Chapter 3

Phase space methods

3.1 Determinism: uniqueness in phase space

The nonlinear time series methods discussed in this book are motivated and based
on the theory of dynamical systems; that is, the time evolution is defined in some
phase space. Since such nonlinear systems can exhibit deterministic chaos, this
is a natural starting point when irregularity is present in a signal. Eventuaily, one
might think of incorporating a stochastic component into the description as well.
So far, however, we have to assume that this stochastic component is small and
essentially does not change the nonlinear properties. Thus all the successful ap-
proaches we are aware of either assume the nonlinearity to be a small perturbation
of an essentially linear stochastic process, or they regard the stochastic clement as
a small contamination of an essentially deterministic, nonlinear process. If a given
data set is supposed to stem from a genuinely non-linear stochastic processes, time
series analysis tools are still very limited and their discussion will be postponed to
Section 12.1,

Consider for a moment a purely deterministic system. Once its present state is
fixed, the states at all future times are determined as well. Thus it will be important
to establish a vector space (called a state space or phase space) for the system
such that specifying a point in this space specifies the state of the system, and vice
versa. Then we can study the dynamics of the system by studying the dynamics
of the corresponding phase space points. In theory, dynamical systems are usually
defined by a set of first-order ordinary differential equations (see below) acting on
a phase space. The mathematical theory of ordinary differential equations ensures
the existence and uniqueness of the trajectories, if certain conditions are met. We
will not hold up any academic distinction between the state and the phase space, but
we remark that except for mathematical dynamical models with given equations

of motion, there will not be a unique choice of what the phase space of a system
can be.




S

1ase space

ok are motivated and based
volution is defined in some
it deterministic chaos, this
in a signal. Eventually, one
nto the description as well,
ic component is small and
Thus all the successful ap-
v to be a small perturbation
d the stochastic element as
onlinear process. If a given
r stochastic processes, time
1ssion will be postponed'to

n. Once its present state is
1. Thus it will be important
iase space) for the system
(ate of the system, and vice
by studying the dynamics
amical systems are usually
tions (see below) acting on
ferential equations ensures
ain conditions are met. We
ate and the phase space, but
rdels with given equations
ie phase space of a system

3.1. Determinism: uniqueness in phase space 31

The concept of the state of a system is powerful even for nondeterministic sys-
tems. A large class of systems can be described by a (possibly infinite) set of states
and some kind of transition rules which specify how the system may proceed from
on%éte to the other. Prominent members of this category are the stochastic Markov
processes for which the transition rules are given in the form of a set of transition
probabilities and the future state is selected randomly according to these proba-
bilities. The essential feature of these processes is their strictly finite memory: the
transition probabilities to the future states may only depend on the present state, not
on the past.! If you like you can regard a purely deterministic system as a limiting
case of a Markov process on a continuum of states. The transition to the state spec-
ified by the deterministic rule occurs with probability 1 and every other transition
has probability 0. We mention this approach because it treats uncertainties in the
transition rule — what we call dynamical noise — as the generic case of a peaked
distribution of transition probabilitics. The noise-free - deterministic — case is only
obtained in the limit of a delta peak. This is not the most useful formulation for the
purpose of this book. Instead, we formulate the particular case of a deterministic
system in its own right as a starting point which allows us to establish some inter-
esting ways of understanding signals and systems. Let us keep in mind the fact that
we can treat dynamical noise not only as an additional complication in an otherwise
clean situation, but we can also regard strict determinism as a limiting case of a
very general class of models.

Let us now introduce some notation for deterministic dynamical systems in
phase space. Modifications necessary for not exactly deterministic systems will
be discussed later. For simplicity we will restrict ourselves to the case where the
phase space is a finite dimensional vector space R™ (partial differential equations
such as the Navier—-Stokes equation for hydrodynamic flow form highly interesting
dynamical systems as well, living in infinite dimensional phase spaces). A state
is specified by a vector x € R™. Then we can describe the dynamics either by an
m dimensional map or by an explicit system of s first-order ordinary differential
equations. In the first case, the time is a discrete variable:

X,41 = F(Xn), nez, (3.1)
and in the second case it is a continuous one:
d
Ex(t) = f(x(r)), telR, (3.2)

The second situation is usually referred to as a flow. The vector field I in
Eq. (3.2) is defined not to depend explicitly on time, and thus is called autonomous.

