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CHAPTER 1
Introduction

Random behavior of simple or complex phenomena can
sometimes be explained in physical terms, with an additional
fouch of probability theory. We exemplify this with a descrip-
tion of coin tossing. We then define a stochastic process,
give some examples, and an overview of the book.

1.1. Randomness

The world is full of unpredictable events. Science strives to understand natural
phenomena, in the sense of reducing this unpredictability. There are many
ways of doing this. Models, which are abstractions of particular aspects of
phenomena, constitute one such way. Experimentation and observation are
needed to verify and improve models. These models can be of a variety of
types: conceptual, mathematical, or stochastic, to mention a few.

In this book we investigate some simple stochastic models. We shall see
how there is an interplay between the model and the science underlying the
probiem. Sometimes the science enters only conceptually, while in other cases
it dictates the precise structure of the model. Common to all models we shall
consider is a random element, described very precisely in the langnage of pro-

" bability theory.

We can qualitatively distinguish different sources of random behavior.

s Uncertainty about initial conditions. In many situations it is very
difficult to determine exactly the initial conditions. In some situations one
can only determine relative frequencies of different initial conditions. The
consequence is that the system exhibits random behavior, in accordance
with the random initial conditions.

 Sensitivity to initial conditions. Many systems exhibit large changes in
output corresponding to very small changes in initial conditions. Such
systems are said to display chaetic behavior. Itis often quite difficult to
estimate parameters and study the fit of a deterministic description of a
chaotic system, especially when initial conditions are not exactly known.
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o Incomplete description. Sometimes the theoretical basis for a deter-
ministic description of a system comresponds to only some of the factors
that are important in determining outcomes. The lack of complete
description renders the behavior unpredictable. This is quite common in,
e.g., economic modeling.

e Fundamental description. When a single photon hits a glass surface, it
may go through it or reflect off it. There is no way to predict what it will
do, but the quantum electrodynamic theory can make precise predictions
as to the behavior of a large number of single photons, when viewed as an
aggregate. Modern quantum theory could not exist without probabilistic
descriptions.

To illustrate the first two classes of randomness, let us discuss the simple
phenomenon of coin tossing. A circular coin of radius a is tossed upwards, spins
around its own axis several times, and falls down. For simplicity we will ignore
air resistance, and assume that the coin falls on a sandy surface, so that it does
not bounce once it hits the ground. The laws of motion for coin tossing are then
elementary (Keller, 1986). Let y (¥) be the height of the center of gravity of the
coin above the surface at time #, and 9(z) the angle between the normal to the
surface and the normal to the heads side of the coin. Figure 1.1 shows the situa-
tion.

Time

Figure 1.1, The motion of a coin fiip. Adapted from Keller {(19806);
reproduced with permission from the Mathematical Association of America.

Assuming only gravitational force vertically and no acceleration rotationally,
the equations of motion are

y(ty=-g 07()=0 (1.1

where g is the gravitational acceleration. The coin is assumed to start at a
height a above the surface (any other initial position can be assumed without
problems) with the heads side facing upwards. It is tossed upwards with vertical
velocity u and angular velocity (. This yields the initial conditions
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yO)=a y (O)=u 6(0)=0 0 (0)=wn. (1.2)
The solution is
() = a + ut—gt32  6@) = ot (1.3)

The center of the coin describes a parabola as a function of time, with a max-
imum value of a+u?/A2g) at time u/g. The coin lands whenever either end
touches the ground, i.e., at the first time ¢ such that

y(to) = a|sinB(tg) |. (1.4)

It lands with heads up if it has rotated any number of full rotations (to within
90°), i.e., if for some n .

