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programming algorithm due to Viterbi (1967), while for the second we iterate
the Viterbi algorithm to reconstruct © given our current estimate of IP, and use
the nonparametric mle of IP from the reconstruction in the next iteration of the
Viterbi algorithm.

The basic idea of the Viterbi algorithm is as follows. At time £, suppose
that we have computed the most likely sequence up to this time for both the
possible values of 8,. We now proceed to determine the most likely history up to
8,.,1=j. If this history has 0,=i it must include that of the previously calculated
most likely histories which ends in 8,=. In this way one moves forward through
the data, maintaining and updating two possible most likely histories at each
time step. At the end, we compare the likelihood of the two histories to choose
between them. Formally, write for 6,=0 or 1

H/(8) = (80,8, ....8,1}

where 8,0, . . .

(2.348)

,B,_; maximizes (for the given 6,)
-1

L (8o, - - - ,8,) = W8 )f(xo | 86)TTPe, O+ 10k s1 | ). (2.349)
k=0

Here 7 is the stationary distribution of the chain with transition matrix IP, and f

is the conditional density of x given 6. In this application we take fto be Gaus-

sian with mean O or 1 and common variance 6. Then L, is just the likelihood of

the hidden Markov chain (Xy, .. .,X,), conditional upon the hidden sequence

By, .. 9, Now consider the maximum L (9, )—LI(BO, .. 9, 1.8,). This satisfies

the recursive relation

L= MaxL (9P, 8, /r+1 | Brs): (2.350)

Letting @, be the maximizing value in the right-hand side of (2.350) we can
write a recursion for the history H, as

Hi (@) = {Hf(ér)-ér}-

In practice it often happens that ét is the same for both values of @, ,,. Then the
two most likely histories have merged at time ¢, and we no longer need to keep
them in active memory.

{2.351)

Before we can apply the procedure to actual data, we need to estimate the
.noise variance 2. The exact value is not very critical; a simple approach is to
use the threshold reconstruction of assigning all values above % to 1, and all
below ! to zero, and then compute the variance of the residual from the respec-
tive means. For the data in Figure 2.18 this yields 6=0.067. The reconstruction
as outlined above was then applied to the data three times (each time updating
the variance estimate and the transition matrix estimate based on the previous
reconstruction), at which point there was no change in the updated state vector
0. The resulting transition probabilities were pg; =0.64 and p10=0.06, and the
final 62=0.073. The restoration is shown, together with the maximum likelihood
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in Figure 2.19. Clearly, for this quite noisy sequence it is not
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Figure 2.19.  Maximum ikelihood (upper panel} and Bayesian reconstruction
(lower panel) of the signal in Figure 2.18.

2.13. Bibliographic remarks
Most of the material in sections 2.1-2.5 is standard. Among my sources have
been Bhattacharya and Waymire (1990), Cox and Miller (1965), Feller (1968),
Freedman (1983), Grimmett and Stirzaker (1982), and Whittle (1992}, each of
which is (in its own way) an excellent introduction to the behavior of Markov
chains.

The material in section 2.6 owes much to discussions with and papers by
Julian Besag, Elizabeth Thompson, and Charlie Geyer. Geyer (1991) and Tier-
ney (1991) are nice presentations of the procedures; the former concentrating
on likelihood evaluation, and the latier on computing posterior distributions.
Discussion of implementation can be found in Geyer (1992). Some recent
advances are in the dissertations by Lin (1993) and Higdon (1994). The Monte
Carlo test examples come from Besag and Clifford (1989).
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Section 2.7 follows largely Jacobsen and Keiding (1990). The standard
source is Billingsley (1961), but it can be difficult to follow at times.

The linear model for higher order chains was developed by Raftery
(1985a,b; Raftery and Tavaré, 1994) in a series of papers. A dissertation by Le
(1990) developed these ideas further, and the dissertation by Schimert (1992)
deals with estimation problems.

Section 2.9 borrows much theory from Cox and Miller (1965) while the
application is inspired by Katz (1977). The recursion (2.238) was pointed out by
Julian Besag. Section 2.10 is based on the presentation by Doyie and Snell
{1984). The material in section 2.11 is from my monograph (Guttorp, 1991).
The application to the Amazon indian tribe follows Thompson (1976).