! In a Markov chain of order m, the present sfate is represented by the values of the process during the last m
discrete time steps.
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Tf £ contains an explicit time dependence, e.g., through some external driving term,
the mathematical literature does not consider this a dynamical system any more
since time translation invariance is broken. The state vector alone (i.e., without
the information about the actual time ) does not define the evolution uniguely. In
many cases such as periodic driving forces, the system can be made autonomous by
the introduction of additional degrees of freedom (e.g., a sinusoidal driving can be
generated by an additional autonomous harmonic oscillator with a unidirectional
coupling). Then, one can typically define an extended phase space in which the
time evolution is again a unique function of the state vectors, even without intro-
ducing auxiliary degrees of freedom,; just by introducing, e.g., a phase angle of
the driving force. When admitting arbitrary time dependences of f, however, this
also includes the case of a noise driven stochastic system which is not a dynam-
ical system in the sense of unique dependence of the future on some actual state
vector.

In the autonomous case, the solution of the initial value problem of Eq. (3.2)
is known to exist and to be unique if the vector field f is Lipshitz continuous. A
sequence of points x,, or X(1), solving the above equations is called a trajectory of
the dynamical system, with xo or x(0), respectively, the inifial condition. Typical
trajectories will either run away to infinity as time proceeds or stay in a bounded
area forever, which is the case we are interested in here.? The observed behaviour
depends both on the form of F (or, respectively, f) and on the initial condition;
many systems allow for both types of solution. The set of initial conditions leading
to the same asymptotic behaviour of the trajectory is called the basin of attraction
for this particular motion.

On many occasions we will find the discrete time formulation more convenient.

The formal solution of the differential equation Eq. (3.2) relating an initial condition -

to the end of the trajectory one unit of time later is sometimes called the zime one
map of £. We will sometimes refer to it, since, after all, the time series we will have
to deal with are only given at discrete time steps. Also the numerical imtegration
of the differential equations, Eq. (3.2), with a finite time step At yiclds a map. For
example, the Euler integration scheme yields

x( + Ar) = x{t) + Af(x()). (3.3)

When the time step At is small, the difference between consecutive values
x(1), (¢ + At) is small as well, which is characteristic for the particular kind of
map which arises from differential equations. We will refer to such time series as

2 I this hook we do not discuss scattering problems, where trajectories approach an interaction region coming trom
infinity, and after being scattered they disappear towards infinity. However, there exists a class of very interesting
phenomena called chaotic scattering. Deterministic but chaotic dynamics lead 1o irregular dependence of the

scaftering angle on the impact parameter.

be «

Ex:

for
a si

. Ex:

sul
18 ¢
fix
Cy!
Sy
ho
he
att

Es
th:
if

sm
si1
Tt
ea



some external driving term,
ynamical system any more
vector alone (i.e., without
> the evolution uniquely. In
an be made autonomous by
a sinusoidal driving can bhe
Hator with a unidirectional
| phase space in which the
ectors, even without intro-
ing, e.g., a phase angle of
ndences of f, however, this
em which is not a dynam-
uture on some actual state

value problem of Eq. (3.2)
' is Lipshitz continuous. A
ns is called a trajectory of
e initial condition. Typical
ceeds or stay in a bounded
> The observed behaviour
d on the initial condition;
f initial conditions leading
lled the basin of attraction

mulation more convenien.
relating an initial condition
etimes called the time one
he time series we will have
 the numerical integration
> step At yields a map. For

(3.3)

'ween consecutive values
for the particular kind of
efer to such time series as

chan interaction region cominag from
here exists a class of very interesting
lead to irregular dependence of the
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«fow-like”. The fundamental difference between flow-like and map-like data will
be discussed below and in Section 3.5.

Example 3.1 The two linear differential equations
dx/dt = —wy, dy/dt = wx, (3.4)

form adynamical system with the periodic solution x(t) = a cos w(t — %), y() =
asinw(t — fy). The solution will obviously stay finite forever. [

" Example 3.2 (Hénon map). The map given by Hénon (1976):

Xupl =@ — X+ DYny  Vurl = Xn, (3.5)

yields irregular solutions for many choices of a and b. For 16| < 1 there exist initial
conditions for which trajectories stay in a bounded region but, for example, when
a = 1.4 and b = (1.3, a typical sequence of x,, will not be periodic but chaotic. We
urge the reader to verify this claim by doing Exercise 3.1. O

The dynamical systems used as examples in this book do not only have bounded
solutions but they are usually also dissipative, which means that on average a
phase space volume containing initial conditions is contracted under the dynamics.
Then we have on average | det Jg| < 1 or divf < O respectively. (Jr is the Jacobian
matrix of derivatives of F: (J);; = 8/9x/) F;(x).) For such systems, a set of initial
conditions of positive measure will, after some transient time, be attracted to some
sub-set of phase space. This set itself is invariant under the dynamical evolution and
is called the artractor of the system. Simple examples of (non-chaotic) attraciors are
fixed points (after the transient time the system settles to a stationary state) and limit
cycles (the system approaches a periodic motion). See Fig. 3.1. For an autonomous
system with two degrees of freedom and continuous time, these (together with
homoclinic and heteroclinic orbits connecting fixed points which are not discussed
here) are the only possibilities (Poincaré-Bendixon theorem). More interesting
attractors can occur for flows in at least three dimensions (see Fig. 3.2), where the
mechanism of stretching and folding can produce chaos.