Qn—Ym < 8(ty) < Qn+Bm. - (1.5)

At the extreme points of these intervals wry=(2rtii)r, so y(tg)=a or tg=2u/g.
Hence, using (1.3), w=(2ntY)rgA2u). The initial values that ensure heads are
contained in successive hyperbolic bands:

H = {(5,0): 2n—%)"2 <o < 2n+n)E ). (1.6)
2u 2u

Figure 1.2 shows the successive bands as a function of u/g. The band nearest
the origin corresponds to heads, the next one to tails, etc. We see that as the
velocities increase, the amount of change needed to move from tails to heads
decreases. Typical values of the parameters were determined in an experiment
by Persi Diaconis (Keller, 1986). They are

u = 2.4 mfs (determined from observing the maximum height of typical
coin tosses);

® = 38 rev/s = 238.6 radians/s (determined by wrapping dental floss
around the coin and counting the number of unwrappings);

n = 19 rev/toss (computed from n=wtg).

On Figure 1.2 this corresponds to #/g of (.25, and ® of 238.6, far above the top
of the picture. It is clear that a very small change in /g can change the outcome
of the toss. Thus the coin toss is predictable precisely when the initial condi-
tions are very well determined. For example, if #/g and & both are very smalil,
the coin will essentially just fall flat down, and hence will come up heads.

Suppose now that the initial conditions are not under perfect conirol, but
that they can be described by a probability density f (u,w). Then

P(H) = [ fn, w)dud o, an
H R
where H is the set depicted in Figure 1.2. We can select fso that P(H) takes on

any value in [0,1]. So how come coins tend to come up heads and tails about
equally often? Here is an explanation:
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Figure 1.2.  The outcome of a coin toss as a function of vertical {x/g) and
angular (@) velocities. Every other band is heads, starting with the lower left-
hand comer. Reproduced with permission from Keller (1 986), published by the
Mathematica! Assaciation of America.

Theorem 1.1 For all continuous f such that f (#, @)>0 for all x, >0, and
for any 0<f<n/2

tim J[f (u—UcosB,a~-Lsinp)dwdu = . (1.8)
U—)eeH a

Proof  First change variables to @"=w—-Usinf/a, so that d&’=d® and
oa o (2N +¥)mg2u - Usinfla
PE)= | 3 [ fau-Ucospw)dwds (19
: Ucosp n=0 (2n-44)rg/2u—Usinfa
For P<r/2 (B=n/2 is argued similarly), U—eo implies that u—eo. The range of
each of the inner integrals over ®” is of length O (1/w)!, so we can approximate
each of them by the length of the interval times the integrand at the midpoint,
with an error of only o (#~1). Thus

Iy say that g (s)=0(k(s)) as s s if | g(sVh(s)| stays bounded as s—sq. Here 5o can be finite
or infinite, and the limit can be through all reals or through integers. Also, we write g(s)=o(h{s)) if
£ (s)/h(s)—0. This notation is due to Landau (1930)-
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PH) = | f‘, Fu—Ucosp, 2Py TR (14 o (1)) (1.10)
Ucosp n=0 2u " 2u

For large U the sum ijs a Riemann sum for '/zjf (u—UcosB,w)dw, so with
v=u—Ucosf we get

P = 4 7 v, w)dwav (140 (1)) = B0 (1), (L11)
(L1 ]
proving the result. (]

The interpretation of this theorem is that as soon as we make the initial velocity
(vertical, angular, or both) large enough, the probability of heads is 4. One
would be tempted to argue this result from symmetry, but the initial conditions
are not symmetric: we always start with heads upwards.

More precise results of this type are given in section 3.2.2 of Engel
(1992). For example, if the vertical velocity u~U(2.1,2.7) m/s and the angular
velocity @~U(36,40) rev/s, with the two wvelocities independent, then
| P(H)-%: | <0.056. This is, in essence, a worst-case scenario for the approxima-
tion. More realistically, assume that the conditional distribution of # given w is
a mixture of normal distributions, with standard deviations at least 0.15 m/s,
while @ is at least 36 rev/s. Then Engel’s bound is | P(H)-% | <1.5x107!L.