Finally, section 2.12 comes from two main sources, namely Zucchini and
Guttorp (1991) for the precipitation model, and Fredkin and Rice (1992) for the
application to neurophysiology. General material on hidden Markov models can
be found in Juang and Rabiner (1991}, albeit from the point of view of speech
recognition, and Bayesian image analysis is described in Besag (1989).

2.14. Exercises
Theoretical exercises

1. Prove that the Markov property (2.5) is equivalent to each of the following
statements:

{a) Let Ty be a set of times later than &, and Ty a set of times less than or equal
to n. Let tg=max T,. Then

P(X,C=xk, keT, | X;=X;JE To)= P(Xk"-:xk‘ keT, | X’n=xfn)‘

(b) Let T, be a set of times later than n, and T, a set of times prior to n. Then
P(X,=x. ke T\, X;=x,le Ty | X,=x,)
= P(X=xi,ke Ty | X, =x)PXi=xp,l€ Tg | Xy=x,).
2. Show that the time spent in state k upon each return to it for a Markov chain
has a geometric distribution with mean 1/4i—py).

3. Show that Ag=1-27% in the Reid—Landau model of radiation damage.

4, Prove that for a fair simple random walk on the integer lattice in 2 dimen-
stons, 0 is persistent.

5. Prove the time invariance result given by equation (2.80).

6. Show that a transition matrix IP on a finite state space has a uniform station-
ary distribution iff it is doubly stochastic.
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7. Derive the marginal distribution of the number of red balls after # draws from
a Pélya um.

8. Verify that Theorem 2.7 holds when the process starts from any state Jeading
to the ergodic state k.

9. Show that the Hardy—Weinberg proportions are the stationary distribution for
the chain with transition matrix (2.142).

10 A slight variant of the Metropolis algorithm, which is actually a generaliza-
tion of both the Gibbs sampler and the Metropolis algorithm, was proposed by
Hastings (1970). Let O be a transition matrix, not necessarily symmetric, and
assume for simplicity that the target function f (x)>0 for all x. Define

L30G.x)
F ()2 xy)

when f ()@ (x,¥)>0, and ofx,y)=1 otherwise. Let X,=x, and generate a candi-
date point Y=y from the distribution @ (x,s). With probability o(x,y) we set
X, +1=Y, and with the complementary probability X, ,;=x.

ofx,y) = min l

(a) Show that the process (X,) is a Markov chain with stationary distribution f.
(b) Show that the Metropolis algorithm results for symmetric Q.

11. Let X be a 0-1 process, and consider the distribution of §, —E X In
order to evaluate (2.238) we must compute Q(¢)". This can be done by dlago-

nalization: 0 (¢)=E D E~! where E contains the right eigenvectors of Q and D is
the diagonal matrix of the corresponding eigenvalues.

(a) Show that the eigenvalues solve
A - Mpy e 4+pog) + det(IP)e™ = (.

(b) Show that the eigenvectors are given by

qo(?) = pore™, M) +po)
and
4 (1) = (o1, A () +pgo).

(c) Using that Re(t)+h;(1)=poo+p11¢™ and ho(tDh: (1)=(poo—por e ™, show that
(2.238) simplifies to
A - —p o )(AM-AS)

) '

() = EMe ™) =

(d) Deduce Fhat

n(Eh +ple) mPo1P10Pw+P i)
Ga+pl  Po+pi)
Hint: Argue that log i (t)=nlogh,() and do a Taylor expansion of the

8,~AsN
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eigenvalue.

