CHAPTER 2 |
Discrete time Markov chains

Starting from a very simple model of daily precipitation, we
build some theory for discrete time Markov chains. We
develop some estimation and testing theory. and look at the
goodness of fit of this simple model in different ways. A parsi-
monious model for higher order of dependence is applied to
some meteorological data. Harmonic functions are introduced
as a tool towards computing how long it takes a randorm walk
on a graph to hit a subset of the boundary states. We analyze
some problems in epidemiology and genetics using branching
processes. A hidden Markov mode/ categorizing atmospheric
variables yields an improved fit to the precipitation data. A
similar model is used to describe whether a chemical
transmission channel in a nerve cell is open or closed.

2.1. Precipitation at Snoqualmie Falls

The US Weather Service maintains a large number of precipitation monitors
throughout the United States. One station is located at the Snoqualmie Falls in
the foothills of the Cascade Mountains in western Washington. A day is defined
as wet if at least 0.01 inches of precipitation fails during a precipitation day: 8
a.m. through 8 a.m. the following calendar day. To start with, we shall ignore
the amounts of rainfall, and just look at the pattern of wet and dry days. Using
data from 1948 through 1983, and looking at January rainfall only, there were
325 dry and 791 wet days. Let X;=1(day i of year j wet), where 1(4) is 1 if the
event A occurs, and 0 otherwise. A very simple model, which we can call the
Bernoulli model, is that X,-_,—-Bin(l,p), with the Xj independent, i.e., an iid
model, and with p being the probability of rain at Snogualmie Falls on a January
day. The likelihood (probability of the observed data as a function of p) is

L(p) = p™(1-p)*Z. (2.1)

Appendix A contains a brief review of likelihood theory for multinomial data to
illustrate some of the central ideas. Edwards (1985) is a good reference for more
general likelihood theory. The maximum point of L(p) is the maximum
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likelihood estimate Emie) p of p. Letting n be the number of days observed, it is
casy to see that p=Yx;/n=0.709. A standard error for this estimate is
(p(l-—p)/n)A which we estimate (using p in place of p) to be 0.014.

In order to assess the fit of the binomial model for rainfall, we first try to
see if the independence assumption seems reasonable. We may suspect a certain
amount of persistence, i.e., stretches of like weather, in the data. This would be
induced by the relatively slow movement of large weather systems through an
area. In the winter, a typical front may take up to three days to pass through
from the Pacific Ocean. In order to study this hypothesis, let us look at consecu-
tive pairs of days. Figure 2.1 shows the pattern of rainfalil.
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Figure 21 The pattern of January precipitation at Snoqualmie Falls. Each
square is a day with measurable precipitation. Rows correspond to years,
columns to days.

¥ the . independence model is correct, we would expect to see
36x30xp(1-p)=223 dry days following wet days, since we have 36 years of
data, and 30 consecutive pairs of days for each January. Table 2.1 contains the
total counts, with expected counts under the independence assumption shown in
parenthesis. There seems to be a lot more dry days followed by dry days, and
wet days followed by wet days, than what the simple iid model predicts. To
build a better model of this phenomenon, let us introduce two parameters:

P = P(wet today | wet yesterday) (2.2)
pa = P(wet today | dry yesterday). (2.3)
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Table 2.1  Observed precipitation

Today dry Today wet Total

Yesterday dry | 186 91y 123 (223) 309
Yesterday wet | 128  (223) 643  (543) 771

Total 314 766 1080

If the X; are not independent, we must specify the conditional probabilities

P(X; 4=l | Xo=kq, . . . . Xi=k}) 2.4)

for all i, , and k, . . . ,k;. Note that we will assume unless otherwise specified
that the process is observed from time 0. A simple (and perhaps natural) way to
specify the probabilities in (2.4) is to assume that the conditional probability
only depends on what happened at the previous time point. This assumption was
first studied systematically by the Russian probabilist Markov' in a sequence of
papers, starting in 1907, on generalizing various limit laws to dependent data.
Formally we write the Markov assumption for a random process (X,) with
discrete state space

P(X, 41 =£'(X0=k0’ v Xn=ky)
=PXy 1=t | Xy=ky) = Pk,.l(n)- ) . (2.5)

If (X,) satisfies (2.5) it is called a Markov chain. Two seemingly more general
forms of (2.5) are outlined in Exercise 1: in part (a) we show that the condi-
tional distribution of the process at any set of future times, given any set of
times up to and possibly including the present, only depends on the last of the
times in the condition, and in part (b) we show that an equivalent, and rather
colorful, way of stating the Markov property is that the future is independent of
the past, given the present,

The functions py(n) are called tramsition probabilities. We can write
the transition probabilities in matrix form. The matrices P(n)=(p;(n)) are
called transition matrices.

In order to prove the existence of a Markov chain with a given set of tran-
sition matrices and distribution of X one has to verify the Kolmogorov con-
sistency condition (1.22). This is made precise, e.g., in Freedman (1983, pp.
7-8). Here is a simple fact about transition matrices: '

IMarkov, Andrei Andreevich (1856—1922), Russian probabilist in the St Petersburg School. He
was a student of Chebyshev, and proved the law of large numbers rigorously in a variety of cases,
including dependent sequences.
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Proposition 21 If IP is a sequence of transition matrices for a Markov
chain with state space §={0,...,K}, where K may be finite or infinite, then

Ef;  Pim)=1for any n.
Proof ~ We have that p;;(n)=P(X, ,1=j | X,=i), so

K X
Y py(n) = TPXy1=j | Xy=i)
j:ﬂ i=0

K
= P(_UO{Xn+l =i} Xy=i) = PX, €8 [ X,=i) =1  (26)
J= .

since the process must go somewhere. O

It is often a reasonable simplifying assumption that the transition probabilities
are independent of time; such Markov chains are said to have stationary tran-
sition probabilities. In that case we just need a single transition matrix
P=IP(1}). For our rainfall model, we are only considering January. This makes
the assumption of stationary transition probabilities reasonable, if we believe
(at least approximately) that this month is meteorologically homogeneous. The
state space is {dry,wet}, which we can map into {0,1}. Then, using {2.2) and
(2.3), peo=1-pa, Po1 =Pa, P10=1-p\ and py=p,,. In matrix notation,

1-pa Py
I_Pw Pw

- Poo Pot
PwPn

. 2.7

A matrix of non-negative elements with all row sums equal to one is often
called a stochastic matrix. From now on we will, unless specifically stating oth-
erwise, assume that all transition probabilities are stationary. Here are some ele-
mentary properties of stochastic matrices.

Proposition 2.2 (i) A stochastic matrix has at least one eigenvalue equal to
one.

() IfPis stochastic, then IP* is also stochastic for all k=1,2,3,. ...

Proof (i) is a consequence of the definition of a stochastic matrix, which
can be written P17 = 17, where 1 is a row vector of ones (recall that all vectors
are assumed to be row vectors). Hence (I-IP)17 =0, where Il is the identity
matrix, so 1 is a right eigenvector of IP corresponding to the eigenvalue 1. Now
(1i) follows easily, writing

P17 =Pl =117 = - =17, - (2.8)
O
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The likelihood for a Markov chain can be written, using (2.5)and (.13}, as

-1
L(P) = P(Xo=xg) [TPXis1=%i01 | Xi=)
=0

n=1 K .
= P(Xo=x0)]1Pxx., = PXo=x0) 1 Pi 2.9)
i=0 Py

where ny, is the number of transitions from k to ! observed in the chain. In our
example we have the additional complication that we are considering 36 years.
A simple model is to assume that years are independent. While quasi-periodic

large-scale meteorological oscillations such as Fl Nifio may make this .

hypothesis somewhat suspect (cf. Woolhiser, 1992), it nevertheless allows us to
proceed. Furthermore, we shall be able to test it later (Exercise D1). Under the
assumption of year-to-year independence the likelihood is a product of 36 fac-
tors, each of the form (2.9). Clearly, the product collapses, and we can use the
data in Table 2.1 to compute

36 X . )
L{P) = L{po;.p1) = {TTPXo =xb)]péﬁﬁpb%3p%%8p?i“ (2.10)
juz]

Assuming that the starting values X} for each year i are fixed (this asstmption
will be discussed in more detail in section 2.7), so that the beginning term in the
right-hand side of (2.10) is 1, we find that L is maximized by

123

123 843 _ 0.834 @11)
309 1

={.398 D1 =
0.39 P 77

1301"-‘

- (0.398 0.602
= [0.166 0.834]‘ (2.12)

These estimates are substantially different from the estimate p=0.709 from the
iid model. However, we may question whether such a difference could occur by
chance. At a first glance this seems very unlikely, since pg; is 22 standard errors
(of p) away from p. For a formal test of significance we use the likelihood ratio
test. Recall (or see Appendix A) that under suitable regularity conditions, the
log likelihood ratio 2 (log L({P)log L(p)) hasa xz distribution with degrees of
freedom equal to the difference in the dimension of the parameter spaces; in this
case 2-1=1. Although this result was developed for iid processes, it is also true
in the Markov chain case. We will return to it in section 2.7. In order to be able
to compare the likelihoods we need to exclude the January 1 measurements
when computing the iid mle, since those observations cannot be used to com-
pute the Markov chain mle’s. This yields p=771/1080=0.714, slightly higher
than the 0.709 we obtained from the full data set. Computing the fog likelthood
ratio we get :
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2(log L (]i’)—log L(p)) = 2(643 1og 0.834+12810g 0.166
+1231og 0.398-+186 log 0.602 (2.13)
—77110g 0.714-309 log 0.286) = 184.5.

which under the null hypothesis of the Bernoulli model is distributed (1),
corresponding to a P-value of 0. We therefore reject the iid model at all reason-
able levels.

2.2. The marginal distribution

Although the Markov assumption tells us how to compute conditional
probabilities, one often wants marginal probabilities. It is relatively straightfor-
ward to compute these. For example, in a 0-1 chain we have that

P(X,+1=1) = P(X, 11=1, X,=0) + P(X,41=1, X,=1)
=PX,=0)po + P(X,=D)py (2.14)
=PX,=1)(p11-Po1) + Por-
Deﬁne the initial distribution py = (po(0), . . . ,po(K)) where py(i) = P(Xo=i).
In the 0-1 case we write pg(1)=p,. Then (2.14) can be written
P(X1=1) = p1(pu1i—po1) + Por,
PX2=1) = pu—pPo)PX,=1) + po
=p1@u-Pra) +pa(l+@u-pa)) (2.15)

n-1

P(X,=1)= @1u—Po)"P1 + Pa L Pui—Par Y.
T

If poo=p 11 =1 we have P(X,=1)=p;. If pg1#p1 we can write

Po1 + |p- Pot
1~-p11-pot) " 1-(py—pa)

Notice that the effect of the initial distribution p; is dampened exponentially,
and disappears completely when p;=pg/(1-{pi1—po;)}. In that situation
P(X,=1) is the same for each n. This choice of p, is called the statiopary ini-
tial distribution. We will return to this in section 2.4,

P(X,=1) =

](Pu-Pm Y. (2.16)

More gcnerally,‘ let the state space S be an arbitrary countable set, which
we identify with the integers Z, and define p{) = P(X,=k | Xo=/). Here is an
important computation, called the Chapman'-Kolmogorov equation,

! Chapman, Sydney (1888-1970). Leading British astro- and geophysicist. Major contributions to
the understanding of the aurora; space physies; and convection in the atmosphere.
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although it was discovered independently by many workers, including
Bachelier (1900) and Einstein (1905).
Lemma 2.1

PR = oo™, 1<msn-1.
leS

Proof  Since the process must be somewhere in § at time m, we have

P = P({Xy=k}nu (Xn=l} | Xo=})

= ZP(X:::IC!Xm:l ‘ Xo=J)
les

= EP(Xn=k lxm=l1X0=j)P(Xm=l |X0=j)
le§

= Y P(X, =k | X, =0P(X=1 | Xo=j).
eS8

In matrix notation we rewrite (2.17) as

P, = (%) =P, P, (2.19)
But P, =P so IP,=P". Let p,=(...,P(X,=0), ... . ,P(X;=k),...) denote the proba-
bility distribution of X,,. Since

Pr = Pua P (2.20)
(recall the computation of P{X, =1) earlier) we see that

Px = polP”. - 221

Application (Snoqualmie Falls precipitation) Suppose that we accept
the Markov chain model developed in section 2.1 for the Snoqualmie Falls pre-
cipitation data, and that it happened to rain on January 1 this year. What would
be the probability of rain on January 6, i.e., five days hence? To compute this
probability, we need to determine P, where

b [0.602 0.398

0.166 0.834 (2.22)

s0 that

P’ = [0-3050.695
~10.2900.710)

Notice that the two rows of I’f’s are much more similar than those of I‘E\’ This
will be explained in section 2.5. The desired probability is obtained by setting

(2.23)
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po=(0, 1) in (2.21), so that
N ~ 5
ps=(0, DIP" =(0.29,0.71). {2.24)

In other words, the probability of rain at Snoqualmie Falls on January 6, given
rain on January 1,is 0.71.