In practice, it is difficult to study processes of the coin-tossing type. One
of the most extensive experiments involved 315,672 throws of dice, These were
rolled, twelve at a time, down a fixed slope of cardboard. The roller, W. F. R,
Weldon (see Pearson, 1900), found 106,602 instances of the outcome 5 or 6. If
the dice were true and the initial conditions ‘‘sufficiently random’’, as discussed
above, the probability of 5 or 6 should be 1/3. Thus, Weldon found an excess of
0.004366, which is statistically highly significant. The explanation is that the
faces with 5 or 6 spots are lighter, because of the larger number of pits for the
marking material, thus displacing the center of gravity towards the opposing
sides 2 or 1 (this explanation is due to Jeffreys, 1939). In order to avoid this type
of a problem, dice would have to have painted faces rather than the pits that are
standard. This will, of course, be of little importance to the occasional board
game player, but can play an important role in the finances of a major casino.

1.2. Stochastic processes

Classical statistical theory is often concerned with the case of iid random vari-
ables X, . .. ,X,, i.e.,

n
P(Xo€Ao, . . . X,eA,) = [[P(XeAy), (1.12)
i=0

where X is a generic random variable with the same distribution as the X;. It is
straightforward to relax the assumption of identical distributions. But in many
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cases the independence assumption is violated. For example, if it is raining
today, it is more likely to be raining tomotrow than if it is sunny today. There
are many different ways of specifying dependent random variables, and we shall
see some of them in this book. A stochastic process is a collection of random
variables (X ;00 T) where T is some index set. A formula similar to (1.12) that
holds regardless of the dependence between the variables is the following:

P(XoeAq, . . . Xz€A,)
n
= P{X()EA} HP(X,'EA,' ngEAU, . ,X,'...|€A,-_]). (113)
I=1
The theory of stochastic processes provides various specifications of the condi-
tional probabilities on the right-hand side of (1.13). We will often relate such
specifications to natural processes, the outcome of which we may be uncertain
about. We will be concerned with random variables taking values in a state
space! S, and governed by a probability measure that we call P. Not all
specifications of the type (1.13) are necessarily valid. Various kinds of regular-
ity conditions are needed. We give two different examples of such regularity
next. .

The positivity condition. Consider a discrete multivariate random variable
X=(Xq,....X) with probability distribution g(x) = P(X=x),
xe S = {x:g(x)>0}. This choice of § is called the minimal state space. Now
consider the minimal state spaces for each of the components X ie,
S; = {x: P(X,=x)>0}. We say that ¢ satisfies the positivity condition if

S =8;XS5% " " * XSy, (1.14)
so that if x;€ S;, i=1,...,m, we have x=(x;, . . - »Xp)ES.
Example (The positivity condition) Letm = 2 and consider binary X;.
If the X; are independently distributed as Bin(1,s) we have

g(0,0) = g(1,1) = ¢(0,1) = ¢(1,0) = 1/4 (1.15)

which does satisfy the positivity condition. On the other hand, if
9(0,0) = g1, =% | (1.16)

we have $; = {0,1},s0
S] XSZ = ((050)!(0’1)’(1’0)’(]-’1)) (117)
while

S = ((0,0).(1,1)), (1.18)

1"fhe state space is often called the sample space in introductory probability. We use the term state
space which is more common in stochastic process theory.
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violating the condition. : O

The conditional distribution of X;, given the values of all the other variables
which we denote X_;, is

PX=x) _ _4q(x)
PX_=x;) Y qx)

*8S

UQI(X.‘ | %) =PX;=x; | X=x;) = (1.19)

Clearly, if g satisfies the positivity condition these ¢; are well defined and posi-
tive for any xeS. Note that the g; are univariate probability distributions. It
turns out that under the positivity condition knowledge of the g; suffices to
determine g. We shall see uses of this later on. Let x! be shorthand for
Xg» - - - +Xg, interpreted as an empty set if s>t The following expansion is due to
Brook (1964).