. 20.1tis
12. Let X, be a 0-1 chain. Derive the correlation between EiX and Z" continu
where [<m. Apply the result to the Snoqualmie Falls data with k=1, /=7, m "8 the den:
and n=14, state ca
13. Let py=bc*!, k>1 and p0=1—-2k21pk. of X, 8
(a) Write P(s) in the form f;l Ig;{;
P(s)= 2B o5 By,
V+3s
This is called a fractional linear generating function. (b.) Sho
(b) Consider a BGW branching process with offspring distribution given by fying
P(s). Show by induction that P.(s) is a fractional linear generating function.
14. Suppose that p,-j>0 for all i,je S, where S is a finite set, so that the chain X,
has a limiting distribution. Show that 21. The
|p(n) -1 I < (! da)n tem dt?S
accordir
where d=|§ | and S=minpy.
Hint: Divide the terms in the equation EJ-(PU'PEJ):O into those with positive
and negative values. The sum of the positive terms is bounded by 1-»8. Now where &
bound max;p{ *V~min;p{? *" using Chapman—Kolmogorov. directly.
15. Using the parametric result in Theorem 2.16 and the parametrization satistyin
Ppi(8)=6; verify the nonparametric result in Theorem 2.14.
16. Prove or disprove the following statement: The Markov property is where &
equivalent to the property that for any class of (measurable) sets A1, ... ,A, we as know
have that . ters. The
P(X,cA, | X1€4A1, .. .\ Xy €Ang) = P(X, €A, | Xy €A, ). vations
sions
17. Let S, be a simple random walk. Show that |S, | is a Markov chain, and
determine its transition probabilities.
Hint: What can you say about the distribution of S, given the values of and
AL
18. Show that all two-state chains are reversible.
where th
19. Let (X} be a K-state ergodic Markov chain with transition matrix P, such
that all P;>0. Let p=(p,, . .. ,px) be a probability distribution. Develop a likel-
ihood ratio test for the hypothesis that p is a stationary distribution for (X;). Hint: U
Remark: You may not be able to get an explicit solution (except if K=2), but variable:
you should develop a system of equations that the constrained estimates have to 22, Let (

satisfy. measure
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20, It is not very difficult (at least in principle) to allow for a Markov chain with
continuous state space. Let X;,X,... be continuous random variables such that
the density of X given that X;_,=x is given by f (x,+). Similar to the discrete
state case, we say that the process is a Markov chain if the conditional density
of X, given Xpq, .. ., Xy, depends only on the value of X,,_.

(a) Let f,(x,+) denote the conditional density of X,,, given that Xy=x. Show that
the Chapman—Kolmogorov equation holds in the form

foemty) = @ fa@d.
R

(b) Show that the stationary distribution (when it exists) has density n(y) satis-
fying
n(y) = [nGe)ftey)dx
R

21. The hidder Markov model originated in work in engineering, where a sys-
tem described by the state variable X, of dimension s was assumed to develop
according to the state equation

Xk = Xk_lA + &
where €, is assumed N(0,021,,,). However, the system cannot be observed

directly. Instead, one observes a related random vector Yy, of dimension o,
satisfying the observation equation

Yk = XkB + 8]‘
where 3, is N(0,6%1,5,). The parameters A, B, 62 and 6§ were originally taken
as known, although modern applications allow for estimation of these parame-
ters. The Kalman filter (Kalman, 1960) estimates the value of X, given obser-

vations Y§. Show that m,=E(X; | Y¥) and T,=Var(X, | Y}) satisfy the recur-
sions

my . = meA + (Ye-mB)K,
and

Iy =ATT (M~ B(BT,B + ¢}y 'BNA + ¢Z1
where the gain K, is given by

K, = (BT,B7 + 60 'B'T,A.

Hint: Use the formula for conditional expectation of jointly Gaussian random
variables, 1. e., normal regression.

22. Let (X) be a random walk, but suppose that it is observed with independent
measurement etror.
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(a) Write this process in state space form.
(b) Derive the Kalman filter for it.

Computing exercises

C1. Given a subroutine that generates multinomial random vectors from input
values for sample size and probability vector, how would you build a subroutine
that generates a Markov chain with given (finite-dimensional) transition Matrix
P?

C2. (a) How long a stretch of data from an ergodic chain do you need to estj-
mate JP accurately ? You choose P and what you mean by “‘accurately’’,

(b) How long a stretch do you need to estimate the stationary distribution acey-
rately?

C3. (a) Let (X;) be a Markov chain with transition matrix
0.1 02 0.3 0.3 0.1

0.5 0.1 0.1 0.1 0.2
P=101 0501 01 02].

0.1 02 0.5 0.1 0.1

02 02 0.1 04 0.1

Starting from state 1, find E'(T's).

(b) Suppose that you do not know P, but have a realization (6, £<100) of (X))

Find a way of estimating the quantity in (a). Perform the estimation on a simu-
lated realization.

(c) The expected value in part (a) is a certain function of
Fis(t;Py =P {Ts<t].

It is complicated to determine this distribution analytically, even when P is
known. If P is unknown, it is necessary to apply simulation methods. The
bootstrap (Efron, 1978) can be modified to do this. Let P be the estimated tran-
sition matrix. Generate a path from P, and use that to estimate the transition
matrix the usual way, yielding a matrix P*. The bootstrap idea is to say that the

distribution of
Vi (F 15 (1:P)-F 15(t:P))
is well approximated by that of
Vi (F 5 (6:P%)—F 15(£:P)).