A different type of question is how long a Markov chain would be expected to
stay in a given state. Clearly, if p;=0 it is certain not to stay. If p;>0, the time
spent in the state has a geometric distribution with mean 1/1-p;}Exercise 2).
For the Snoqualmie Falls application this translates to a mean of 2.5 consecu-
tive dry days and 6.0 consecutive wet days in January. We return to this in sec-
tion 2.9.

2 3. Classification of states
Let ACS. The hitting time T, of A is

min{n>0: X,€A} if X, ever hits A

Ty = .
A ) otherwise

(2.25)
If A={a} we write 7. Denote the distribution of the chain, starting from the
state x (i.e., po(x)=1 and po(y)=0 for any y#x), by P*. More generally, we write
the distribution of the chain starting from the initial distribution py as P™, and
compute it using the formula

P*(A) = T po(DP'(A). ' (2.26)

s .

This amounts to first choosing the initial state i at random from pg, and then
running the chain starting from state i.

R .
Proposition2.3  p{) = ¥ P/(T=m)pli™.

m=1

Proof Write {X,=k} = E:‘n 1 Ty=m, X, =k}, where the summation sign
stands for a union of disjoint sets. Now

> " .
PR =P(X,=k) = ¥ P/(Ty=m, X,=k)

m=}
= 3 P(Ti=m)P/(X, =k | Ty=m) @27
m=1
= EPJ(Tk=m)P(Xn=k |X0=j,X1 ;&k, . ’Xm—l?ﬁk:Xm:k)
= SR (Ti=m)P(X, =k | Xp=k) = TR (T=m)pli™. O
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Call a state absorbing if py=1. If the chain ever reaches k it stays there forever.
Coroliary  For an absorbing state k we have that PP =P(T <n).

Proof  The content of this equation is really trivial: in order to go from jto k
in n steps we need to hit k no later than time n. A formal proof follows from the
observation that p{i ™ =1 for all m <n and Proposition 2.3. 0

T, is an example of a particularly interesting class of random times. Call the
random time T a Markov time if the event (t=r} is completely determined by
the values of Xg, . . . . X,. The strong Markov property asserts that the Markov
property holds also at Markov times. More formally, let f,-(k):P"(X 1=i). Then

P(Xp1 =i | Xo, - - - X1) = filXo) (2.28)
A proof of this can be found, e.g., in Freedman (1983, Theorem 1:21).

Say that i reaches j, written i—j, if there is an n such that pi>0.If i)
and j—»i we say that i and j communicate, denoted i¢3).

Theorem 2.1 > is an equivalence relation.

Proof i since pf® = P(X,=i | X,=i)=1. Next, i«>j implies that j&>i by
definition. Finally, if i< and j¢»k there are integers m and n such that pE}')>0
and p$’>0. Thus '

plit™ = ¥pp) 2 pi i > 0 (2.29)
r

and i—k. To show that k—>i uses a similar argument. O

We can partition all states into equivalence classes with respect to the relation
<>. A Markov chain is irreducible if there is only one equivalence class, i.e., if
all states communicate.

Example (A mode! for radiation damage) A finite birth and death
chain is a Markov chain on {0, ...,K} in which a particle in state i can either
stay or move to one of the neighboring states i+1 or i—1. Reid and Landau
{1951) proposed this chain as a model for the transmission of radiation damage
following the initial damage due to the absorption of radiation quanta. The
mechanism by which this transmission takes place was assumed to be the depo-
lymerization of macromolecules associated with the sensitive volume of the
organism. State 0 corresponds to a healthy organism, and state K to one with
visible radiation damage. The intermediate states correspond to amplification ot
healing of the initial damage, which is taken to be state 1. The extreme states
are assumed absorbing, so the transition matrix for this process is




Discrete time Markov chains
ain ever reaches k it stays there forever.
e have that p{p’=P/(T;<n).

really trivial: in order to go from jto k
ime n. A formal proof follows from the
d Proposition 2.3. (]

esting class of random times. Call the
ent {T=n} is completely determined by
arkov property asserts that the Markov
re formally, let £;(k)=P*(X,=i). Then

(X1 (2.28)
edman (1983, Theorem 1:21).

if there is an # such that p{’>0. If i—>j
te, denoted i<.

refation.

=i)=1. Next, i<>j implies that j&i by
re are integers m and n such that p$’>0

>0 (2.29)
ar argument. [

ence classes with respect to the relation
iere is only one equivalence class, i.e., if

 damage) A finite birth and death
} in which a particle in state i can either
g states i +1 or i—~1. Reid and Landau
for the transmission of radiation damage
he absorption of radiation quanta. The
takes place was assumed to be the depo-
siated with the sensitive volume of the
althy organism, and state K to one with
iate states correspond to amplification or
s taken to be state 1. The extreme states
1 matrix for this process is

Ciassification of states o5

1 ¢ o ¢ --- 0 0
9 n pr 0 - 0 O
P= 0 g2 rz po ==+ 0 0
oo LU . (2.30)
60 0 0 0 * -1 Pr-i
o 0 o0 0 --- 0 i

where r; is the conditional probability of staying in state i, p; is the conditional
probability of moving to state { +1 (amplification of damage), and g; the condi-
tional probability of moving to state {—1 (recovery). Reid and Landau sug-
gested to use r;=0, p;=i/K, and g;=1-i/K. This chain has three classes: {0},
{K}, and {1,...,K-1}. Starting from state 1, we may want to compute the
recovery probability (Ag), i.e., the probability of reaching state 0 before state K.
By conditioning on the last step, which must be from 1 to 0, we can write

Ao=Pio ipi'i’- (2.31)

n=0

For example, if K =3 so

1 0 0 0
p< |23 0 13 0
013 0 23 (2.32)
0 0 0 1
I

2n+1) _

. | . :
we find that p®» = (-3;-><—3")'t while p§ 0 (note that the only way to

achieve a transition from 1 to 1 in 2n steps is to go 1-2-1-2-1---). Hence
Ag=3/4. Generally, Ag=1-2"%"1 (Exercise 3). O

We say that a state  has period d if p{’=0 for all # not divisible by 4, and d is
the greatest such integer. This means that if the chain is in state { at time n it can
only return there at times of the form n+kd for some integer k. If p{»}=0 for all
n, we say that state / has infinite period. A state with period 1 is called
aperiodic.

Theorem 2.2
d()=d ().

Periodicity is an equivalence class property, i.e., if i< then

Proof  Letm, n be such that p,(}")>0, p}?)>0, and assume that p§’ >0. Then
Pl 2 pPpl > 0 (2.33)

and

pi+*) 2 pplPpl > 0 (2.34)

50 d(j) must divide m +n and m +n +s. Hence it must divide their difference s
for any s such that p{f?>0. Therefore d (j) divides d (i). Similarly, d () is seen to
divide d (), so the two numbers must be equal. O
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Example (A model for radiation damage, continued) In the
Reid-Landau radiation damage model described earlier we have

1 o 0 O - 0 0
g rn pyp 0 -+ 0 O

0 g rp py -+ 0 0

0 0 0 0 - rgq pra
o 0 0 0 --- 0 1
Therefore the period of the class {1, ... ,K-1}is2.

To prove the next result, we need a number-theoretic lemma:

Lemma 2.2 Given positive integers n; and r, with greatest common
divider (gcd) 1, any integer n>nyn, can be written n=in;+kn, for non-
negative integers  and k.

Proof Consider the modulo n, residue classes of the n, distinct positive
integers n, n—-n,, n~2n,, ..., n—~(ny-1)n,. Either these residue classes are all
different, in which case one residue class must be 0, so the corresponding
number n—kn, is divisible by n,, ie., n=kn;+in,, or at least two residue
classes are the same. If the common residue class is 0 the preceding argument
applies. Otherwise we can write n—sn,=a+bn, and n~t|=a+cn, for
Ost<ssn,—1, b<c, and O<a<n,. Hence

n—sny—(n~mp)=GE-t)n; =(c—-bn,. (2.36)

Since ged(n,,n3)=1 we must have s-¢ containing all prime factors of ny. But
then s—£2n, which is a contradiction. a

Proposition 2.4  If i and j are states of an irreducible aperiodic chain, then
there is an integer N=N(i, /) such that p§’>0 for all n2N.

Proof Since d{(j)=1 there are integers n;, ny with ged 1 such that
pji{n)>0, k=1,2. From Lemma 2.2 we see that any sufficiently large n can be
wriiten In| +kn,, whence

! k
P = plte > [PE-?"] [Pﬁ-}’”] >0, 2.37)

Finally, for each pair ,j there is an ny such that pg‘°)>0. Hence

pt™ 2pTpi 5 0. (2.38)
0
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Corollary .Let X and ¥ be iid irreducible aperiodic Markov chains. Then
Z=(X,Y) is an irreducible Markov chain.

Proof  Ttisclear that Zis Markov, with transition probabilities
P = P =D | Z=)) = PX, =k, Y, =l | X,=1.Y,=))

_ P(X,,1=kX,=i) P(Yi=LY=))
P(X,=i) P(Y=/)

= Pabjr- (2.39)

By the Proposmor)l we can find an N=N (i,j,k,!) such that p{’ >0 and p( }>0 for
all n>N. Thus p;; >0 and Z is therefore irreducible. O

Let f? )=P!(T;=n) be the first passage distribution from state i to state j. We
have fi=0 and

£ = P(X,=j. Xt k=1,..,n=1| Xg=i). (2.40)

Define f; -—Z“’ (rf( =P‘(T <eo), The state { is called persistent (also called
recurrent by ‘some authors) if fy=1, transient otherwise. Think of a persistent
state as one that the process will eventually return to, while a transient state is
one with positive probability of no retumn.

Theorem 2.3  Astate i is persistent iff 3, p(”) = oo,

Proof If i is transient, let M be the number of returns to i. Then
M= Z 1(X,=i). By the strong Markov property (2.28) PiM2k)=f%, so
E‘M—Z P‘(M_k)-- 2 /(1—fy), where Ef is expectation with respect to P
Since j},<1 E‘M <, But

v >EM = EE‘I(X =i) = zp("). (241)

n=1 n=1
Conversely, if i is persistent it returns with probability 1. By the strong Markov
property it starts over again, and hence returns with probability one. Thus it
returns an infinite number of times with probability one, so P/(M=o0)=1, ie.,
E'M=co, 0

Remark  The proof of Theorem 2.3 shows that M—1 has a geometric distri-
bution with parameter f;;.