Example 3.3 The divergence of the flow introduced in Example 3.1 is zero, such
that the dynamics are area preserving. The Hénon map, Example 3.2, is dissipative
if the time independent determinant of the Jacobian, { detJ| = {b|, is taken to be
smaller than unity. The Lorenz system (see Exercise 3.2) is strongly dissipative,
since its divergence, —b — o — 1, for the usual choice of parameters is about —10,
This means that on average a volume will shrink to ¢~ of its original volume for
each time unit. O
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Figare 3.1 Fixed point (a) and limit cycle (b) attractors in the plane, Depending on
the initial condition, a trajectory approaches the limit cycle (b) either from within
or from without.

Figure 3.2 In three dimensional phase space a trajectory can be re-injected without
violating determinism. Thus more complicated attractors are possible.

Characteristic for chaotic systems is that the corresponding attractors are compli-
cated geometrical objects, typically exhibiting fractal structure. They are also called
strange attractors. We will explain in Chapter 6, and in particular in Section 6.1,
what we mean by a strange or fractal attractor.

So far we have illustrated that it is natural to describe a deterministic dynam-
ical system as an object in phase space since this is the optimal way of studying
its dynamical and geometrical properties. Since the dynamical equations (or the
equations of motion) are defined in phase space, it is also most natural to use a
phase space description for approximations to these equations. Such approximate
dynamics will be important for predictions (Chapters 4 and 12), the determina-
tion of Lyapunov exponents (Chapters 5 and 11), noise filtering (Chapter 10) and
most other applications (Chapter 15). For a deeper understanding of the nature
of the underlying system, knowledge of the atiractor geometry is desirable. How
closely dynamics and geometry are related is expressed by theoretical results which
relate Lyapunov exponents (dynamics) and dimensions (geometry). But practical




l

n the plane. Depending on
cle (b) either from within

an be re-injected without
- are possible.

_ 5
ding attractors are compli-

icture. They are also called
| particular in Section 6.1,

e a deterministic dynam-
> optimal way of studying
namical equations (or the
iso most natural to use a
ations. Such approximate
} and 12), the determina-
filtering (Chapter 10) and
derstanding of the nature
ometry is desirable. How
v theoretical results which
(geometry). But practical
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algorithms can also sometimes be formulated equivalently in terms of geometry or
dynamics. (See the discussion about noise reduction methods, Section 16.3)

3.2 Delay reconstruction

Having stressed the importance of phase space for the study of systems with de-
terministic properties, we have to face the first problem: what we observe in an
experiment is not a phase space object but a time series, most likely only a se-
quence of scalar measurements. We therefore have to convert the observations into
state vectors. This is the important problem of phase space reconstruction which
is technically solved by the method of delays (or related constructions).

Most commonly, the time series is a sequence of scalar measurements of some
quantity which depends on the current state of the system, taken at multiples of a
fixed sampling time:

S, = s{x(nA)) + n,- (3.6)

That is, we look at the system through some measurement function s and make
observations only up to some random fluctuations 7, the measurement noise. Let
us neglect the effect of noise at this level of presentation. (We will discuss its effect
later in Section 10.2.)

A delay reconstruction in m dimensions is then formed by the vectors s,, given
as

S, = (Sn—(m—l)ts Sp—(n—=2)rs +++ s Sn—1> Sn)- . (3.7)

The time difference in number of samples 7 (or in time units, T Az) between adjacent
components of the delay vectors is referred to as the lag or delay time. Note that for
7 > 1, only the time window covered by each vector is increased, while the number
of vectors constructed from the scalar time series remains roughly the same. This
is because we create a vector for every scalar observation, s,, with n > (m — )t.
A number of embedding theorems are concerned with the question under which
circumstances and to what extent the geometrical object formed by the vectors s, is
equivalent® to the original trajectory X,. In fact, under quite general circumstances
the attractor formed by s, is equivalent to the attractor in the unknown space in
which the original system is living if the dimension m of the delay coordinate
space is sufficiently large. To be precise, this is guaranteed if m is larger than
twice the box counting dimension D of the attractor, i.e. roughly speaking, larger
than twice the number of active degrees of freedom, regardless of how high the
dimensionality of the true state space is. Depending on the application, even smaller

3 In the sense that they can be mapped onto each other by a uniquely invertible smooth map. See Section 9.1.
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m values satisfying m > D can be sufficient. For theoretical details see Ding et
al. (1993). One can hope to reconstruct the motion on attractors in systems such as
hydrodynamic flows or in lasers, where the number of microscopic particles is huge,
if only a few dominant degrees of freedom eventually remain as a result of some
collective behaviour. In Chapter 9, we shall discuss the background of embedding
and the theorems in more detail.