Proposition 1.1 Suppose that g satisfies the positivity condition. Then

g(x) _ 2 90y | xi i)

a®) g xR (1.20)
Proof
(%) = @l | XP PP =xF)
m\Ym x"‘"
= (% | X7 P! =xa"-')£_0;.|_;_l_)
_ Dl x0T
" anOm [P a0FYm (1.21)
G (X l X'ln_h]) )
- mqm_] (xm_l |x'i” z,ym)P(X']n_?':X'{'_zaXm:ym)

= Qm(-xm Ix'ln_]) Tm—1 (xm—-l Ixrlnnz'ym)
Qru(ym IXT—I) %n—!(ym-] [X'l"_z')’m)

C.or.lti.nue this process for each i, “‘replacing”™ x; with y; by multiplying and
dividing by g;(v; | x{™ ,¥i+1) and regrouping terms. Positivity assures that if
q(x)>0 and ¢(y)>0 then g(x{~!,y")>0 fori=1,...,m (Exercise 1). - a

Q(x'ln_zayx—l )

T.h.e consequence of this expansion is that g is uniquely determined by the con-
ditional distributions, since Exe Sq(x):l.
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The Kolmogorov consistency condition. Consider a stochastic process
(X;:i=0,1,...), having a distribution such that '

P €Ay ... X €A) =P A, ... X, €A X, €5)  (122)

for all iy, ... ins1€{0,1,rb, neZ,, and A, ...,A, events (measurable sub-
sets of S). This condition guarantees the eXistence of a probability measure
corresponding to this stochastic process, and is due to Kolmogorov® (1933).

Remark It is nontrivial that any stochastic processes exist, in the sense of
allowing the description of statments about it in terms of probabilities. In fact,
one must impose some structure on S. This is the subject of extension theorems

in measure-theoretic probability theory. O

Example (An iid praocess) The standard iid model so common in proba-
bility and statistics satisfies the Kolmogorov condition. In the case of random
variables with density f (x), taking values on the real line, so 5=R, we have

P(Xp €Al .- Ko €An X, €R)
=P(Xy€A1) " P(Xag,EAn)P(Xa,,.ER)

S P(XgcAr) - Py A | flrydx (1.23)

= P(Xo €A1) *  P(Xg€An) = PHo€AL . - X €AR).
O

Depending on the structure of the state space S and the index set T one
has different classifications of stochastic processes. T is often catled *‘time’”’ ina
generic sense.

Example (Some interpretations of time) 1. X, is the number of earth-
guakes of magnitude above 5 near Mount St. Helens in the time period (0,¢]
where 0 is the beginning of recording. This is called a counting process. We
have T=R, and S=N. Time is continuous and the state space is discrete.

2. X,=(B.D;) are the number of births and deaths on day & in a population of
insects. Here T=IN and S=IN?. Time and state space are both discrete.

' Kolmogorov, Andrei Nikolaievich (1903-1987). Russian probabilist of the Moscow School..
student of Luzin. Developed the axiomatization of probability theory. Made immense
contributions to the theory of stochastic processes, turbulence, and complexity theory.
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3. X,, is the amount of SOZ% in precipitation at location y at time £ Here
T=R*xR. (or some appropriate subset thereof), o=(y,!), and S=[0,00). This is
called a random field (because T is more than one-dimensional). The state
space is continuous. Here clock time is only one component of *‘time”".

4. X, is the thickness of an optical fiber at a distance ¢ from the origin. Here both

state space and time are continuous with T=S=R, . ““Time"’ really is distance.
a

Much of the history of the subject of stochastic processes is rooted in particular
physical, biological, social, or medical phenomena. The first occurrence of what
is now called a Markov chain may have been as an alternative to the simple iid
model in explaining rainfall patterns in Brussels (Quetelet, 1852). The simple
branching process was invented by Bienaymé (1845) to compute the probability
of extinction of a family surname among nobility. Rutherford and Geiger (1910)
enrolled the help of the mathematician H. Bateman to describe the disintegra-
tion of radioactive substances using what we now call a Poisson process. Ein-
stein (1905) presented a stochastic process that described well the Brownian
motion of gold particles in solution, and Bachelier (1900) had used the same
process to describe bond prices. The birth-and-death process was introduced by
McKendrick (1924; in a special case in 1914) to describe epidemics, and Gibbs
{1902) used nearest-neighbor interaction models to describe the behavior of
large systems of molecules. The literature lacks a systematic account of the his-
tory of stochastic processes, but it should be clear from this short list of exam-
ples that an important aspect of such a history is the scientific problems that
generated these different stochastic processes. The historical development of
the probability theory associated with these processes rapidly moves beyond the
scope of this book.