Example (A simple random walk) A simple random walk is a birth
and death chain on the integers with p;=p, r;=0 and g;=q, so ¢=1-p. This is an
irreducible Markov chain with countable state space. One interpretation is the
chain corresponding to the number of heads in successive tosses of a coin with
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probability p of heads. We will look at the persistence or transience of state 0.
A binomial computation shows that

) _ 2"] ngn -~ 4pa)” 2.42

P [n K A (242)

using Stirling’s formula n !~n"*%¢"(2x)*. Hence Y pf =e iff p=g='. In
other words, 0 is a persistent state iff the coin is fair. [

Remark One can define a simple random walk in higher dimensions by
requiring that at any point on the k-dimensional integer lattice the process has
the same probabilities of going to its nearest neighbors, regardless of which
point it is at. The process is fair if the probability is the same to go to each of its
neighbors. A similar computation (Exercise 4) to the one in the example above
shows that if k =2 the origin (and thus any state) is persistent. However, if £ >2
it is transient. In three dimensions, with probability 1/6 of going up, down, east,
west, north, or south, we get

124
1 2n!
g 6 &, P& TP
1”12 1 n! 2
1 1
= |~ Loan 243
2| [n]jé,, 3"j!k!(rz-j—k)!] (243)
. ,-1_‘2" [2"]max'_1'" nl Z 1 nt
12| (r) B2 Twim—joor &, 3 jkin—-0

The sum is one, being the sum of all probabilities in a trinomial distribution
with probability ' of each category, and the maximum is obtained when
j=k=(n—j—k)=n/3 (or as close as possible to this if n is not divisible by 3).
Applying Stirling’s formula we see that an.upper bound to p" is, to within an

order of n2,
77}
22.u 3n+3/2 3
~2n X3 =%yt , 2.44
27 \nm 2nn * [ nn l 244

so Y pE <o, whence the walk has positive probability not to return. In fact,
the probability of return is about 0.35. In other words, the three-dimensional
lattice is a huge place, in which it is easy to get lost. We return to more general
random walks in section 2.10. ' O

50

50
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Corollary  For a transient state i, p{’—0.

Proof  Immediate since ¥p{ <co. 0

For a persistent state %) is a probability distribution with mean ”FE,," {#), the
mean recurrence time. If p;=co, state | is called null, otherwise it is called

positive. This somewhat puzzling nomenclature will be explained in section
2.5. An irreducible aperiodic positive chain is called ergodic.

Application (Snoqualmie Falls precipitation, continued) For n22
M =P(X,=1X,,=0,....X,=0)
= PI(X,=1|X,.1=0,...,X;=0)P (X, =0,...,X;=0) (2.45)

=po1 (1-p 11 )(1-po1 )" ™%

Also, fi?=p |, so the mean recurrence time is =Y k%= 1+(1-p, Voo,
which we estimate to be 1.42, using pg; =0.398 and p;;=0.834. Given a wet
day, the mean number of dry days to follow is p;—1, which we estimate to be
0.42 days. This is a weighted average of wet days inside a wet spell (with no dry
days following) and starts of dry spells (with mean duration 1/pg, ; cf. Exercise
2). The variance of the recurrence time is (1-p 1 }(1-po; ¥pd: . Plugging in the
-estimated transition probabilities and taking the square root we compute a stan-
dard deviation of 0.79. Looking at the actual data, eliminating dry periods that
overlap Jan. 1 or 31, the mean dry spell length is 2.21, with a standard deviation
of 1.64. In order to compare this to the model estimate of y;—1, we must multi-
ply by the observed proportion of wet~dry transitions, or 0.166, yielding 0.37,
only slightly below the model estimate. (]

Theorem 2.4  Persistence is an equivalence class property.

Proof  Let i«<>j and assume that j is persistent. Then there are integers n and
m so that p{’>0 and p{™>0. For any s>0

i 2 plPpPpi | (2.46)

50
2ol 2 pPp R =, @47
s 3

and the result follows from Theorem 2.3, (]
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Let ag.a;, ... be a sequence of real numbers. If A(s)=2‘,°"=0 as* converges in
some interval |s | <sq we call A(s) the generating function of (g;). It is easy
to show that if Y a,<ce then A(1-)=lim,nA (s)=2kak, and for @20, if
A(l-)=a<w, then ¥ ag=a.

Example (Probability generating functions) If (p,;k=0) is a probabii-
ity distribution, the generating function P(s)=¥." p;s* converges for all |5 1<1.
P is called a probability generating function égf). If X has pgf P, define the
kth factorial moment mg,=EX(X-1)--- (X-k+1). By differentiating under
the summation sign in the definition of P we see that

had k
Mgy = Sii=1) -+ i~k +1)pg = jgm—). (248)
i=k

A similar computation shows that we can recover the probabilities from either
the pgf or the factorial moments:

d* P(s) N 10
=4 o= S —2— 2.4
Pe=" % xr e ﬁ() XY (2.49)

0

Given two sequences («;) and (b;) with generating functions A and B, respec-
tively, we define the convolution of the sequences as the sequence (¢;) given by

k
Cp = Za,-bk_,-. (2.50)
i=0

It is easy to see that (c;) has generating function C(s)=A (s)B(s).

Example (Probability generating functions, continued) If
Xi,...,X, are iid positive random variables with pgf P(s), then the sum

S5,=31X; has pgf P (5)". For example, P(S,=0)=P(0)"=p§, and
H
ES, = ﬁ%‘sﬁ)— | st = nP (1) PAY™ = nEX @2.51)

since P(1)=1. O

Recall from Proposition 2.4 that

n

PP = T e
k=0
for any nz1. Define the generating functions

o0

Py(s) = ZPE}”-"H

n=0
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and
Fy(s) = 3 fiPs™ 2.54)
n=0

Then, noting that (2.52) is a convolution, we see that
Fi(s)Py(s) = Py(s)-1 (2.55)

since pP=1. Thus

Py(s)= 1—Fy(s) (2.56)
Likewise

Py(s) = Fii(s)Pj(s). 2.57
1t is worth noting that

E(l=) =, (2.58)
Remark We can use this to give an alternative proof of the result in

Theorem 2.3 that { is persistent iff Zps,f‘)mo. Assume first that Zﬂ?)=1. Then
Fy(1-)=1 so Py(1=)=co, or Ep,(?)mo. Conversely, if fo}')d we have that
Fy(1-)<1, so Py(1-)<es, and Yp{P<eo. We can interpret Py(1-) as the
expected number of visits to i, starting from i. a

Example (Coin-tossing) The computation above can be modified to
show that for the fair coin-tossing random walk, state O {(and hence any state) is
null persistent. Since Foo(s)=1-Pgo(s)™! we see that Fg(1-)=Rg(1-YP3 (1-).
Now notice that

N
Ay = Ynply) = O(N*2), (2.59)
n=0
N
By= T pl =o', (2.60)
=0
and Ay—Fg(1-), By=>Ppp{1-), so that
Rp(1-) = fim 2 _ fim ON%) = oo (2.61)
T Neseo B%; N—eo T )
showing that the mean recurrence time is infinite. O
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Lemma 2.3 Suppose that j is persistent. Then it is positive persistent iff
;= li%!l'l(l-—S)ij(S) >0, and then 7;=1/1;.
5

C
£
Proof  From (2.56) we have
- T
1- Fj(s) = Py(sy™ (2.62) h
1-Fs ‘
iR (2.63) a
1-s (I—S)PH(S)
But the left-hand side of (2.63) converges to Fj(1) =|; as sT1. Hence the limit
of the right-hand side is the same, and the result follows, a
F
x
Remark  This almost proves the convergence of averages of transition pro- s
babilities, namely ¢
(WmXipH —nj' asn - e (2.64) o
Consider ¥
k=0 ' T
A=-s)Py(s) =" (2.65) h
X s* |
k=0 It
for any s<1. If we could take the limit as sT1 under the summations, the right- (2
hand side would converge to (I/n)Z'l‘pﬁ‘?), while the left-hand side would con- th
verge to 1/l by the Lemma. There is, however, no elementary result allowing
us to take the limit under the summation sign. We need a so-called Tauberian TI
theorem, such as that given in Feller (1971, Theorem 5 in section XIILV). We m
will be able to deduce the result using less difficult mathematics in section 2.5. P
D J
Call a set C of states closed if fy=Fy(1-)=0 for jeC, kg C. Then Wi
Py (1-)=0=Yp%’ and we must have p§’=0 for all n. In fact, in order to verify
that a set of states is closed we need only show that p;=0 for je C, ke C, since,
e.g., 50
PR = Tpps = L pisps =0, (2.66) ch
S€S seC
the case for general n following by induction. If C is closed and the process Pi

starts in C it will never leave it. An absorbing state is closed. We call a set C of
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states irreducible if xey for all x,ye C. The irreducible closed sets are pre-
cisely the equivalence classes under <. If A and B are disjoint sets we write
A +B for their union.

Theorem 2.5  If Sy={transient states} and Sp={persistent states}, we have
that
S=8r+38p (2.67)

and
Sp = Y.C; of disjoint, irreducible, closed sets. (2.68)

Proof Let xeSp, and define C={yeSp: x—y}. By pemistence f,,=1, so
xeC. We first show that C is closed. Suppose that ye C, y—z. Since y is per-
sistent, z must also be persistent. Since x-3y-3z we have ze C so that C is
closed.

Next we show that C is irreducible. Choose y and z in C. We need to
show that z&»y. Since x—y, y—x by persistence. But x—z by definition of C, so
y—x—z. The same argument, with y and z transposed, shows that z—y.

Now let C and D be irreducible closed subsets of Sp, and let xe CnD.
Take ye C. Since C is irreducible, x—y. Since D is closed, xe D, and x—y we
have that ye D. Thus CcD. Similarly DcC, so they are equal. O

It follows from this theorem that if a chain starts in C; it will stay there forever
(and we may as well let §=C;). On the other hand, if it starts in Sy it either stays
there forever, or moves into one of the C; in which it stays forever.

Theorem 2.6  Within a persistent class either all the |, are finite or all are
infinite.

Proof  As before we can find k, m such that p{>0, p(>0. Since

plvksm) 2 pm p() p k) (2.69)
we see by averaging and anticipating the result (2.64) that

n 2 piPnp, ' (2.70)
so if #;>0 then m;>0, while if m;=0 then 7,=0. The converse obtains by inter-
changing i and j in the argument. a

Proposition 2.5  If S is finite, then at least one state is persistent, and all
persistent states are positive.
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Proof  Assume that all states are transient. Then ijﬁj,—”:l for alt n. In par-

ticular,
lim Epg-‘) =1
A e s
But from the corollary to Theorem 2.3, we have that each term in the sum, and
therefore the entire sum, goes to zero. Hence at least one state is persistent.
Assume that one such is state j. Consider C; = {i:j—i}. According to Theorem
2.5, once the process the process enters C; it will stay there forever. For every
i€ C; we can find a finite n with pE}')>O. For i#j let v; denote the expected
number of visits to { between two visits to j, i.e.,
ks, “
vi=F ¥ 1(X,=i) = T, PI(X,=i,T;>n). (2.7D)
n=0 n=0
Define v;=1 in accordance with the definition of v;. Let i#j, and note that
{X.=i,Ty>n} then is the same as {X, =i,T;>n—1}. Hence compute

v, = Z{ PI(X,=i,Tj>n) = zle(x,,=i,:rj>n-1)
= n=

= );‘l Eng(X,,=k,T}>n—I,Xn_l=i)
n= 13

= 3 TP, =k | Tj>n-1,X, =) PTo>n-1,X,=k) (2.72)
n=lkes

= X TP X, =k Ti>n-1) = 3 T PI(X,, =k, Tj>m)
ke§ n=l keSm=0

= EijVk-
keS

Since C; is closed, the sum over ke S only has contributions from the states in
C;. For i=j we have, since j is persistent, that

v;=1= Y P(Ti=n)= ¥ Y P(T;=nX, =k)
n=1 n=l ke§

PI(T;>n—1,X,=j,X,_ =k)

=Y, Yoy (Ti>n~1,X,=k) = 2 PVee
=1 ke§ kes

Writing v=(v,,v,,...) we have shown that vIP=v. By iterating we see that
VIP"=v for all n=1,2, - - - In particular, for ie G,

vpP <v;=1, (2.74)
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so v;£1/p{? <eo for some n. Finally we compute

= TP(T>ny = § 3 P(X,=iT>n) = v, 2.75)

n=0 ieSn=0 ic§
Again, the sum over /€S is really only over i€ C;. Since § is finite, C; must be
finite, and we can pick n so large that v;<eo for all / in C;. The final sum in
(2.75) therefore is a finite sum of finite elements, so ;<. O

Proposition2.6  If i is a null persistent state, then pff"? ~5 0 as n 5 oo,

This result was first proved by Erdos, Feller and Pollard (1949) using generating
function techniques. The details are somewhat involved, and not of a probabilis-
tic nature, so we shall omit the proof which can be found, e.g., in Feller (1968,
sec. XIII.11). Incidentally, this proposition explains how null persistent states
were named. Correspondingly, positive persistent states have p{>0 for all n
large enough.

