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Inference from Simulations 2, Mostly Parameter Estimation

Direct Inference Method of simulated generalized moments
Indirect Inference

Reading: Smith (forthcoming) is comparatively easy to read;
Gouriéroux et al. (1993) and (especially) Gouriéroux and
Monfort (1996) are harder to read but more detailed; Kendall
et al. (2005) is a nice application which does not require
knowing any econometrics
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Method of Simulated Moments

1 Pick your favorite test statistics T (“generalized moments”)
2 Calculate from data, tobs
3 Now pick a parameter value θ

1 simulate multiple times
2 calculate average of T ≈ Eθ [T ]

4 Adjust θ so expectations are close to tobs

The last step is a “stochastic approximation” problem Robbins and Monro (1951);

Nevel’son and Has’minskĭi (1972/1976)
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Works if those expectations are enough to characterize the
parameter
Why expectations rather than medians, modes, . . . ?
Basically: easier to prove convergence

The mean is not always the most probable value!

Practicality: much faster & easier to optimize if the same set of
random draws can be easily re-used for different parameter
values
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Example: use mean and variance for logistic map; chose r where simulated moments

are closest (Euclidean distance) to observed

r̂MSM = argmin
r∈[0,1]

(
(m − µ̂r )

2 + (s2 − σ̂2
r )2

)
No particular reason to weight both moments equally
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Kinks in the curve of the moments: potentially confusing to
optimizer, reduces sensitivity
big change in parameter leads to negligible change in moments

curve crossing itself ⇒ non-identifiability
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The Progress of Statistical Methods

First stage calculate likelihood, solve explicitly for MLE
Second stage can’t solve for MLE but can still write down

likelihood, calculate it, and maximize numerically
Third stage even calculating the likelihood is intractable

Outstanding example: hidden or latent variables Y1,Y2, . . . plus
observed X1,X2, . . .
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Why Finding the Likelihood Becomes Hard

Likelihood become an integral/sum over all possible
combinations of latent variables compatible with observations:

Prθ (X n
1 = xn

1 )

=

∫
dyn

1 Prθ (X n
1 = xn

1 ,Y
n
1 = yn

1 )

=

∫
dyn

1 Prθ (Y n
1 = yn

1 )
n∏

i=1

Prθ

(
Xi = xi |Y n

1 = yn
1 ,X

i−1
1 = x i−1

1

)
Evaluating this sum-over-histories is, itself, a hard problem
One approach: Expectation-Maximization algorithm, try to
simultaneously estimate latent variables and parameters (Neal
and Hinton, 1998)
Standard, clever, often messy
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Indirect Inference

We have a model with parameter θ from which we can simulate
also: data y
Introduce an auxiliary model which is wrong but easy to fit
Fit auxiliary to data, get parameters β̂
Simulate from model to produce yS

θ — different simulations for
different values of θ
Fit auxiliary to simulations, get β̂S

θ

Pick θ such that β̂S
θ is as close as possible to β̂

Improvement: do several simulation runs at each θ, average β̂S
θ

over runs
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What’s going on here?

The auxiliary model says: the data has these sorts of patterns
Pick parameters which come as close as possible to matching
those parameters
For this to work, those patterns must be enough to pin down the
original parameter, requires at a minimum that dimβ = dim θ
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A More Formal Statement

Auxiliary objective function ψ, depends on data and β

β̂T ≡ argmax
β

ψT (β) (1)

β̂T ,S,θ ≡ argmax
β

ψT ,S,θ(β) (2)

θ̂II ≡ argmin
θ

(β̂T ,S,θ − β̂T )′Ω(β̂T ,S,θ − β̂T ) (3)

Ω some positive definite matrix
which one doesn’t matter asymptotically

Optimal choice gives most weight to the most-informative auxiliary parameters

(Gouriéroux and Monfort, 1996, §4.2.3)

identity matrix is usually OK
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Assume:
1 As T →∞, ψT ,S,θ(β) → ψ(β, θ), uniformly in β and θ.
2 For each θ, the limiting objective function has a unique

optimum in β, call this b(θ).
3 As T →∞, β̂T → b(θ0).
4 The equation β = b(θ) has a unique solution, i.e., b−1 is

well-defined.
then as T →∞,

θ̂II → θ0

in probability
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Asymptotic Distribution of Indirect Estimates

(Gouriéroux and Monfort, 1996, §4.2.3)

Under additional (long, technical) regularity conditions, θ̂II − θ0 is
asymptotically Gaussian with mean 0
Variance ∝ 1

T

(
1 + 1

S

)
Variance depends on something like the Fisher information
matrix, only with ∂b/∂θ in the role of ∂pθ/∂θ
basically, how sensitive is the auxiliary parameter to shifts in the underlying true

parameter?
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Checking Indirect Inference

Given real and auxiliary model, will indirect inference work, i.e.,
be consistent?