3.3 Finding a good embedding

When we start to analyse a scalar time series, we neither know the box counting
dimension.* which is formally necessary to compute m, nor do we have any idea
of how to choose the time lag 7. How we proceed depends on the underlying
dynamics in the data, and on the kind of analysis intended. Most importantly,
the embedding theorems guarantee that for ideal noise-free data, there exists a
dimension  such that the vectors s, are equivalent to phase space vectors. We will
use this knowledge for the design of methods for the determination of the dimension
of the attractor (Chapter 6), the maximal Lyapunov exponent (Chapter 3), and the
entropy (Chapter 11). Generally, there are two different approaches for optimising
the embedding parameters m and z: either, one exploits specific statistical tools
for their determination and uses the optimised values for further analysis, or one
starts with the intended analysis right away and optimises the results with respect
to m and t. For example, dimension and Lyapunov estimates will be carried out
by increasing the values of m until the typical behaviour of deterministic data
appears.

For many practical purposes, the most important embedding parameter is the
product mt of the delay time and the embedding dimension, rather than the em-
bedding dimension m or the delay time T alone. The reason is that mt is the time
span represented by an embedding vector [see Kugiumtzis (1996) for a discussion].
For clarity, let us discuss the choice of m and 7 separately. A precise knowledge of
m is desirable since we want to exploit determinism with minimal computational
effort. Of course, if an m dimensional embedding yields a faithful representation
of the state space, every m' dimensional reconstruction with m’ > m does so as
well. Choosing too large a value of m for chaotic data will add redundancy and thus
degrade the performance of many algorithms, such as predictions and Lyapunov
exponents. Due to the instability of chaotic motion, the first and last elements ofa
delay vector are the less related the larger their time difference. Therefore, taking a
large value for m would not help much and it would risk “confusing” the algorithm.

4 The box counting dimension is roughly the number of coordinates one needs to span the invariant subset on
which the dynamics lives. We will be more specific in Chapter 6.
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3.3.1 False neighbours

If we assume that the dynamics in phase space is represented by a smooth vector
field, then neighbouring states should be subject to almost the same time evolution.
Hence, after a short time interval into the future, the two trajectories emerging from
them should be still close neighbours, even if chaos can introduce an exponential
divergence of the two. This reasoning will be used very extensively in the next
chapter on prediction. Here we want to refer to this property in order to discuss
statistics which sometimes helps to identify whether a certain embedding dimension
is sufficient for a reconstruction of a phase space.

The concept, called false nearest neighbours, was iniroduced by Kennel,
Brown & Abarbanel (1992). We present it here with some minor modifications
which avoid certain spurious results for noise [Hegger & Kantz (1999)].

The basic idea is to search for points in the data set which are neighbours in
embedding space, but which should not be neighbours since their future temporal
evolution is too different. Imagine that the correct embedding dimension for some
data set is mg. Now study the same data in a lower dimensional embedding m < my.
The transition from s to m is a projection, eliminating certain axes from the
coordinate system. Hence, points whose coordinates which are eliminated by the
projection differ strongly, can become “false neighbours™ in the m dimensional
space. The statistics to study is now obvious: for each point of the time series,
take its closest neighbour in m dimensions, and compute the ratio of the distances
between these two points in m + 1 dimensions and in m dimensions. If this ratio
is larger than a threshold r, the neighbour was false. This threshold has to be large
enough to allow for exponential divergence due to deterministic chaos. '

Now, when we denote the standard deviation of the data by o and use the maxi-
mum norm, the statistics to compute is

ponet g (180 =8| "