In practice, one would use repeated samples from P to get realizations of the
hitting time, and then use the empirical distribution function of these - hitting
times to estimate F15(¢;P) as well as whatever function of it you are interested
in. The approximation argument above is the theoretical basis for this pro-
cedure. Compute a bootstrap estimate using the sample generated in part (b).
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Use a bootstrap sample of size 100. Compare the mean of the resulting estimate
1o the answer in (b). Can you use the bootstrap distribution to estimate the vari-
ance of the estimated mean?

C4. An electrical network consists of nine nodes, labeled a to i. A battery is
connected between nodes a and ¢ such that the potential difference v (a)-v (i) is
1. [Without loss of generality v(a)=1, v(i)=0.] The network consists of the fol-
lowing eighteen wires, with the given resistances:

10-ohm resistance: ¢f

5-ohm resistance: ab, bc, bh, ce, hi and fi
2-ohm resistance: ac, bd, cd, de, df, eg and gi
1-ohm resistance: ad, ef, eh and fg.

Find the transition matrix for the corresponding Markov random walk on the
nodes a to i, and hence find the potentials of the nodes in each of the following
ways:

(a) Use the method of relaxation to solve the equation v = IPv.

(b) Use the exact method (2.276) to find the solution; be careful about how you
put in the boundary conditions, and remember to make a and i absorbing states.

{c) Simulate the random walk to find v (¢). See how large a sample you need to
cbtain an accurate estimate. See if you can think of a way of estimating all of v
without having to do a lot of separate simulations. ‘

C5. Simulate the x2 statistic on p. 76 (based on the Snoqualmie Falls Markov
model) and compare its distribution under this model to the %>-distribution sug-
gested by standard (iid) goodness-of-fit theory.

C6. Generate a data set of 100 observations from a mixture of three exponen-
tials with means 48.7, 5.83, and 0.65 with weights 0.0032, 0.1038, and 0.8930,
respectively. From these data, using a MCMC method (Gibbs sampler, Metrop-
olis algorithm, or otherwise), estimate the parameters of the underlying distribu-
tion. Compare the results to a regular optimization of the likelihood. How many
iterations do you need to estimate the likelihood accurately?

Data exercises

D1. Data set 1 contains the Snoqualmie Falls precipitation occurrence data.
Bxtract the January precipitation (the first 31 numbers on each line), and recode
itto O or 1, where 1 denotes measurable precipitation.

(a) Test the hypothesis that the years are identically distributed.

(b) Current research in precipitation modeling (Woolhiser, 1992) indicates that
the El Nifio-Southern Oscillation phenomenon (an unusual pattern of surface
pressure and sea surface temperature in the south Pacific) may have a profound
effect on precipitation occurrence in North America. Table 2.18 contains the
Southern Oscillation Index (SOI), defined as the difference in mean January sea
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level pressure between Tahiti and Darwin, for each of the years of the Snoqual-
mie Falls data. Assess the relationship between transition probabilities and the
Southern Oscillation Index for January.

Table 2.18  January SOl 1948-1983

38 29 S5 79 25 49 57 33 68 56

o 26 45 38 8 62 36 35 19 74
53 16 22 50 52 38 8 33 69 37
3 36 51 50 64 =20

2. Gabriel and Neumann (1962) analyzed precipitation data from the rainy
season (December through February) in Tel Aviv, Palestine/Israel, from 1923 to
1950. Tabie 2.19 contains the data.

Table 2.19  Tel Aviv precipitation

Previous days Current day
Second PBirst Wet Dry Total
Wet Wet | 439 249 688
Dry Wet { 248 192 350
Wet Dry 87 261 348
Dry Dry | 263 788 1051

We may contemplate a 3-parameter submodel of the general second-order Mat-
kov chain, based on the idea of relatively short-term fronts passing through the
arca. Then the only long-term influence should be in cases where it rained the
previous day. This suggests the following transition matrix:

Pww I'wa
Pdw 1_l'Jc:h«.'
Py 1-pa |
Pa 1-P4

P=

Evaluate this model using the BIC.