1.3. Purposes of stochastic models

The use of statistical methods to draw scientific conclusions will be illustrated
repeatedly in this text. As a first, and quite simple, example, consider the ques-
tion of mutation in bacteria. It was well known before 1943 that a pure culture
of bacteria could give rise to a small number of cells exhibiting different, and
inheritable, behavior. For example, when a plate of E. coli becomes infected by
the bacteriophage T1, most of the cells are destroyed. A few may, however, sur-
vive. These, as well as all their offspring, are now resistant to T1 infection. In
order to explain this resistance, two hypotheses were suggested. The adapta-
tion hypothesis was that some bacteria became immune to T1 upon exposure to
the bacteriophage, The key idea in this hypothesis is that the exposure is neces-
sary for the resistance to develop. Alternatively, the bacteria may become
immune through spontaneous mtation.
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In order to distinguish between these hypothesis, Luria and Delbriick
(1943) grew small individual cultures of T1-sensitive E. coli. From each culture
equal quantities were added to several Petri dishes containing T1. Each dish
was scored for the number of surviving (hence phage-resistant} colonies.

If the adaptation hypothesis is comrect, each bacterium would have a small
probability of developing resistance after being exposed to T1. Hence, using the
Poisson limit to the binomial distribution, we would expect all the dishes to
show Poisson variability {variance equal to the mean), regardless of which cul-
ture they came from. If, on the other hand, spontaneous mutation occurs at a
constant rate, we would expect large numbers of resistant colonies originating
from cultures in which mutation took place early in the experiment, and would
therefore expect super-Poisson variability (variance larger than the mean)
between dishes from different cultures.

In order to develop a control group, Luria and Delbriick also computed
numbers of mutations in dishes that were all originating in one large culture,
Since a large culture is constantly mixed, we would expect Poisson variability
in these dishes, regardless of which hypothesis is true. Table 1.1 contains some
resulis.

Table 1.1 Mutation numbers

Dish Same Different
cufture cultures

14 6
15 5
13 10
21 3
15 24
14 13
26 165
16 15
20 6
13 i0

1
2
3
4
5
6
7
8
9
0

Pt

The sample mean for the control group was 16.7, with a sample variance
of 15.0, while the experimental group had a sample mean of 26.2 with a sample
variance of 2178. The difference between the means is not statistically
significant, as assessed by a two-sample t-test. From comparing the variances it
is, however, very clear that the mutation hypothesis is much better supported
than the adaptation hypothesis, as has been verified by later experiments.
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Many natural scientists are of the opinion that most problems on a
macroscopic scale can be solved using deterministic models, 4t least in princi-
ple. Modern chaos theory suggests that some of these models are nonlinear.
Techniques of applied probability are often thought of as what may be called
statistical models, in the sense of being reasonably approximate descriptions of
the phenomenon under study, while lacking much physical basis. Our point of
view will be somewhat different. There are frequently reasons for using stochas-
tic models (as opposed to deterministic ones) to model, rather than just describe,
vyarious natural phenomena. A distinction is sometimes made between forecast
models and structural models. The former do not aim at describing the
phenomenon under study, but rather iry to predict outcomes, while the latter are
more focused on describing the processes that produce the phenomenon. Our
interest lies mainly in the latter. Some of the potential advantages in using sto-
chastic models are listed below.

Alds understanding of the phenomenon studied. We will see (section 3.8)
an example from neurophysiology where a stochastic model can rule out several
proposed mechanisms for communication between nerve cells. While it is not
possible to observe directly the underlying kinetics, it is possible to ascertain
whether or not a certain neurological channel is open or closed. The time spent
open can be used to estimate, based on simple assumptions, the actual kinetics
of the channel.