2.4. Stationary distribution

A large portion of the theory of stochastic processes focuses on processes that
have marginal distributions that are not titne-dependent. Looking back at equa-
tion (2.16) we see that if we choose py=pyuA1=(p ;1 ~px)), we obtain a margi-
nal distribution which is independent of n, and simply equal to the initial distri-
bution. We will denote such a distribution (when it exists) by m. By letting
P.=% in relation (2.20) we must have x=nlP, or equivalently

a@~P) =0. (2.76)

Thus = is a left eigenvector of IP, corresponding to the eigenvalue 1 (recall from
Proposition 2.2 that such an eigenvalue always exists). The solution to (2.76) is
called the stationary distribution of the Markov chain. If §={0,1} we saw that
~y=por/(I~(py1—po1)). Thus if p; =pgy, so that the occurrence of state 1 is
independent of the previous state, then m;=pgy,. Otherwise 7, is between the
smaller and the larger of pg and p,;. To see that this choice of & indeed
satisfies (2.76), note that

1-pyy Pot
1-@u—pa)  1-@n-ra)

[—(lp-?;’u) 1_“;;70111J =0.0). @77

‘When we use the stationary distribution as initial distribution we see that
p;=xP=nxn {2.78)
p=plP=mx,

etc., so that, indeed,

P, =% foralln (2.79)
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We then say that the one-dimenstonal distributions p, are time invariant
(another name for this is stationary). Therefore x is also known as the station-
ary initial distribution. In fact, starting from = all finite-dimensional distribu-
tions are time invariant, in the sense that

d
Xe o Keyr - - - X)) = Ky Xigrier - -+ Xiget) (2.80)

for all non-negative integers n, &, k1, ... .k, (Exercise 5). Processes satisfying
(2.80) are called strictly stationary.
The strength of the dependence in a Markov chain can be computed from

the transition matrix. By repeated conditioning we see that

EXHXH +k = E(E(Xn +k | Xn)Xu) = Z ﬂPg"Pn(f) (281)

jles

If the chain is strictly stationary the right-hand side of (2.81) simplifies to
Zjlpg-‘)nf, so the covariance between X, and X, ,; is

Cov(X, Xy i) = Jlpim - (Tjm)’. (2.82)

ileS JjES

Anticipating the next section we see that if the chain has a limiting distribution,
so pf?—m;, the covariance goes to zero as k goes to infinity.

Application (Snoqualmie Falls precipitation, continued) In the 0-1
case the sums in (2.82) only have one term. The correlation function for a two-
state Markov chain thus becomes
pff -my
Corr(X,, Xp41) = lom Pn-ra) (2.83)

using the following induction argument. If k¥ =1 we have

pu—t  pu(-Pu-pe))—Po
1-m l-py

=pn—Po (2.84)

as required. Assuming the formula (2.83} is correct for k =n, then we can write
it as

Pl = m + (=) n—pa) (2.85)
Since p{i " =(1-p{PYpo +p{p 11 We have

PtV =1 por+(I-m)@ P )+ @ u—po )T

1-m, 1-m
por—M (1-p1i +po1)
1-m

=@u-pa)tt+

= (@u-pau)*

i
§
.
§
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where the last equality is from the definition of #;. This completes the induc-
tion. We see that the correlation function is geometrically decreasing. For the
Snoqualmie Falls data, where ﬁ“—ﬁm is 0.436, we get the estimated. correla-

tions given in Table 22. .

Table 2.2 Estimated correlations for Snogualmie Falls data

Lag | 1 2 3 4 5 6 7
Corr | 0436 0.190 0083 0036 0016 0007 0003

O

Equation (2.76) shows that if a chain has a stationary distribution, it must
be the eigenvector of IP corresponding to the eigenvalue 1. Sometimes we can
be a bit more explicit. Recall that if k is persistent, then v; is the expected
number of visits to j before returning to &.

Lemma 2.4  An irreducible positive persistent chain has a stationary distri-
bution given by m;=v;/4, for a fixed state £.

Proof We need to show that xlP=m, ie., that ZEE §ViPiy=V; and that
EEE sVis (in order for ® to be a probability distribution). But this was esta-

blished in the proof of Proposition 2.5 (without using the assumption of a finite
state space). O

Which Markov chains have a stationary distribution? The answer is quite sim-
ple. We will restrict attention to irreducible chains, since any other chain can
be be decomposed into irreducible subclasses. The quantity m;=1/u;, which
arose in our criterion for positive persistence in Lemma 2.3, now assumes a
more important role.

Theorem 2.7  An irreducible chain has a stationary distribution if and only

if it is positive persistent. The stationary distribution is unique and given by
-1

Te=H; .

Proof  Suppose that # is a stationary distribution and the chain is transient
or null persistent. Then p{? — 0 as n — = by the corollary to Theorem 2.3 and
by Proposition 2.6, respectively. Hence for any i and j, if we are allowed to
take limits under the summation sign,

mi=Yapi -0 asn—e (2.87)
ie§
S0 X is not a distribution. To see that this argument is valid, let (S,) be a
sequence of finite subsets of 5, such that S,, 1.5 as m—3e. Then
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= apl+ TpP < Tapl + Tm (2.88)

€S, i8S, ieSa i25,

For each m the first term goes to Zero as n—es, since we can always take the
elementwise limit of a finite sum. The second term can be made arbitrarily
small by taking m large, since & is summable. The key to this argument is that
the p{}’ are bounded. Thus the existence of a stationary distribution implies that

all st:tes are persistent.
Let the initial distribution be m. Using Exercise 5, all finite-dimensional
probabilities are time invariant. Thus
P(X, =i, Tzn +1) = PYX, =6 X1, .. . Xp#))
= Po(X,_1=i,X0, ... . Xn-1 %) (2.89)
= PP(X, =i, Ty2n) = P*(X, =i, Xo =/, Tj2n)
= P*(X,_ =i, T;2n) - TP (X, =i, T;2n).

Summing over n<N and rearranging terms yields

N N
n P (X, =i, Tizn) = ¥ (P™(X,_ =i, T;2n) — PU(X,=i,T;2n +1)}
7 J | J J
n=

n=l
= ;—P*(Xy=LT;2N +1) (2.90)

since the sum telescopes. Letting N—oo the last term on the right-hand side of
(2.90) disappears since j is ergodic, and we get

3 P (X, =i, Tj2n) = ;. 2.91)

n=1

Summing (2.91) over all i€ § we see that

w; f;Pf'(T,-Zn) =1 (2.92)

n=1

But 3.P/(Tj2n)=)\; and we sce that 7;)1;=1. Suppose that 7;=0. Then

0=m =3¥rp{ 2mp{, (2.93)
7

so whenever j—i we have 7;=0. But then all the ; are 0 by irreducibility, and
% is not a distribution. Hence all the 7; are positive, so |L;<eo. Therefore, the
existence of a stationary distribution for an irreducible chain implies that it is
uniquely given by mt;=p7!, and that the chain must be positive persistent. Con-
versely, for a positive persistent chain the distribution in Lemma 2.4 is a sta-
tionary distribution, O

%
3
.
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We can now evaluate the expected number of visits to i between successive
visits to k.

Ti-1
Corollary v, =EXY 1(X,=i) = Ay, = n/m;

n=0 '
Proof This follows directly from Lemma 2.4 and the uniqueness in
‘Theorem 2.7. O

The equation (2.76) for the stationary distribution can be written

;= Zﬂjpﬁ = Zp,-_,-?t,-. (294)

ics ieS

We can interpret Ei“jpﬁ as the probability flux out of state j, and Z,-“EPU as the
probability flux into state j. Consider a large number of independent particles
following the same Markov chain. Then, if the system is in equilibrium, the
number of particles moving into and out of state i at any time should be approx-
imately the same. In other words, the proportion of particles moving out (the
flux out of the state) should be the same as the proportion of particles moving in
(the flux into the state). In this interpretation, it is natural to think of (2.94) as
an equation of full balance.

Many physical systems, obeying classical mechanics, have a physical
description that is symmetric with respect to past and future. In the context of
stochastic processes, the corresponding requirement is that the probabilistic
structure of the process run forward in time must be the same as the structure of
the process run backward in time.

Let (X;,keZ) be an ergodic chain, defined for both positive and negative
time. We may consider the chain Y defined by Y,=X_,. Then Y is a Markov
chain, although not necessarily with stationary transition probabilities:

P(Yi=/ | V=i, Yy =iy, .. Vg =iy)

=PX_gen=i | Xo=b X =it . - X gom=in)
_ P(X-(k+1)=f,:’f—k=isX~(fc-1)=f1: e 1X--(J.c—n)"_"in) 2.95)
PX =L X gy=i1s . - o X gg-my=in)
P gy=in, X o=y | X =DPX =i | Xoan=))
P(X—'(k—n)=in’ e ’X-{Ic-l)'_"i] IX-k=i)
PX _gin=/) _ i pi ke
P(X=i) ' pfb

If X has the stationary marginal distribution 7 for all £ we see that ¥ has station-
ary transition probabilities g;; given by
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Tc.
g = PYen=j [ Y=i) = pji;f- (2.96)
(]

Note that since X is defined for all k€ Z, it is not enough to set p@=n in order
to have marginal distribution 1 for all k. This only works for £20; e.g., X_; does
not necessarily yield the right distribution. We call X reversible if X and ¥ have
the same transition matrix, i.e. if

n -
P = Pﬁ;':' (2.97)

or, equivalently,
TPy = Pl ' (2.98)

This is called the law of detailed balance, stating that the probability flux from
i to j in equilibrium is the same as that from j to i. Detailed balance is a property
of isolated systems in both classical and quantum mechanics. It was first noted
in chemical reaction kinetics. A proof of the detailed balance property for
closed classical systems is in Van Kampen (1981, section V.6). The conditions
of detailed balance can sometimes be used to find the stationary distribution of
a chain.

Theorem 2.8 If, for an irreducible Markov chain, a distribution T exists,
satisfying the law of detailed balance (2.98) for all [,jeS, then the chain is
reversible and positive persistent with stationary distribution =.

Proof  Using Theorem 2.7 we need only show that T is a stationary distribu-
tion. But

Eﬂipij = Zﬂjpj: = jZPji = TE}', (2.99)

so0 T =T7lP. 0

Example (A Birth and death chain) Assume that p;>0, g;,,>0 for all
Jj=20, while g4=0, so that all states communicate. Then we will show that the
detailed balance equation

Pi%j = Gl (2.100)
holds, and that the equilibriom distribution is given by

I Pi-l

(2.101)

(2.102)
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provided that the sum converges. This convergence is a condition for the per-
sistence of the chain as well as for its reversibility.