—_—— " n Hi

Zn:lm @ (m) (m) —-rj® (% - ‘Sgn) - Sk(n)|)
ISn — Siiml
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Xenn(r) =

where sg?n)) is the closest neighbour to s, in m dimensions, i.e., k(r) is the index
of the time series element k different from r for which |8, — s;| = min. The first
step function in the numerator is unity, if the closest neighbour is false, i.e., if
the distance increases by a factor of more than » when increasing the embedding
dimension by unity, whereas the second step function suppresses all those pairs,
whose initial distance was already larger than o /r. Pairs whose initial distance is
larger than o/ r by definition cannot be false neighbours, since, on average, there is
not enough space to depart farther than . Hence, these are invalid candidates for
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the method and should not be counted, which is also reflected in the normalisation.
There can be some false nearest neighbours even when working in the correct
embedding dimension. Paradoxically, due to measurement noise there can be more
false neighbours if more data is given. With more data, the closest neighbour is
typically closer (there are more opportunities for a good recurrence on the attractor),
whereas the chance for the distance of the m + 1st components to be at least of the
order of the noise level remains the same. For data with a very coarse discretisation
(say, 8 bit), there can even be identical delay vectors in m dimensions, which are not
identical in 7 -+ 1 dimensions, so that the ratio of distances diverges. These appear
to be false neighbours for any choice of r. Nonetheless, it is reasonable to study
the false nearest neighbour ratio Xg, as a function of . The results of the false
nearest neighbours analysis may depend on the time lag 7. Hence, if one wants to
use this statistics for the distinction of chaos and noise, it is indispensable to verify
the results with a surrogate data test (see Chapter 7).

Example 3.4 (False nearest neighbours of resonance circuit data). The electric
resonance circuit described in Appendix B.11 creates rather noise free data on an
attractor with a dimension Dp slightly above two. The false nearest neighbour
statistics shown in Fig. 3.3 suggests that a 5 dimensional embedding is clearly
enough (and this is also granted by the inequality m > 2Dr from the embedding
theorem). It is also evident that the few false neighbours found in 4 dimensions (for
N = 10000 these are about 3 in absolute value) are hard to interprete. In Hegger
et al. (1998) it was possible to do rather precise predictions and modelling in a
four dimensional embedding, so that it seems that the false neighbours are noise
artefacts. 0O '

3.3.2 The time lag

A good estimate of the lag time T = 7 At is even more difficult to obtain. The
lag is not the subject of the embedding theorems, since they consider data with
infinite precision. Embeddings with the same m but different t arc equivalent in the
mathematical sense for noise-free data, but in reality a good choice of 7 facilitates
the analysis. If T is small compared to the internal time scales of the system,
successive elements of the delay vectors are strongly correlated. All vectors s, are
then clustered around the diagonal in the R™, unless m is very large. If T is very
large, successive elements are already almost independent, and the points fill a large
cloud in the R™, where the deterministic structures are confined to the very small
scales. The first zero of the antocorrelation function Eq. (2.5) of the signal often
yields a good trade-off between these extrema. A more refined concept is called
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Figure 3.3 The relative number of false nearest neighbours as defined by Eq.(3.8)
for electric resonance circuit data, The embedding dimension is m = 1 to 5 from
top to bottom, with time lag 4,

nutual information and will be presented in Section 9.2. At this point we just give
two recipes. The first is to study Example 3.5 in order o get a feeling for how a
reasonable choice of T can be verified visually. The second is that for a signal with
a strong (almost-)periodic component, a time lag identical to one quarter of the
period is a good first guess. All the nonlinear statistics in the next three chapters
which rely on scaling behaviour suffer from reduced scaling ranges when 7 has
been chosen inappropriately, i.., if 7 is either unreasonably large or small.

Example 3.5 (Human ECG). Although the human electrocardiogram (ECG, see
Appendix B.7) is probably not a deterministic signal, it can be interesting to view
such signals in delay coordinates. Let us compare such representations for different
delay times T = T Az, where Af is the sampling time, illustrated in Fig. 3.4. O

3.4 Visual inspection of data

Although this book contains a lot of refined methods for the characterisation and
analysis of data, the first thing that we should do with a new data set is to look
at it in several different ways. A plot of the signal as a function of time already
gives the first hints of possible stationarity problems such as drifts, systematically
varying amplitudes or time scales, and rare events. It allows us to select parts of
the series which look more stationary. Quite often experimental data contain some
faults which can be detected by visual inspection.
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Figure 3.4 Delay representations of a human ECG signal, taken by Petr Saparin
(1995). Upper left: T = 1.25 ms. All the data are close to the diagonal since
consecutive values are very similar. Right: 7 = 12.5 ms. At this delay the large
loop corresponding to the QRS complex (see Fig. B 4 for explanation) is now well
unfolded. Lower left: T = 25 ms. The slower features, P- and T-waves, are better
represented, althongh somewhat hidden by the QRS complex. Right: T = 125 ms.
Larger delay times lead to unnecessarily complicated graphs.

The next step would be a two dimensional representation such as that shown in
Fig. 1.5. Even if no clear structures are visible (as in the right hand panel), this gives
a feeling about which time lag may be reasonable for an embedding of the data set.