More versatile than deterministic models. An example from entomology
illustrates this. In a long series of experiments, the Australian entomologist A. J.
Nicholson observed the population dynamics of blowflies, an insect that lays its
eggs in the skin of sheep. The larvae feed off the flesh of the sheep, and can kill
it if the infestation is severe enough. Nicholson’s experiments used varying
regimes of food, population density, and initial population. The data consist of
observations only on the number of flies that were born and died, respectively,
on a given day (Exercise 2.D6 in the next chapter gives one such data set).
Guckenheimer et al. (1976) developed a modet of the form

on(ta) , dn(ta) _
at + aa - d(a,n,)n(t,a), (124)

where 1 (1,a) is the number of flies aged a at time ¢, while n, is the total popula-
tion size at time ¢. This model, even for fairly simple choices of death rate d, can
exhibit chaotic behavior. However, since the age distribution of the population
was not observed, this model could not directly be fitted to the data, and arbi-
trary assumptions about the age distribution could only be investigated by the
qualitative behavior of numerical solutions of the partial differential equation
(1.24). On the other hand, using a stochastic model, Brillinger et al. (1980)
were able to reconstruct (with a specified amount of uncertainty) the age distri-
bution of the population, and deduce that the population dynamics was both age
and density dependent. In addition, one could infer from the stochastic model
that the physiology of the population was changing by natural selection over the
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course of the experiment (Guttorp, 1980).

Allows assessment of variability. When modeling the long range transport of
pollutants in the atmosphere, one important problem is to identify the source
from observations at the point of deposition. There are both simple and compli-
cated deterministic models in use that attempt o perform this task (Guttorp,
1986). Such models must take into account differing emission sources, transpor-
tation paths, chemical sransformations in the atmosphere, and different types of
deposition. The output of these models can be used to allocate sources as a
fraction of total deposition. While such numbers give an impression of objec-
tive scientific analysis, it is extremely difficult to establish their uncertainty.
Such uncertainty results from uncertainty in emissions data, model errors in
describing the complicated processes involved, measurement errors in the field,
laboratory errors, etc. (Guttorp and Walden, 1987). If, on the other hand, a care-
fully built stochastic model were used (Grandell, 1985, is a general introduc-
tion to such models) it would be possible to set confidence bands for source
apportionment.

Extension of deterministic models. We saw in section 1.1 how a simple deter-
ministic model of the motion of a coin can be combined with a stochastic model
of the initial conditions to yield a probabilistic description of the outcome of
coin tosses. It is a lot casier to test the combined model than to test the purely
deterministic model, in which the initial conditions must be exactly realized.

Data compression. In the early days of mathematical statistics there was a
great deal of emphasis on obtaining the maximum amount of information out of
a given, often small, set of data. Many current data-gathering techniques yield
vast data sets, which need to be described compactly. The emphasis is on
compression while losing the minimum amount of information, For example,
such techniques are needed to analyze satellite images (Baddeley et al., 1991).
This area, compression of data sets using parametric models describing images,
is likely to become one of the most important areas of statistical research over
the next few decades in view of the rapid increase in remote sensing applica-
tions.

1.4. Overview

In Chapter 2 we introduce Markov chains with discrete time and discrete state
space. The concept of reversibility of Markov chains has important conse-
quences, and can sometimes be related to physical considerations of detailed
balance in closed systems. Results on classification of states are needed to see
under what circumstances statistical inference is possible, We work through the
asymptotics of transition probabilities in some detail, partly to establish some
necessary foundations for Markov chain Monte Carlo methods that will be very
important in Chapter 4. We do both nonparametric and parametric statistical
theory, present a linear model for higher order Markov chains, and finafly look
at hidden Markov processes and their reconstruction from noisy data. This is a
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first {and very simple) stab at some Bayesian techniques that will be very useful
in image reconstruction later.

Chapter 3 switches to continuous time, while still retaining the Markov
property. Many of the results from the previous chapter can be used on
appropriate discrete time subchains to establish properties of the continuous
time models. As in the case of discrete time, we do both parametric and non-
parametric inference, and study partially observed as well as completely hidden
Markov models.