To see that (2.100) holds, note first that the full balance equation for m; is

T; = Pj-1Tj) + T + Gy Tpygs j=0, (2.103)
while for j =0 '
Ty = oWy + 417 (2.104)

Since =0, ro=1-py and (2.104) becomes

PoTo = 1T (2.105)

which is the detailed balance equation for j=0. Assume that (2.100) holds for
j=k. From (2.104) we see that

Mol = Pk + Tia1 Tt + Qi42Tga2e (2.106)
Since by the induction hypothesis ppft, =g +1 T+ (2.106) becomes

Pra1 el = Gra2M42 (2.107

whence the detailed balance equation holds. The evaluation of m is now
immediate.

The particular case of a random walk reflected at the origin has
pi=1—g;=p,so

' =3,

provided that p<'4. The stationary distributton is then geometric, If p2% the
process is transient, O

i
£

_A=e (2.108)
l-p

=5

Example (The Ehrenfest model for diffusion) Consider two con-
tainers, labeled 0 and 1, in contact with each other. We have N molecules that
move between the containers. At each time one molecule is chosen at random,
and moved to the other container. We can describe this system using a binary
number of N digits, for a total of 2V possible states. The transition probabilities
for this micro-level process X are

_ | 1/N if x and x” only differ in one location
Pxx" = 10 otherwise. (2.109)

Consider the case N =2, so the states are 00, 01, 10, and 11 (or in decimal nota-
tion 0,...,3). Then
ovh l0
_|%200 %
= wooul (2.110)
0% 0
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Clearly IP is doubly stochastic, whence the stationary distribution is ®;=27",
i=0,...,2¥-1. The chain is periodic with period 3. It satisfies not only the
detailed balance equation, but also the stronger micro-reversibility condition
that

Prx = Prx forallx,x”. 2.111)

If we regard the molecules as indistinguishable, we get a macro-level descrip-
tion of the process. Let ¥; be the number of molecules in container 0, Then Y}, is
a Markov chain with non-zero transition probabilities

1 N-i
Pyii-1 = ‘1;," Priiv1 = N

(2.112)

Since this is a birth and death chain we know from the previous example that
the process is reversible and the stationary distribution satisfies
j —i .
= 1Y :_“ = 1t ["JV] @.113)
i=1
so my=2". In other words, the stationary distribution for ¥ is obtained from that

of X by summing over the number of micro-states corresponding to a given
macro-state.

This model was introduced by Ehrenfest and Ehrenfest (1906) to explain
a paradox in thermodynamics, exposed by Loschmidt (1876). The paradox is
that although statistical mechanics can be derived from classical mechanics, the
laws of classical mechanics are time-reversible while thermodynamics contains
irreversible processes: entropy must increase with time. This physical sense of
reversibility would require that for given micro-states x and x°, with
corresponding macro-states y and y“ we have both

PX,=x |X0 =x’)=P(Xkl=x’]X0 =x) (2.114)
and
P(Y,=y|Yo=y)=PT =y |Yo=y) (2.115)

If now vy is small, and y” is nearly N/2, (2.114) holds by micro-reversibility, but
(2.115) would not hold. Rather, the right-hand side would be much larger than
the left-hand side, because of a tendency for the process to veer towards its sta-
tionary mean (we are anticipating the resulis of the next section here, in that the
process in the long run tends towards its stationary distribution). The statistical
sense of reversibility involves equilibrium behavior, which the classical
mechanics laws do not explicitly mention. Our explanation of the Loschmidt
paradox, therefore, will be that the process is not micro-reversible at the
macro-level. Chandrasekhar (1943, section IIL.4) and Whittle (1986) contain
more material pertinent to this type of question. O
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2,5. Long term behavior

As we have discussed before, many physical systems tend to settle down to an
equilibrium state, where the state occupation probabilities are independent of
the initial probabilities. Recall that when we powered up P for the Snoqualmie
Falls precipitation model, the rows got more and more similar. Figure 2.2 illus-
trates this.

2.
-

Probability
0.5

0.0

0 2 4 6 8 10
Lag {days})

Figure 2.2 n-step transition probabilities for Snogualmie Falls model. The
upper curve is p{} while the lower is p{?.

In fact, under suitable conditions
1
"
P 7L (2.116)
x .
We say that the chain has a limiting distribution. What this means is that if the
chain is left ronning for a long time, it reaches an equilibrium situation regard-

less of its initial distribution. In this equilibrium situation the state occupancy
probabilities are equal to the stationary distribution. Note namely that

11

R
Po=plP,>p|. . |=7

T

regardless of py. As the next example shows, there may be a stationary distri-
bution without the chain having a limiting distribution.

Example (A chain without a limiting distribution) Let
010
P=|001].

100

2.117)
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different matrices. Notice that the period of this chain is 3. This particular IP
also is doubly stochastic, and has a uniform stationary distribution (Exercise 6).

In fact, this trivial example is in many ways typical for what happens in a
periodic chain. Assume that the irreducible chain X has period d. Then for every
state k we can find integers [,m such that p{)>0 and p{3’>0. Hence
™ =pl)pl >0, so d must divide ! +m, i.e., | +m = rd for some integer r. Fix-
ing m we see that I=-m+rd=s+td where s is the residue class of m modulo 4.
Thus we can for every state k find an integer s;, 0<s;<d, such that p{}?=0 unless
n=s, mod d. Let G,={k: s;=s). Then

S = G0+ v '+Gd—l' (2118)

One-step transitions are only possible from states in G, to states in Gy, (where

G4=G,), and going d steps out of G, leads back to G;. Hence for a chain with

transition matrix IP?, each G, is a closed irreducible set. For d =3 we have
0AO

P= |0 0 B, (2.119)
co00

where A consists of transition probabilities from Gy to G, etc. L_J_

We shall now ascertain the long term behavior of some aspects of a Markov
chain. Again we restrict attention to the irreducible case. We start with the
asymptotic behavior of n-step transition probabilities.

Theorem 2.8  Let k be an aperiodic state of an irreducible Markov chain
with mean recurrence time p; <. Then

lim p = <. - (2.120)

n—3eo 3

Proof The transient case is immediate from the corollary to Theorem 2.3,
and the null persistent case is Proposition 2.6. To prove the positive persistent
case we shall use a technique called coupling. Let X and ¥ be iid copies of the
chain, and let Z=(X,Y). Recall from the corollary to Proposition 2.4 that Z is an
irreducible Markov chain with transition probabilities py; ;= pupy. Since X is
positive persistent, it has a unique stationary distribution 7. Then Z has station-
ary distribution 1y with 1, ;=n;x;. Therefore Z is positive persistent by Theorem
2.7, Let Zp=(i,j), choose seS, and let T, be the hitting time of (s5,s) for Z.
Since Z is persistent, P(7, ; < o0)=1. Suppose that m=<r and that X,,=Y,,. Then X,
and Y, are identically distributed by the strong Markov property. Thus, condi-
tional on {7 ; <n}, the random variables X, and ¥, have the same conditional
distribution. Compute

P = PH(X,=k) = PY(X, =k, T, ,<n) + PY(X,=k,T, >n)
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= P (Y, =k, T, ;<n) + PY(X,=k,T, ;>n) (2.121)
SPH(Y,=k) + PUT,>n) = pip) + PHU(T; >n).
Interchanging i and j, we get a similar result, so that
|P% — P | PYUTos>n)+ PH(T>n) 50 asnse (2122)
since PH(T; s<e)=1 for any i,j. Thus
PP -p =0 (2.123)

]

as n—yoo for any i, j, and k. Consequently, if p$’ has a limit it does not depend

on i But
m—~p = TR - pi) =0 2.124)
ies
by bounded convergence. 0O

Example (The Pdlya urn model) Quite a few stochastic processes were
originally thought of using colored balls in urns. A paper by Eggenberger and
P(SIya1 {1923) dealt with epidemic data for contagious diseases. Given that an
individual has a disease, such as smallpox, the probability that other individuals
who are in contact with the diseased one themselves become infected is higher
than for people who have had no such contact. Hence individuals do not act
independently as far as epidemics are concerned.

Eggenberger and Pdlya proposed the following urn scheme: consider an
urn with N balls, R of which are red and B are black. A ball is pulled out of the
urn at random and replaced with 1+d balls of the same color. Clearly d=0
comesponds to drawing with replacement, and d=-~1 to drawing without
replacement. After the kth replacement the urn has R +B +d¥ balls. If the draws
yield r red and b black balls {(r +b =k), there are R +rd red and B +bd black
balls, whence the probability of a red ball drawn at the (k+1)th draw is
(R+rd)(N +kd). Let X,=I(red ball drawn at trial k). Then, with

X=(Xy,...,X,)and r,,=Z';‘x,-,

T1R+(r=)d) TT(B +(n—r,—k)d)
j=1 k=1
PX=x) = . .
(X=x) (N+(n-DdYN+(n-2)d)--- N (2.125)
Conditioning on the past yields
R+r,1d " 1
TR ifx,=
- n-l _.n-1y_ | N+{n=1)d R
P(Xn—xn |X0 =Xp ) = B+(n ".l“rn—l)d o 0 (2.126)
Ne(u-)d "7

-—
1 -

Pélya, Gydrgy (1887-1985). Hungarian mathematician. Invented the term ‘“‘random walk'.
Perhaps best known for his ideas about generat heuristics for solving problems,
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Thus X, is not a Markov chain, unless d =0. However, the number of red balls
drawn, R, ==Z'1‘X,-, is a Markov chain:

R+dr,,.,1 i 1
— —ifr=r,_+
nel _one N+d(n-1 "
P(R,=r |R§™ =r§™) = B-tgé::—llr,,_l) : @2.127)
————ifr=r,
N+d{n-1)

Note, however, that the transition probabilities for R, are time-dependent, since
they depend explicitly on n—1I, not only on r,_;. It is not hard (Exercise 7) to
derive the marginal distribution of R,,, which is

P(R,=r) = [’;] XR(R +d) - - (R+(r-1)d)
B(B+d) - - - (B+{n—r)d)}
N(N+d) - (N+(n-1)d)’

Consider the case where n is large and R small relative to N, corresponding to a
rare disease. In particular, let R=AN/n and d=cN/n. By taking limits in (2.128)
we see that

{2.128)

HmP(R,=r) = "1—1(1+c)‘(""+’)h(h +¢) - - (h(r—1)e) (2.129)

R—yro r

which is a negative binomial distributions with parameters h/c and c/Al+c),
and mean hA. When ¢~»0 this limit is just the Poisson approximation to the bino-
mial. ‘ O

Corollary  For an irreducible aperiodic chain

lim p = I (2.130)
A=joo ) k . .

Proof  Recall that p%p =37 Oﬁ“,‘)pﬂ‘”. Taking limits under the summation

sign we get
PP T R = 2.131)
To verify that we can take limits under the summation sign, write
m-1 R
PP = T R05" + TAPED. (2.132)
=0 l=m

Since pf’<1 for all n we have
m=1 m—1 n
S ARpE <pR < T AP + TR (2.133)
I=0 =0 l=m

Now let n—eo to see that
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m-1

m—1 oo
’Zof}?/uk S lim inf plp’ < lim sup pff* <3 £y + TSR, (2.134)
= =0 I=m

and finally let m—yoo to obtain the result. O

Let Nk(n)=2:,‘=l 1(X;=k) count the time spent in state k.
Corollary  If k is a persistent aperiodic state, then

pf) =+ (2.135)
1 i

for any starting state communicating with .

n
HmEN,(nVh = lim +
n=yen n=ys B -

Remark  The limit in the corollary is called a Cesaro limit of the p{?. The
existence of a Cesaro limit is implied by, but does not imply, the existence of a
limit of the sequence. O

Proof By Theorem 2.9 we have p{?—1/,. By the remark above, this
implies that the Cesaro limit is the same. Now notice that

ENy(n) = éPk(X‘:") = S, 2.136)

i=1

If we instead start at j, communicating with k, we get

> n - n u
ENy(n) = T P(X;=k) = T pR (2.137)
i=1 i=1
and by Corollary 1 above p}ﬁ)—)ﬁ,‘/uk, so the same holds for the Cesaro limit.
Since j communicates with k we have f;=1. O

Consider a persistent state k. The limiting occupation probability is the pro-
portion of time spent in that state in an infinitely long realization, ie.,
lim, .. Np(n¥n. In Corollary 2 we computed the expected value of this average.
The next result yields a law of large numbers.