Visual inspection can also reveal symmetries in the data or can guide us to a
more useful represcntation of the data. An example of the Jatter is a measurement
of the output power of a laser. It contains a nonlinear distortion of the physically
more relevant variables, the electric and magnetic field strength inside the laser
cavity: the power is proportional to the square of these quantities. Therefore, the
data exhibit sharp maxima and smooth minima, and the signal changes much faster
around the maxima than around the minima. Taking the square root of the data
renders them more convenient for data analysis.

Sometimes one finds exact symmetries in the data, e.g., under change of sign of
the observable. In this case, one can enlarge the data base for a purely geometric
analysis by just replicating every data point by the symmetry operation. For an
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analysis of the dynamics one can apply the symmetry operation to the time series
as a whole. Since almost all nonlinear methods exploit local neighbourhood rela-
tionships, both tricks double the data base. When modelling the dynamics of the
system the class of functions chosen should respect the symmetry.

3.5 Poincaré surface of section

f we consider the phase space of a system of m autonomous differential equations,
we find that, locally, the direction tangential to the flow does not carry much inter-
esting information. The position of the phase space point along this direction can
be changed by re-parametrising time. It has no relationship to the geometry of the
attractor and does not provide any further information about the dynamics. We can
use this observation to reduce the phase space dimensionality by one. at the same
time turning the continuous time flow into a discrete time map.

The method, called the Poincaré section, is the following. First form a suitable
oriented surface in phase space (hatched area in Fig. 3.5). We can construct an
invertible map on this surface by following a trajectory of the flow. The iterates
of the map are given by the points where the trajectory intersects the surface in a
specified direction (from above in Fig. 3.5). Note that the discrete “time” » of this
map is the intersection count and is usually not simply proportional to the original
time ¢ of the flow. The time a trajectory spends between two successive intersection
points will vary, depending both on the actual path in the reconstructed state space
and on the surface of section chosen. Sometimes, after applying this technique, a
disappointingly small number of points remain. Experimentalists tend to adjust the
sampling rate such that about 10-100 observations are made per typical cycle of
the signal. Each cycle yields at most one point in the Poincaré map (if there are

Figure 3.5 Poincaré section of a flow in three dimensions. The successive inter-
sections A, B, ... of the trajectory with the surface of sections define iterates of
an invertible two dimensional map.




42 3. Phase space methods

considerably less intersections, the surface is inappropriate). However, if the data
base in the Poincaré map appears to be poor, keep in mind the fact that the flow
data themselves are not much better since the additional information they contain
1s largely redundant with respect to the chaotic properties of the signal.

Apart from the construction of intersections we can also collect all minima or alj
maxima of a scalartime series. As we shall argue in Section 9.3, the (numerical) time
derivative of the signal is a “legal” coordinate in a reconstructed state space. Hence,
in the hypothetical reconstructed space spanned by vectors (s(z), $(2), §(¢), ...),
intersections of the trajectory with the surface given by §(t) == 0 are precisely
given by the minima (or maxima) of the time series. The minima (or maxima)
are interpreted as the special measurement function which projects onto the first
component of a vector applied to the state vectors inside this surface. Hence, they
have to be embedded with a time delay embedding with lag unity themselves
in order to form the invariant set of this particular Poincaré map. The TISEAN
package contains a utility to form Poincaré sections (called poincare) and one
that finds extremal points, called extrema. Finding good sections often requires
some experimentation with parameter settings.

The simplest class of non-autonomous systems that we can handle properly using
methods from nonlincar dynamical systems consists of those which are driven
periodically. Their phase space is the extended space containing the phase of the
driving force as an additional variable. The most natural surfaces of section are
those of constant phase. The resulting Poincaré map is also called a stroboscopic
map. In this case the system always has the same time span between intersections,
which is a very useful feature for quantitative analysis.

Let us note in passing that whenever we study periodic solutions of a time
continuous system (limit cycles), the discrete period of a periodic orbit of the
corresponding Poincaré map depends on the details of the surface of section chosen,
since by moving the surface one can reduce the number of intersection points of
the limit cycle with the surface. The choice of the proper surface of section will
then be a crucial step in the analysis of the data.