In the fourth chapter we move to random fields. We look at nearest neigh-
bor interaction potentials and relate them to the Markov property, We encounter
the phenomenon of phase transition in a simple example. In this chapter we use
parametric statistical inference, making heavy use of Markov chain Monte
Carlo techniques. Hidden processes are reconstructed using the Bayesian
approach first encountered at the end of Chapter 2, and a general formulation of
Markov random fields on graphs is found to be useful.

In the previous chapters, non-Markovian processes were introduced as
noisy functions of an underlying (but perhaps not observable} Markovian struc-
ture. In Chapter 5 we turn to a class of mostly non-Markovian processes which
do not have any underlying Markovian structure, but are developing dynami-
cally depending on their entire previous history. These processes model events
that occur separately over time. A variety of ways of thinking about such point
processes are discussed, and we encounter both parametric and nonparametric
statistical inference.

The Brownian motion process is the foundation of continuous time Mar-
kov processes with continuous paths. Such processes are discussed in Chapter 6.
We illustrate how one can build diffusion processes using stochastic differential
equations. The statistical inference becomes quite complicated here, since it is
no longer straightforward to define a likelihood.

1.5. Bibliographic remarks

Much of the material in section 1.1 follows Keller (1986) and Engel (1992). An
elementary introduction to the topic of chaotic dynamics is Ruelle (1991).
More general discussion of chaos, indeterminism, and randomness is in a report
from the Royal Statistical Society Meeting on Chaos (1992).

The importance of the Brook expansion was made clear by Besag -( 1974).
Any measure-theoretic introduction to probability (such as Billingsley, 1979,
section 36) explains the use of the Kolmogorov consistency condition.

The E. coli example follows Klug and Cummings (1991), pp. 409—412.
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1.6. Exercises
Theoretical exercises

1. Suppose that g satisfies the positivity condition (1.14). Show that if x and ¥
are outcomes such that g(x)>0 and g(y)>0, then g (xi1,y")>0.

2. For 0t < - <t, and 0sr s~ -<r,, define a stochastic process X{) by
assuming that

PX(t)=r1s -+ X(t)=T0)
Ae Mg (bg=t)" " - (et )

B Pt et

Show that this process satisfies the Kolmogorov consistency condition.

3. For the process in Exercise 2, write X;=X(t;). Show that g(x)=P(X=x)
satisfies the positivity condition.

4. Consider a (theoretical) roulette wheel divided into # sections that are alter-
nating red and black. Assume that the arcs are all of equal length. The wheel is
spun using a large initial impulse, and the angle X in radians {with respect to a
fixed point outside the wheel) of a given spot on the wheel (at one end of a
black section) is assumed to have a density f(x).

(2) Show that the probability of black, i.e., that the fixed point is nearest a black
section, can be computed as

P(black) = P(% mod(1) £ %),

(b) Poincaré (1896) showed that under mild regularity conditions on the density
of X one has that zX mod(1) converges in distribution to a uniform random vari-
able on (0,1) as t—ee. Apply this result to deduce the limiting probability of
black as n—eo.

Remark: The method used here uses no physics, only the existence of a
sufficiently regular density. It is called the method of arbitrary functions (see
Engel, 1992, for some historical background).

Computing exercises

C1. Simulate the process described in Exercise 4(a), and assess the convergence
of P(black) to % as a function of the number # of sectors. Modify the process so
that the red sections have arc length R and the black have arc length B. How
does that affect the probability? The convergence?
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Data exercises -

D1. Suppose we are observing a roulette wheel of the type described in Exercise
4 (so it has no zero, or, equivalently, we ignore the zeroes) with n =32

(a) Derive the distribution of runs, i.e., successive strings of the same color,
assuming that the probability of black is 4.

(b) Pearson (1900) reported data on runs from the casino in Monte Carlo in July
of 1892. The data are given in Table 1.2.

Table 1.2 Runs of the same color in Monte Catrlo

Run length 1 2 3 4 5 6
Count 2462 945 333 220 135 81
Run length 7 8 9 10 11 12
Count 43 30 12 7 5 1

Do they agree with the distribution in (a)? If not, can you explain the
discrepancy?




