistics
2. FESS UP: The problem with the flight times was discovered
by the same collaboration as made the original claims; this
shows class
3. ZOMBIES: Some ideas are like zombies: they come back
from the dead and they eat your brains. There are signs that
Lévy flight foraging may be undead in this way (Sims et al.,
2008)
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