D3. A common assumption in sociology is that the social classes of successive
generations in a family follow a Markov chain. Thus, the occupation of a son is
assumed to depend only on his father’s occupation and not on his grandfather’s.
Suppose that such a model is appropriate, and that the transition matrix is given
by

0.05 0.7 0.25
0.05 0.5 045

Here the social classes are numbered 1 to 3, with 1 the highest. Father’s class

P =

04 0501 l
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are the Tows, son’s class the columns. A sociologist has some data that is sup-
posed to illustrate this model. However, he got these data from a colleague, who
did not say whether the counts had father’s class along rows or columns. The

counts are
76 5
9207 60}.
2 64 60

Try to determine the more likely labeling.
Hint: How are the counts from a chain run backwards related to those from the

same chain run forwards?

D4. In the early 1950s, the Washington Public Opinion Laboratory in Seattle
carried out ‘‘Project Revere”” which was intended to study the diffusion of
information (in particular, since the project was funded by the US Air Force,
information contained in leaflets dropped from the air). A subexperiment took
place in a village with 210 housewives. Forty-two of these were told a slogan
about a particular brand of coffee. Each housewife was asked to pass the infor-
mation on. As an incentive, participants were told that they would get a free
pound of coffee if they knew the slogan when an interviewer called 48 hours
later. It was possible to trace the route by which each hearer had obtained the
slogan, so that they could be classified by generations. The data are given in
Table 2.20.

Table 2.20 Spread of slogan

Generation 1 2 3 4 5
Size 69 53 14 2 4

Using a branching process approach, estimate the mean number of offspring in
the first generation. How about the final generation?

D5. The data in Table 2.21 show the state of health (1 = self-care, 2 = intermedi-
ate care, 3 = intensive care) for 47 patients suffering from chronic bronchial
asthma during five different asthmatic seasons (Jain, 1986). For each season we
give the observed transitions between the three health states, Test the
hypothesis of stationarity, i.e., that the transition matrix does not depend on sea-
son.

D6. Table 2.22 contains second-order transition counts between high (1) and
low (0) return weeks, relative to mean weekly returns in the past, for weekly
nominal returns on a value-weighted portfolio of stocks (McQueen and Thorley,
1991) from April, 1975, through December, 1987. Test the hypothesis that the
portfolio returns perform a random walk.




129 Discrete time Markov chaing

Table 2.21  Severity of asthma by season

State of health

Season 1 2 3
19 1 2

Winter 2 9 4
1 2 7

15 2 2

Trees 3 10 4
1 1 9

17 1 2

Grass 3 10 5
1 1 7

13 2 3

Ragweed 3 12 3
1 1 9

i2 2 3

Fali 6 6 7
1 2 8

Table 2.22  High and low return weeks for a stock portfolio

Previous 0 1
0 063 75
0 1|74 90
1 0175 88
1 1|8 109

D7. The data in data set 2 are bi-daily counts of the number Ej of emerging
blowflies (Lucilia cuprina) and the number D, of deaths in a cage maintained in
a laboratory experiment by the Australian entomologist A. J. Nicholson. The
flies were supplied with ample amounts of water and sugar, but only limited
amounts of meat, which is necessary for egg production. Let
A=A, ,Am‘,)T be the age distribution vector, so Ay, is the number of
individuals aged x at time ¢. Let py, be the proportion of individuals aged k at
time ¢ that survive to age k +1, and let P, be the survival matrix having py, on
the sub-diagonal, and zeroes elsewhere. A model for the population dynamics
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Exercises

(Brillinger et al., 1980} is given by

Ay = P(H)+ B, +¢&
where & is an age- and time-dependent noise sequence and H, denotes the his-
tory of the population sizes N; up to time ¢.

(a) Write this model, using A, as the state, in a state space model like that in
Exercise 21 (except it will have random time-dependent coefficients).

(b) Deduce that the state vector can be estimated by
a1+l = E!+I

Pietye G-l

p sl =
' 2P Gy
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(Niw1 —Epg1), k>1

either using a Kalman filter approach, or by using an intuitive argument.
(c) For the model '

Piy = (1~0)(1-PNy)

estimate the parameters o; and f.