Example 3.6 (Phase portrait of NMR laser data). These data comprise the
chaotic output of a periodically driven system (Appendix B.2). The sampling in-
terval is %th of the period of the driving force, At = Troree/15. Let us consider
three out of the many different types of Poincaré maps. The stroboscopic view is
the most natural in this case and has been used to produce the data shown in the
introduction, Fig. 1.3. Apart from a complication to be explained in Example 9.4,
Sn = 5(t = nTorce + #o). Figure. 3.6 shows a section through a three dimensional

delay embedding space using linear interpolation (left) across a diagonal plane,




priate). However, if the daty
1 mind the fact that the flow
nal information they contain
ties of the signal,
also collect all minima or al]
tion 9.3, the (numerical) time
nstructed state space. Hence,
vectors (s(z), $(¢), §(2), .. .),
n by $(1) =0 are precisely
. The minima (or maxima)
vhich projects onto the first
de this surface. Hence, they
with lag unity themselves
oincaré map. The TISEAN
alled poincare) and one
ood sections often requires

e can handle properly using
of those which are driven
containing the phase of the
iral surfaces of section are
s also called a stroboscopic
span between intersections,

riodic solutions of a tirge
of a periodic orbit of the
e surface of section chosen,
er of intersection points of
per surface of section will

These data comprise the
lix B.2). The sampling in-
Teoree/15. Let us consider
- The stroboscopic view is
uce the data shown in the
explained in Example 9.4,
ough a three dimensional
 across a diagonal plane,

3.5. Poincaré surface of section 43

900

100 150

100 1 2200 150 900
st Sp-1

Figure 3.6 Phase portraits of the NMR laser data (Example 3.6). The left hand
panel was obtained by a section through embedding space, see text. Right hand
panel: successive minima of the parabolically interpolated series.

and the collection of all minima of the continuous time series after local parabolic
interpolation (right). For the former, the section was taken such that st = s5(22),
where t_ is defined by s(t=) = s(t= + 7). The delay was taken to be 7 = 4. The
second coordinate is s = s(z= — 2t). Thus the new time series is a series of two
dimensional vectors. Alternatively, one could have used s{" as a scalar time series
and plot it as a two dimensional delay representation. The surface we selected is not
optimal since in the upper left hand part of the attractor the noise is blown up consid-
erably. In this part the surface of section cuts the attractor almost tangentially, such
that the precise positions of the intersection points are strongly affected by noise
and by the interpolation. The average time distance between intersection points is
about 14. The deviation from the expected 15 is due to false crossings caused by the
noise. The right hand panel uses a section at § = 0, § > 0, i.e. every minimum of
the parabolically interpolated series. The plot shows a time delay embedding of the
time series given by the minima of these local parabolae. The average time distance
between successive elements of the new series is about 15 and thus this section is as
suitable as the stroboscopic view. Noise on the data causes some spurious extrema
(the dots scattered outside the main structures).

The attractor looks different in all three cases since its geometrical details depend
on the precise properties of the Poincaré section. Nevertheless, all three attractors are
equivalent in the scnse that they are characterised by identical values of the dimen-
sions, Lyapunov exponents, and entropies. Numerical estimates of these quantities
from finite and noisy data may differ however. O
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3.6 Recurrence plots

The attempt of time series analysis to extract meaningful information from data to
a good deal relies on redundancies inside the data. At least if data are aperiodic
and no simple rule for their time dependence can be discerned, then approximate
repetitions of a certain events can help us to construct more complicated rules.
Assuming determinism and believing that a chosen delay embedding space forms
a state space of the system, an approximate repetition is called a recurrence, ie.,
the return of the trajectory in state space to a neighbourhood of a point where it -
has been before. Such recurrences exist in the original space for all types of motion .
which are not transient. A system on a fixed point is trivially recurrent for all times.
In a systern on a limit cycle, each point returns exactly to itself after one revolution.
A system on a chaotic attractor returns to an arbitrarily small neighbourhood of any
of its points. This is guaranteed by the invariance of the set which forms the support
of the attractor. If, however, the system never returns to all points which we find in
the initial part of the time series, then this indicates that this was a transient — the
initial condition was outside the invariant set and the trajectory relaxes towards this
set. Also non-stationarities through time dependent system parameters can cause a
lack of recurrence.

A very simple method for visualising recurrences is called a recurrence plot and
has been introduced by Eckmann et al. (1987): Compute the matrix

M = O — |s; —s;]), (3.9

where ©(.) is the Heaviside step function, € is a tolerance parameter to be chosen,
and s; are delay vectors of some embedding dimensicn. This matrix is symmetric
by construction. If the trajectory in the reconstructed space returns at time # into the
e-neighbourhood of where it was at time j then M;; = 1, otherwise M;; = 0. One
can plot M;; by black and white dots in the plane of indices for visual inspection.
This is the recurrence plot. Numerical schemes for its quantitative characterisation
have also been proposed. These are similar to many other statistical tools based
on neighbourhoods in embedding space and hence will not be discussed here. See
Casdagli (1997) for details.