Do the math Provides proof; often hard (because the
simulation model leads to difficulty-to-manipulate
distributions)

Simulate some more Simulate from model for a particular θ,
apply II, check that estimates are getting closer to
θ as simulation grows, repeat for multiple θ
Not as fool-proof but just requires time (you have
all the code already)
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Autoregressive Models

Like it sounds: regress Xt on its past Xt−1,Xt−2, . . .

Xt = β0 + β1Xt−1 + β2Xt−2 + . . . βpXt−p + εt , εt ∼ N (0, σ2)

Common as auxiliary models for time series (as well as models
in their own right)
Auxiliary objective function is residual sum of squares over p
R command: ar
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Example: Logistic Map + Noise

Take logistic map and add Gaussian noise to each observation

xt = yt + εt , εt ∼ N (0, σ2)

yt+1 = 4ryt(1− yt)

Any sequence xT
1 could be produced by any r

logistic.noisy.ts <- function(timelength,r,
initial.cond=NULL,noise.sd=0.1) {

x <- logistic.map.ts(timelength,r,initial.cond)
return(x+rnorm(timelength,0,noise.sd))

}

Assume that σ2 is known — simplifies plotting if only one
unknown parameter! Set it to σ2 = 0.1

36-462 Lecture 19



Direct Inference
Indirect Inference

The Correct Line on Inference from Complex Models
References

1 fix p for AR model
2 Fit AR(p) to data, get β̂ = (β̂1, . . . β̂p)

3 Simulate S sample trajectories with parameter r , calculate
(β̂1, . . . β̂p) for each, average over trajectories to get β̂S

r

4 Minimize ‖β̂ − β̂S
r ‖

logistic.map.II <- function(y,order=2,S=10) {
T <- length(y)
ar.fit <- function(x) {

return(ar(x,aic=FALSE,order.max=order)$ar)
}
beta.data <- ar.fit(y)
beta.discrep <- function(r) {

beta.S <- mean(replicate(S,ar.fit(logistic.noisy.ts(T,r))))
return(sum((beta.data - beta.S)^2))

}
return(optimize(beta.discrep,lower=0.75,upper=1))

}
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To see how well this does, simulate it:

y <- logistic.noisy.ts(1e3,0.8)
plot(density(replicate(100,

logistic.map.II(y,order=2)$minimum)),
main="Density of indirect estimates")
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Some bias (here upward) but it shrinks as T grows, and it’s pretty tight around the true
value (r = 0.8)
Notice: fixed data set, all variability is from simulation

Also: p = 2 is arbitrary, can use more simulation to pick good/best
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r = 0.8 is periodic, what about chaos, say r = 0.9?

plot(density(replicate(30,
logistic.map.II(logistic.noisy.ts(1e3,r=0.9),

order=2)$minimum)),
main="Density of indirect estimates, r=0.9")

re-generate data each time
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I promised to check that the inference is working my seeing that
the errors are shrinking:

mse.logistic.II <- function(T,r=0.9,reps=30,order=2,S=10) {
II <- replicate(reps,logistic.map.II(logistic.noisy.ts(T,r),

order=order,S=S)$minimum)
II.error = II - r # Uses recycling
return(mean(II.error^2))

}
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The Correct Line on Inference from Complex Models

MORE SCIENCE, FEWER F -TESTS

Craft a really good scientific model
represent your actual knowledge/assumptions/guesswork
“it’s in my regression textbook” isn’t a scientific justification
must be able to simulate it

Pick a reasonable auxiliary model
Works on your observable data
Easy to fit
Predicts well is nice but not necessary

Estimate parameters of complex model by indirect
inference
Test hypotheses by indirect inference as well (Gouriéroux
et al., 1993; Kendall et al., 2005)
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