Theorem 2.10  The limiting occupation probability of an ergodic state is
141, (with probability 1).

Proof . Suppose that the chain starts in state k. Let 73(1),T(2), - - - be the
successive times when the chain reaches k. By the strong Markov property
Ti(1), Ti(2)-T(1), Te(3)~Ty(2), . . . are iid random variables with pgf Fu(s) and

Eean W <o, By the strong law of large numbers we have with probability one
at
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lim T (O+HTR)-T(1))+ - - +H(T(r)-Ti(r—1))
r—oe r

T |
i _ e (2.138)

== F
Recall that Ny(n)/n is the proportion of time spent in state & up to time n. Thus
T (Ni(n)) € n < T (N (n)+1). (2.139)
In addition, Ny(n)—e as n—o, again with probability one, since k is revisited

infinitely often. Thus

Ny(n) Ny(n) | -
< — — with probability 1 (2.140
noTWMe) o F d - )

Ni(m)+1 _ N(m)+l
bl Nt 1 ik probability 1 (2.141)

n TNm)+1) 1y

so that Ny(n)n—1/1, a.s. The case when the process starts from a state other
than £ is left as Exercise 8. , O

Example (The Hardy—Weinberg law) Consider a large population of
individuals, each of whom possesses a particular pair of genes. We classify each
gene as type A or type a. Assume that when two individuals mate, each contri-
butes a randomly chosen gene to the resulting offspring, and assume also that
mates are selected at random from the population. Write the proportion of indi-
viduals in the population with AA, Aa, and aa genes, respectively, as p, g, and r.
Then the proportion of A-genes in the population is P=p+g/2 and the propor-
tion of a-genes is @=¢/2+r. Under random mating, therefore, an individual
will have probability P? of receiving the gene combination AA, probability
2P(Q of receiving Aa, and probability @2 of receiving aa. Hence in the next gen-
eration the proportion of A-genes is P2+PQ=P, and.the proportion of a-genes is
Q. We see that the proportions of gene types as well as the proportion of gene
pairs remain stable after the first mating. This is called the Hardy—Weinberg
law (Hardy', 1908; Weinberg, 1908). Assume now that we have a population
with P2:2PQ:Q? gene pair ratio, and consider the genetic history of a single
individval, assuming for simplicity that each individual has exactly one
offspring. If X,, is the genetic state of the nth descendant we have a Markov
chain with state space {AA,Aa,aa}, and transition matrix

'Hardy, Godfrey Harold (1877-1947). English pure mathematician. His main contributions came
through his long collaboration with Littlewood on problems in number theory, inequalities, and
complex analysis. He was apparently not very fond of this non-thcoretical paper, which he
published in an obscure American journal.
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HT()~Tilr-1))
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P Q 0

P= |PR2(P+Q)Y20/2|. 2.142)
0 P o}

From the Hardy—Weinberg law it would seem natural that the stationary distri-
pution for this chain, which, by the theorem, is also the proportion of descen-
dants in each genetic state in the long run, should be (P%,2P0,0%). This is
indeed the case (Exercise 9). O

1t is possible to deduce more general laws of large numbers. The following,
which we shall find particularly useful later, is often called the ergodic
theorem for Markov chains.

Theorem 2.11  Let X be a positive persistent chain. Then, regardless of the
initial distribution, if £:5—R satisfies E™ | f(X|)| <<, where 7 is the stationary
distribution, then

L3505~ Brp00,) (2.143)
j=1

in probability.

Remark This result holds with probability one. See Bhattacharya and Way-
mire (1990, section I1.9) for details. O

Proof  We divide up the time axis using the random times T;({) of succes-
sive returns to state k. Write

T +1)
Z= % fX) (2.144)
T{f)+1 .
where T,(0)=0. Then Zy,Z,,... are independent by the strong Markov pro-
perty, and Z,,Z,, ... are also identically distributed. Decompose
" M) TDD
SFXN=Zy+ T Z;- T [fKI=Zo+Sym— R (2.145)
!

J=1 j=n+l

We deal with each of these terms separately. First note that, since the chain is
positive persistent, Zg is a sum of a finite number of random variables (with
probability one). Hence Z,/n—0 with probability one, and so in probability.

By persistence we have P(N{*)—es)=1, so using the law of large numbers
we deduce, provided that E | Z; | <oo, that Sy,¢/Ni(r) = EZ; in probability.
Also, Ni(nYn—m; with probability one according to Theorem 2.10. Hence
Sy, myn = mEZ,; in probability.
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Next note that
LW+ T+
IR,|< 3 /&xpls T 1A =8 (2.146)
Jan+l J=Th+1
By the strong Markov property, again, §;.%s, ... are iid, and by Markov’s ine-
quality £,/1—0 in probability provided E&; <eo. Hence

P(]R,| >ne) <PE, >ne) = 0. (2.147)

Clearly, if E&; <o then E | Z, | <eo. To see that the former holds, note that if v;

as before is the expected number of visits to { between successive visits to k we

have '
n(2)

E ¥ If(X)l—E]F(l)IV—EIf(z)I— (2.148)

jsT(l)+l e es

using the corollary to Theorem 2.7. Finally, compute

EZ; = X fliv; = Zf (Om, (2.149)

[=h) k ie§

SN.(n).

- Y flOm: = E*f(X1) (2.150)

fe§

in probability. ' O

In the next section we shall find an important use of this result. There are cen-
tral limit type results for efgodic chains as well. We write £,~AsN(W,,0?) if

(¢,~1, Yo, converges in distribution to the standard normal distribution. Define
T {0)=0 and Uy(m)=T;(m)-Ti(m-1}. '

Theorem 2.12  Let & be an ergodic state. Suppose that o= -E“"(n-;.t,‘)2 i
satisfies 0<GF <oo, and that the distribution of Uy(m) is non—degenerate Then
no%
Ni(n) ~AsN A =5 (2.151)
[T

Proof  Assume that we start from k. Since the Uy (/) are iid we have by the
central limit theorem that 3, U(1)~AsN(mi,,mo3). Write

{Ni(n)y<m} = {T{m)>n} (2.152)

and choose m={n/y+x(nc; 2/13Y%4], where [y] stands for the integer part of y,
and x is an arbitrary real number. Now note that T(m)= Z“’” U(D), 50
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Ny (ny-n/iy o
”(n RN <xj= P(E; U(y>n)
=P [, Uty-mismoy ™ > n-mpy ol 2.153)
m S A V
=P E" Ulm)-mp(mopy™ > o ] - ®(x),

where ®(x) is the standard normal cdf. The case when we start from another
state only changes the distribution of Uj(1), which is asymptotically negligible.

So far we have concentrated on aperiodic chains. The periodic case can be dealt
with by looking at an imbedded aperiodic chain. Here is a version of Theorem
2.9 for periodic chains.

Theorem 2.13  Let X be an irreducible persistent Markov chain of period 4.
Then

lim pfi = 4 (2.154)
My

fl~=poo
and writing ry=min{r:p¥>0} we also have

l mp(rjk+nd) df‘k .
U Hie

(2.155)

Proof  Let Y, =Xy. Then Y is ergodic with transition matrix Py = ¢, Hence
Py ji(s) = ng es™ = TpUds™ = Pu(s™) (2.156)

since p{=0 for I#nd. Rewriting equation (2.56) we have
Pra(s)-1  Puls"®)-1

Fyo(s) = = = Fu(s'), 2.157
l"Jck( ) PY;kk(s) Pkk(st/d) kk( ) ( )
50 by Theorem 2.9

Pk — - 1 ) (2.158)

< Fuls") | om

The left-hand side is pfi?), while the right-hand side is (Fz(1-Vd) ' =d/;. The
second part follows just as did the first corollary of Theorem 2.9. O
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Example (Limiting behavior of a particular chain) Let

0505 0 0
1025075 0 0

P = 1025025025025!" (2.159)
0 0 0 1

Here §={0,1,2,3} with Sy={2} and Sp={0,1}+{3}. Starting from state 2 where
do we go? Let #=P?(absorption in {0,1}). By partitioning the sum into the pos-
sible values of the first step we get

3
= ZPZ(X 1=k, absorption in {0,1])
k=0

3
= ¥ P¥(Z; =k)P*(absorption in {0,1}) (2.160)
k=0 ’

= (O.25+0.25)$<1 + 0.25u + 0.25%0 = 0.5 + 0.25u

whence n=2/3. The stationary distribution for the subclass {0,1} is (1/3,2/3).
Therefore '

(2.161)

n=joo
Similarly lim,_,.. p% =4/9. In summary

13220 0 _

o {13230 0

Im P = 15940013} (2.162)
0 00!

The technique used in this argument, namely conditioning on the first step,

often proves very useful. O

2.6. Markov chain Monte Carlo methods
An interesting recent application of the asymptotic theory of Markov chains is

to Monte Carlo calculation of complicated integrals. There is a variety of prob-
lems that reduce to needing to compute such an integral.

Example (Likelihood) Let L,(B) be a likelihood function based on an
observation x of a random vector X. We make no particular assumptions of the
structure of X: it could be a sequence of iid random variables, or a realization of
a stochastic process. Frequently we can write

L. (8) = h(x;0)/c(0) (2.163)

where £ is known, but the normalizing constant ¢ (@)= Ih(x;ﬁ)dx is too compli-
cated to compute explicitly.




Discrete time Markov chains

cular chain)  Let

(2.159)

+{3}. Starting from state 2 where
; partitioning the sum into the pos-

),11)
1 {0,1}) (2.160)

25%0 = 0.5 + 0.25u

for the subclass {0,1} is (1/3,2/3).