So what can we learn from a visual inspection of the matrix M;; by a recurrence
plot? It gives hints on the time series and on the embedding space in which we
are working. In a deterministic system, two points which are close should have
images under the dynamics which are also close (even if they are not as close due to
dynamical instability). Hence, one expects that black dots typically appear as short
line segments parallel to the diagonal. If in addition there are many isolated dots,
these rather indicate coincidental closeness and hence a strong noise component
on the data, or an insufficient embedding dimension. If there are mostly scattered
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Figure 3.7 A recurrence plot of a short segment of the data from the electric
resonance circuit (Appendix B.11). The upper left triangle represents embedding
dimension two, the lower right is for dimension three. In two dimensions, this
slightly more than two dimensional attractor intersects itself, hence there arc lots of
false neighbours. Many of them create isolated points. Due to the periodic forcing
of this system, recurrences in the full phase space can only occur at temporal
distances |{ — j| which are integer multiples of the driving period of about 25
samples.
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dots, the deterministic component is absent or at least weak. Black dots in high
dimensions are also black in lower dimensional embeddings. Hence, the relative
number of lines increases when increasing the embedding dimension, since isolated
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Example 3.7 (Recurrence plot of data from an electric resonance circuit). In
Fig. 3.7 we show a recurrence plot of the NMR laser data in embedding dimensions
2and4. O

The irregularity of the arrangement of the line segments indicates chaos. If a

matrix M;; by a recurrence signal was periodic, theses should form a periodic pattern. Stationarity of the whole
edding space in which we ' time series requires that the density of line segments is uniform in the i — j-plane.
lich are close should have See Example 13.8 for a non-stationary example. The temporal spacing between
they are not as close due to parallel lines can also give hints to the existence of unstable periodic orbits inside
is typically appear as short the chaotic attractor.

>re are many isolated dots, The essential drawback of this nice visual tool lies in the fact that for a time
a strong noise component series of length N the matrix M;; has N? ¢lements, so that a huge number of

‘there are mostly scattered pixels must be drawn. A compressed version of the recurrence plot was baptised
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Figure 3.8 A meta-recurrence plot of human ECG data,

meta-recurrence plot in Manuca & Savit (1996). They subdivide the time series in
segments and define the matrix elements M;; to represent distances between the

time series segments i and j. One possible distance measure is the cross prediction
error. See the discussion in Schreiber (1999),

Example 3.8 (Meta-recurrence plot of ECG data). For ECG data, one can align
segments along the main heart beat and then take a Euclidean distance. We define
a segment by taking the last 100 ms before and the 500 ms after the upward zero
crossing in the QRS-complex (sce Appendix B.7). The resulting distance matrix
is plotted in grey scale in Fig. 3.8. The non-stationarity is clearly visible. More

importantly, almost stationary episodes can be recognised as light blocks on the
diagonal, [

Further reading

Original sources about phase space embeddings are Takens (1981), Casdagli et al.
(1991), and Sauer ef al. (1991). Discussions of the proper choice of embedding
parameters are contained for example in Fraser & Swinney (1986), Liebert &
Schuster (1989), Licbert et al. (1 991), Buzug & Pfister (1992), Kennel ef al. (1992),
and in Kugiumtzis (1996). See also Grassberger et al. (1991). Recurrence plotshave

been introduced by Eckmann et al. (1987). There is a nice more recent account by
Casdagli (1997).

Exercises

3.1 Create different two dimensional phase portraits of a time series of the Hénon map
(Example 3.2) using delay times 7 = 1,2,... (here the sampling time is Ar = 1.
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Exercises 47

Which picture gives the clearest information? Rewrite the map in delay coordinates

with unit delay.
Create a scalar series of flow data numerically by integration of the Lorenz sysiem

[Lorenz (1963)]:

*=0oly —x),
}‘J:rx_y'*xza
z=—bz+xy,

with the parameters o = 10, r = 28, and b = £/3. This model was designed to de-
scribe convective motion of the Rayleigh—Bénard type, where x is the velocity of the
fluid, y is the temperature difference between ascending and descending fluid, and z
is the deviation of the temperature profile form linearity. For a laser system governed
by the same equations and experimental data, see Appendix B.1. As an integrator, use,
for example, a Runge-Kutta routine with a small step size. Sample the data at such
a rate that you record on average about 25 scalar measurements of the x-coordinate
during a single turn of the trajectory on one leaf of the attractor. Plot the attractor
in two dimensional delay coordinates with different time lags. Convince yourself by
visual inspection that the reconstruction is best when the lag is about one-quarter of the
mean cycle time. Compute the autocorrelation function and the time delayed mutual
information (to be defined in Section 9.2) to confirm this impression.

Numerically integrate the Lorenz system and perform a Poincaré section. Record (y, )
every time the x-coordinate equals zero and its derivative is negative.

Use the time series of the x-variable of Exercise 3.2 and collect all the maxima. Plot
the series of the maxima with delay cne and compare it to the attractor of Exercise -
3.3