(2.161)

(2.162)

ely conditioning on the first step,
d

ds

mptotic theory of Markov chains is
ntegrals. There is a variety of prob-
 an integral.

a likelihood function based on an
ke no particular assumptions of the
random variables, or a realization of
e

(2.163)

stant ¢ (0)=Jh(x;9)dx is too compli-

Markov chain Monte Carlo methods 53

Example (Mixture distribution)

Suppose that we have iid observations from a mixture of exponential distribu-
tions with density

k
£:8) = Tphe ™. (2.164)
j=l

Here k is assumed known, so the unknown parameier is
0=(p1s- - - PrsMs -« - »}g). One can, of course, write out the Iikelihood as the
product of terms of the form (2.164), but the maximization problem can be
unpleasant due to difficulties in the numerical evaluation of some of the terms.
We can put it in the form needed for Markov chain Monte Carlo (or MCMC for
short) by letting A be a random variable, taking on the value A; with probability
Di- Then

f(x;0) = EAe™. (2.165)
Considering a iid sequence A;, the likelihood can be written
n n n
L(8) = [[f0x:0) = [TEAe ™ = E[TAe ™. (2.166)
i=1 i=1 =]
a

Example (Posterior distribution) Suppose that 8, instead of being an
unknown constant, is a random variable with a distribution (@), often called
the prior distribution. If we have data x that conditionally upon 0 are drawn
from a joint distribution f (x| @), we can use Bayes’ theorem to compute the
conditional distribution

n@ | x) = 0@ | (2.167)
[ x| @)mc0)a0

called the posterior distribution, since it is the distribution of 9 after x was
observed. The integral in the denominator is often difficuit to compute, as is the
ratio of integrals (called posterior expectation)

[ fx | O)n(@)d0
[rx | oyn(erdn

Jone|x) = (2.168)

O

Example (Monte Carlo testing) Let H be a simple hypothesis about
the distribution of a multidimensional random variable X. Suppose that we have
a continuous test statistic T=T'(X), and we reject H for large observed values £
of T. Let f be the density of 7, and assume that we can simulate a random
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sample 1, .. . ,t, from f. We base the observed significance level, or P-value,
of ¢ on its rank among the n values £,t5, . . . ,%,. If the rank of 1 is &, we reject Hy
at the k/n-level, since the rank is uniformly distributed on 1,...,n when Hy is
true (Bickel and Doksum, 1977, p. 347). In fact, all that is needed for this to
hold is that the T; have a joint distribution which is invariant under permuta-
tions of the indices. Such distributions are called exchangeable, and arise, e.g.,
when the random variables are conditionally independent, given another ran-
dom variable. ‘

We can extend this procedure to the case of a composite null hypothesis,
provided that the problem admits a sufficient statistic. We then merely simulate
from the conditional distribution, given the observed values of the sufficient
statistics. Of course, this simulation problem can be quite hard. O

Example (The Rasch model of item analysis) Consider r individuals
responding to ¢ test items each. Let X;=I(individual i answered item j
correctly). Rasch (1960) suggested the model

P(X;=1) = exp(oy+B;(1+exp(o;+;) (2.169)
where 3, 0,=3 jﬁ ;0. The likelihood can be written

I TexpGi. o) TTexp(x.;B5)
expl{ou+B)) T " 1;I ™ @.170)
i (1+exp(oy+;)) H(1+exp(ai+ﬂj)) ' ’
b

and we see that the totals x;, =Y x; and x,;=Y x;; are sufficient statistics (cf.
T = i

Appendix A). Hence, given these totals, all possible binary tables have the same
probability. The problem is to device an enumeration scheme for all these
tables. It is a very hard combinatorial problem. : O

As it happens, it is often possible to construct a Markov chain with limiting dis-
tribution proportional to a given function f(u). One can then estimate fa)du
by running a Monte Carlo simulation of the Markov chain long enough to reach
equilibrium. Exactly how long that is depends on the problem at hand.

Example (Likelihood, continued) Let f(x)=g(x)/c be a fixed density,
chosen so that A(x;8)>0 implies that f (x)>0. The mle of @ maximizes

L, (08) = M. (2171)
c(@)/c

For any © we can evaluate 4 (x;0)/g (x), but not c(@)c. Note that

) v &%)
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If we can generate samples from f we can estimate the expectation on the right-
hand side of (2.172). The classical Monte Carlo method is to draw N observa-
tions X, iid from fand then compute (1/r)Xh (x;0)/g(x;). But fis a multivariate
distribution, and it may not be easy to generate random samples from this distri-

bution. O

The MCMC method, instead of generating iid observations, generates depen-
dent samples from a Markov chain with stationary distribution f=(f(x); xe §)
and vses Theorem 2.11 to obtain the convergence. How can this be done? One
approach, the Gibbs sampler, was intreduced into the statistical literature by
Geman and Geman (1984), although it originates in statistical physics where it
is called the heat bath method. The Gibbs sampler computes successive values
of the vector X. At stage ¢ we have a current vector x(¢). At the next stage we
update each component of X in turn. Suppose we have updated x, .. .,x;_; with
new values x,(z+1), ... ,x_; (¢t +1). The new value at component i, x;(t +1), is
drawn at random from fi(e | xi71(r +1),x™ () (recall the notation from section
1.2). At each stage, each component is updated just once. Variants of the Gibbs
sampler have the order of updating change from stage to stage, ¢.g., by going
through the components in the order of a random permutation, chosen anew at
each iteration.

Proposition 2.7 If f(x) satisfies the positivity condition (1.14), the Gibbs
sampler is an ergodic Markov chain with stationary distribution f = (f(x); x€ S).

Proof It is clear from the construction that the conditional distribution of
x(¢ +1) given the past only depends on x(t), so the process is Markovian. The
transition matrix has elements

Pry =101 | X202 | 1. X0 30.3x5) - fulom | Y77 (2.173)

The positivity assumption guarantees that py >0 for all x,yeS§ = {x:f(x)>0}.
Now note that P=P,IP; - - - P,, where IP; has {x,y)-clement

Pixy =f(yi l X DI(y.;=x). 2.174)

To see this, it is perhaps easiest to do the case m =2, from which the general
argument follows by a similar argument. Write

[IPI ]P2] ; = EPI::.:PZ:z,y
z

X,

= Yfilz) | X)Wz =x) (2.175)

X fa(ya !Z—z)i(Y-2= 2).

The only z’s for which the summands do not vanish have z;=y|, z=x, and
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2§ =x§=y¥. Hence the sum is

{]Pln:'z]” = A1 | x)fa02 |yoa8) (2.176) -

as was to be shown. Hence

Py _ JO%D A0 @.177)
Piyx Jilx: IY—i) f(X) :
Recall from section 2.4 that this means that P; is a reversible Markov chain
with stationary distribution f. Therefore '

fP=fPPy - P, =fP P, =fP, =1, 2.178)

verifying that the chain has stationary distribution f. By positivity it is irreduci-
ble, so the result follows from Theorem 2.7. o

Example (Mixture distribution, continued) The Gibbs sampler draws,
given 9, vectors A=(Aq, - .., Aq). Since in this very simple case the A; are iid,
the Gibbs sampler just repeatedly generates iid A®, i=1,...,N, and then esti-
mates the likelihood by averaging

2 1LY A 5 Al
L(@) = — 3 [[APe ™™™ (2.179)
N ;lyiai :
Rather Targe values of N may be needed to evaluate the likelihood p;recisely
enough. Of course, in this simple case one can compute the likelihood exactly.
Standard optimization routines can be used to find the mle of 6. H|

Ideally, in order to obtain observations from the stationary distribution 7 of the
Gibbs sampler, we should choose a starting value from x. But if we knew how
to do this there would be no need to run the Gibbs sampler! As outlined in Exer-
cise 14, the convergence to the stationary distribution is exponentially fast, so
we first run the Gibbs sampler for a burn-in period in order to get close enough
to the stationary distribution. Only after the burn-in petiod do we actually start
to collect observations. The proper length of the burn-in period is a subject of

current research.

Example (Monte Cario testing, continued) Since the Gibbs sampler
maintains detailed balance it is reversible. The reverse chain must have the
same stationary distribution as the forward chain. We use this to creats
exchangeable paths. Starting from the observed value Xo=x, we run the Gibbs
sampler backwards n steps, yielding X_,=y, say. The we simulate N—1 paths n
steps forward in time, all starting from y, yielding observations X§ D =x@+,
i=1,...,N—1.Since y (at least very nearly) is an observation from =, the same
is true for x@, ... x®. Given y, Xo. X, ..., XE" are independent, so they
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{y1,%5) (2.176) -
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and the earlier discussion of Monte Carlo test-

form an exchangeable sequence,
O

ing from exchangeable sequences applies.

gxample (The Rasch mode! of item analysis, continued) LetSbe
the set of rxe-tables having marginals x;. and x,;. We need to construct a Mar-
Kov chain having the uniform distribution on § as its stationary distribution. Let
y=0i) be a configuration in S. Consider any sub-rectangle of y having ones in

two diagonally opposite comners and zeros in the other opposite corners.

Exchanging the zeros with ones, and the ones with zeros, does not change the

margins, 0 it yields another rxc-table z in S. We call this procedure a switch,
and the sub-rectangle switchable. Figﬁ_re 2.3 shows this concept.

1 ojo 10 2
0 1 1 110 3
o 61 0740 1
1o o o 1 2
1 1 0 0 O 2
7 2 2 2 1110

Figure2.3. Two switchable sub-rectangles ina 5x5 table.

Any table ze S can be reached from y by a series of switches. To produce our
Markov chain, pick a non-empty rectangle at random, and switch it if it is
switchable. Clearly this preserves the margins. To see that it has a uniform sta-
tionary distribution, we just need to check that the transition matrix is sym-

metric. But that is easy to see: if we can go from y to z in one step, we must do
that by switching a single rectangle. Thus Py, =FPyy, since the opposite switch

of the same rectangle brings us back.

In order to apply this procedure to the (very small) table in Figure 2.3, we
need to define an appropriate test statistic. This should reflect the type of alter-
native model we have in mind. Here one may consider the idea that there is an
interaction between difficulty and ability. We can reamange the table so that
individuals are ordered by increasing total score (row sum), and questions are
ordered by decreasing success rate (column sum). One possible such reordering
(ties make it non-unique) is given in Figure 2.4. A measure of interaction could
be the % statistic for independence in the 252 table given by summing the two
lowest and the two highest scores in the two most solved and the two least
solved questions. This statistic is (N n—clrllN)z/(ctrl/N), which for this table
is (1-2x3/52/(2x3/5)=.033. Simulating this using the Monte Carlo testing
I}lethod outlined above, by first moving 2,000 steps backwards, and then 99
times move 2,000 steps forward, yields 16 that were larger than and 7 that were
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c 0 1 0 0 1

1 1 0 0 0 2

1 0 0 0 1 2

1 0 0 1 0O 2

0 1 1 1 0 3

3 2 2 2 1|10
Figure 2.4.  Reordering of Figure 2.3.

equal to 0.333, for a P-value between 0.16 and 0.23. We find no evidence
against the Rasch model based on this test statistic. |

The first Markov chain Monte Carlo method was developed by Metropolis ¢t al.
(1953). The algorithm, called the Metropolis algorithm, employs an auxiliary
symmetric transition matrix (g,y} (having gy, =4, ;). As before, we want to find
a Markov chain with stationary distribution £ The next value of the Markoy
chain, when the present value is x, is generated by the following update method:

1. Simulate y from the distribution g, ..

2. Calculate the odds ratio r=f (v Vf {x).

3. If r=1 the next value is y. ‘

4. ¥ r<l gotoy with probability r, and stay at x with probability 1-r.

It should be clear that the next state only depends on the previous state, so that
this is, indeed, a Markov chain. As for the Gibbs sampler, the simplest way to
see that it has stationary distribution fis to note that jt satisfies detailed balance.
Consider a finite state space {1,...,K}, and order the values so that FOEFG)
for i<j. Then we have py=g;, while Pi=q;:SEYIG)=pyf (VF (), using the
symmetry of the auxiliary transition matrix. A generalization of both the
Metropolis algorithm and the Gibbs sampler is due to Hastings (1971), and out-
lined in Exercise 10. We have demonstrated the following resuit.

e e T e M S L L

Proposition 2.8  If f(x) satisfies the positivity condition (1.14), the Metrop-
olis algorithm generates an ergodic Markov chain with stationary distribution

I =(f(x); x 5).

2.7. Likelihood theory for Markov chains

Given a set of observations from a two-state Markov chain, we saw in section
2.1 how it is possible to estimate the transition matrix, and thus any function
thereof, using the method of maximum likelihood. In this section we study the
general finite-state Markov chain, and discuss the likelihood theory for both
estimation and testing. We will first look at the nonparametric case, where the
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parameter of interest is a point in the space of all transition matrices. Let
Nij(n)=2;=1 1(X;.1=i,X;=j) count the number of /,j-transitions. If Ny(r)=n;,
the likelihood (2.9) takes the form

n
L(!)U’]P) = po(xo)npxl-hzl
{=1

=poxo)[1T1P = Poxe)IL:(P)

ies jes§ ie§

(2.180)

where Li(IP} = Hje spz,f’ depends only on the elements in the jth row IP;, of IP.

In other words, we are estimating |S| independent probability distributions.
Let I(po.IP)=log L{p,.IP). Then (2.180) corresponds, with obvious notation, to
(o, IP) = lo(po) + X 4i(Py). (2.181)
ieS§
We want to maximize ! subject to the constraints that pg 17=1, where 1 is a vec-

tor of ones, and that P, 17=1. Each of these maximizations can be done
separately using Lagrange multipliers by differentiating a term of the form

[,'(IP,'.) + l(]P,-,lT— 1)= Zﬂ;j ]ogp,-j + A‘(ZPU - 1. (2.182)
jes jes
Setting the derivatives equal to zero and writing n; = 3, n;; we get
jes
- n.. ~
Py = ;‘L when n;>0 and po(i) = 1(i=xq). (2.183)
i

‘We can think of this as multinomial likelihoods with random sample sizes. The
estimates are very reasonable: ﬁu is just the observed proportion of ij-
transitions among all transitions out of i. If ;=0 there are no exits from state i.
The likelihood is then flat as a function of p; for any j in S, and we coavention-
ally set p;=0, i#j.

Let S={ieS:n;21} be the observed part of the state space. Obviously, Sis
always finite. We will, for simplicity, ignore the possibility that T;=n, i.e., that
state § is reached for the first time at time r, since we then cannot estimate any
transitions out of state 7 (this problem can usually be solved by taking one more
observation), Notice that (ﬁ,-j, i,je8) is a stochastic matrix over 5. The class
structure of § is determined by IP.

Proposition 2.9  The Markov chain on §2 governed by IAP, has a class of
transient states, and precisely one closed class Sp of persistent states.

Proof Using Theorem 2.5, we need to show that Sp is closed. First note that
Xn—3%,- whenever m<m’. Choose mgy so that x,, €Sp but x,,&Sp for m<my.
Then {x,,. .. . ,x,} is closed. O
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Remark In particular, PP is irreducible on § if §p =S. On the other extreme,
Sp could be empty, making the estimated chain transient. This would happen if
no state entered was ever returned to. 0

With only one observation of the initial distribution one cannot learn much

about it. There are two possible approaches. One is to condition on Xy=x¢, and

study the conditional likelihood
LE(IP) = TILAIP).

ie§

(2.184)

The conditional mle’s are the same as the unconditional ones. The other possi-
bility, appropriate if the chain has been running for a long time, is to use the sta-
tionary initial distribution. This is equivalent to maximizing L(po,P) subject to
the additional constraint that py=poIP. A drawback is that the nice factorization
of the likelihood into terms that only depend on rows of IP no longer obtains.

Application (Snogqualmie Falls precipitation, continued) For a
two-state chain ®=(1-p 1;,p 11 V{1-(P11-P01 ). If X, =0 we have

(I-po)™pes (1-p )™ P11
i-pu-ru) '

L(w,IP) = (2.185)

Taking logarithms (note that we have parametrized the model so that the rows’

sum to one), we obtain the likelihood equations

_mptl oA 1
(I-p1iy  Pu 1-(pu-ra)

e oL (2.186)
(1—pe) prPu 1-Pn—pru) '

which are mixed polynomial equations of second order. Clearly, as the ny
increase, the effect of the initial distribution diminishes.

For the Snoqualmie Falls data there were 11 dry and 25 rainy January 1.
Hence the likelihood becomes

L(m,IP) = (1-po ) pit*+ ¥ (1—p 1 B p$P (1~(p11—p o))

which is maximized by pg; =0.397 and p,, =0.834, virtually the same estimates
as for the conditional method, namely po; =0.398 and p;; =0.834. O

In terms of long term behavior of the mle’s, we cannot hope to estimate IP well
if it does not correspond to an irreducible chain, since we need a large number
of (i,j)-transitions for all i and J. If there is more than one persistent class we
only get to see one of the classes. Therefore we assume that we are dealing with
an ergodic chain. It is convenient to introduce the step chain (¥,,n20) defined

e e

s

iR

&
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Likelihood theory for Markov chains
by Yp=(Xn:Xn+1)- If we know Y, we know where X, is gﬁing next,

Lemma 2.5 {a) (Y,) is a Markov chain with state space
S={(i,j)e Si: p,-j">0], initial distribution p, given by po(i, J)=po(i)p;; and transi-
tion matrix P=(py; 1) given by _
Pu = 10 =Dpy. (2.187)
() H (X;) is~crgodic ang Po=m, then (Y,) is also ergodic with stationary initial
distribution 7 given by n(i, /)=n(i)p;;.
Proof
P(Y,=(b)) | Yooy =tkia)s - .. Yo=(knsla))
= P(Xy 1=/ Xu=i | Xo=l1 Xp1 =k, - -
= P(Xp sy =X,y =i | X,=11,X, 1 =k,)
= P(Y,=(.)) | Yy =k1,11))
verifying the Markov property. Furthermore, (2.188) can be evaluated as
PV, =(i /) | Yoy =(h0)) = P(Xy 1 =] | X =i, Xy =0, X, =k)
x P(X,=i | X,=1,X,_;=k)

| PXK =i | X=i) if it
- 0 otherwise.

. !XO =kﬂ)
(2.188)

(2.189)

The remaining parts are proved using similar computations. ]
We now use the step chain and the ergodic theorem to show strong consistency

of the estimator IP. Let ﬁfj(n) be the mle of p; based on observing the chain up
to time 7.

Theorem 2,14  If (X,) is an ergodic chain, then py(n) — p;; with probabil-
ity 1 as n—eo for all i, j S, regardless of the initial distribution.

Proof If pi=0then P(ﬁ,-j(n }=0)=1, so we only need to consider (i,j)e S. But
n
Ny(n} = 3, 1(Y;=(i.j)) (2.190)
k=l

and since the step chain is ergodic we have from Theorem 2.10 and Lemma 2.5
(a) that
"17 (n) —mpy; with probability 1. 2.191)

Using Theorem 2.10 again we see that
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L N(ny -, with probability 1, 2.19)
H
whence the result follows. O

The mle’s are asymptotically normally distributed. To show this, we first need a
technical result. Let Wi™=X 147,(m) be the state entered directly after the mth

return to i, and write Q,-j(n)=zf:fl‘ YWY =j). Finally let Q;(n)=(Q;(n).jeS).

Lemma 2.6  The vectors Q;(n) for i § are independent having multinomial
distributions with sample size [n%;] and success probabilities IP;,.

Proof  We need to show that the W™ are independent with P(W{™ = )=py.
But this follows from the strong Markov property, since given that X7, =i the
future and the past are independent. 4

We are now able to establish the asymptotic normality of the mle.

Theorem 2.15  Let X, be an ergodic process. Then, regardless of the initial
distribution,

d
Ni(mYA@y(n)-py), i.je S| »N(0,) O @193)

pi(1=py) (&j)=(k,1)
Zym =1 —Pypu i=kj#l (2.194)
0 otherwise

Remark  The asymptotic covariance has multinomial structure within rows
and independence between rows. Note, however, that we have to use a random
norming, which is quite different from asymptotics for iid sequences. |

a.s.

Proof  Since nmy/N;(n)—>1 we need only show that

d
(nm;)* » bje S} = NO,L). (2.195)

The basic idea is that Nj(n) is about the same as Q;(n), and N(n) is about
{nm;]. From the results in Appendix A and the lemma we know that

[ 0y(m)-[nmlp;; ies
[mt,-]"s L]

d
- N(0,Z). {(2.196)
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Likelihood theory for Markov chains e
Hence we just need to show that these approximations are adequate, in the
sense that
P
D, = (n) #(Ny(n)-Ni(n)p;;—Q;;(n) +[nm;)py) —0. 2197)

For fixed i.j let Z,= l(W('")-J)—p,J and §,, Z"Z The Z; are iid with mean zero,
variance 62, and fourth moment k. We can write D, from (2.197) in terms of S,

as
D, =t *(Sn,my — Stam)- (2.198)

Then
P(| D, | >€) S P(| Dy>e, | Ni(m)—nm; | <xn”)
+ P(| Ny(n)y-nm; | >am*) (2.199)

where x is a number to be chosen below. The first term of the right-hand side of
(2.199) can be written as a sum over the possible values M of Ny(n) satisfying
the inequality |m-nm; |_xn" Using Chebyshev’s inequality twice yields an
upper bound of

1
Y~ B P (2.200)

meM i€

Since S,;—S[g) is a sum of |m—[nn,-]+1| of the Z; we have, using
13:(2;';2,-)4 = nk + 3n(n-1)0*, that
ESp—Szy)* € 0m*+ Dx+30m % +1)%0%. (2.201)

The sum in (2.200) has at most 2xn’" +1 terms, so we get

P(| D, |>e)< ((xn +1)e+30m +1)%6%)

21‘52 4
+ P(| Ny(n)-nm; | >an*). (2.202)

The first term on the right-hand side goes to zero, while the second can be made
arbitrarily small by making x large and using Theorem 2.10. O

Application (Snoqualmie Falls precipitation, continued) Using the
result of Theorem 2.15, we see that pg; and p; are asymptotically independent.
Furthermore, p; is approximately normally distributed with mean p; and vari-
ance p;((1-p;Vum;. We estimate that variance using pu=n;/n; and
fiy=n,/n where ni=0 nf}, etc. Since ny;=643, n,=771 and n=1080, an
asymptotic 95% confidence band for pq; is (0.808,0.860), while one for pg; is
(0.343,0.453) using ng;=123 and no=309. These are individual confidence




64 Discrete time Markov chains

bands, and the asymptotic joint coverage probability of the rectangle formed by
these intervals is, using the asymptotic independence, 0.95%= 0.903. To find an
asymptotic 95% joint confidence set we can use individual 97.5% intervals,
which yield the rectangle (0.775,0.893)x(0.272,0.524). (W

Sometimes it is natural to look at a smaller model than the full nonparametric
model. One may have some relatively simple model in mind, which is
parametrized in some fashion.

Application (Russian linguistics) One of Markov’s own examples of a
Markov chain is in his 1924 probability text. The reconstruction here is using
the description by Maistrov (1974). Markov studied a piece of text from
Puskin’s ‘‘Eugen Onegin’, and classified 20,000 consecutive characters as
vowels or consonants. The data are given below:

Table 2.3 Eugen Onegin characters

Vowel next  Consonant next  Total
Vowel 1106 7532 3638
Consonant 7533 3829 11362
Total 8639 11361 20000

It is quite clear that the choice of vowel or consonant following a given letter is
not independent of the letter. A very simple linguistic model is to assume a con-
stant probability p of switching from one type of character to another. The tran-
sition matrix for this hypothesis is

= [(1-pp ]

= . 2.203
[ pl-p : (2203)

i.e., a one-dimensional subset of the space of stochastic matrices. 8

For simplicity we will look only at the case of a finite state space. Assume that
the transition probabilities p;=p;;(8) depend on an unknown parameter 0, tak-
ing values in ©, an open subset of R". We will need some regularity conditions:
Conditions A: (i) D={i,j :p;;(8)>0] is independent of 8.

(ii) Each p;;(8)e C 3,i.e., each p;,(0) is three times continuously differentiable.
(i) The dxr-matrix dp;(0Y00;, i.je D, k=1,. .. ,r, where d is the cardinality of
D, has rank r.

(iv) For each © there is only one ergodic class and no transient states.

Likelihood the

We now
argue conditior

H(

where as bef
liketihood equ:

L

o
Let 8, be the
(1961). We wil
Theorem 2.1
(i) Thereisac
(i) Vn (6-8)
element

Iy

and Jt,-(ﬁo) is 1l
(iii) Varr (6-

The quantity i

Application
imizing the lo;

I

where 1 denc

p=(no1+n10)4
likelihood is

I’

so from T
(=N =(
(0.747,0.759).
confidence in
quate.