Hint: One possibility is to compare observed and predicted deaths for the next
time interval, in a (weighted) least squares fashion. Another is to try a likeli-
hood approach. '

D8. The data in data set 3 consists of four years of hourly average wind direc-
tions at the Koeberg weather station in.South Africa, The period covered is 1
May 1985 through 30 April 1989, The average is a vector average, categorized
into 16 directions from N, NNE, ... to NNW. Analyze the data using a hidden
Markov model, with 2 hidden states, and conditionally upon the state a multino-
mial observation with 16 categories. Does the fitted model separate out different
weather patterns? Also estimate the underlying states, and look for seasonal
behavior in the sequence of states.

D9. The data in Table 2.23 are numbers of movements by a fetal lamb observed
by ultrasound and counted in successive 5-second intervals (Wittman et al.,
1984; given by Leroux and Puterman, 1992). Changes in activity may be due to
physical changes in the uterus, or to the development of the central nervous sys-
tem. Assume that there is an underlying unobserved binary Markov chain Z;,
such that if Z;=k, the observed counts have a Poisson distribution with parame-
ter A, k=0,1. Fit this model using maximum likelihood.

D10. Christchurch aerodrome is one of two international airports in New Zea-

" land. The runways at Christchurch are prone to fog occurrence, and fog fore-

casting is difficult, particularly because of the sheltering of the area by the
Southern Alps. Renwick (1989) reports hourly data on weather type for
1979-1986, a total of 70,128 observations. Table 2.24 show the transition fre-
quencies for observations between 2 hours before and 3 hours afier sunrise. The
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Table 2.23
0 0 0 0 0 1
o 1 0 0 0 0
1 1 0 0 1 1
0o 0 0 0 0 O
1 0 6 0 0 O
0o 0 0 1 0 0
0 0 0 0 t 0
oo 0 0 1 0
©o 0 0 0 0 0
2 1. 0 0 1 O
1 0 0 1 0 O
i 0 1 0 0 2
1 0 0 t 1 O
2 0 0 0 0 O
0 0 0 0 0 O

0

SO0 O0O0COo OO~ NO
OO R R OCcCOOoOOO0TOoN—
OO NN=OCO0ooe

OO R, OO RO N0 =00
COoOR~O~,O0QWOoOOoOoOO
COoOoOMNDODR,OoOOONOOO OO
COoORm L, OO0, WOO OO
SO0 0OOOONONOOO
OOO'—‘)—'OOON-&OCOO'—'

Table 2.24 Fog and mist occurrence at Christchurch aerodrome

Clear

Now  Mist
Tog

Next
Clear Mist Fog
13,650 245 30
480 427 71
i1 171 198

overall distribution of weather type has clear weather 95.1% of the time, mist
3.4% of the time, and fog 1.5% of the time. Test whether the hours around sun-
rise are reasonably described by these stationary probabilities.




APPENDIX A
Some statistical theory

A.1. Multinomial likelihood
Let X be a random r-vector having the multinomial distribution with r
categoties, n draws and success probabilities p=(p1, . - . ,p,), so that
nl . :
PX=x)=— P P (A1)
xpleee

x,!

provided that x17=n. We write this X~Mult,(n ;p). Having observed the out-
come X, we want to estimate p. The likelihood L (p) of the parameter p (given
the outcome x) is the probability! of the observed value as a function of the
unknown parameter. The maximum likelihood estimator (mle) p of p is the
value of p that maximizes L (p). Think of it as the value of p that best explains
the observation x. To perform the maximization, first note that we must have
p17=1. It helps to take logarithms, and thus to maximize

{ r
I(p) = log L(p) = log -;I'Ty——xhl' + Y xlogp, (A2)
: v =l

The function ! (p) is called the log likelihood function. Notice that the first term
on the right hand side of (A.2) does not depend on p, so that when we maximize
i(p} we can ignore it. Generally, the likelihood is only defined up to additive
constants {with respect to the unknown parameters).

Since we want to maximize [(p) over all p that sum to 1, we introduce a
Lagrange multiplier A, and maximize

Pp) = S wlogpi + M1 - S0 (A3)
i=] i=1

Taking partial derivatives we get

O jrp ) = = -
ap; ’ Pi
d
al*(p,l) = 1-p (A4)

If X has a continuous distribution, the likelihood is defined as the probability density of the
observation as a function of the parameter.
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and setting them equal to zero yields the equations
X
pi=7 Xp=l (A5)
whence Y x/A=1, or A=Y x;=n, s p;=x;/n.

Example {Social mobility) Mosteller (1968) quotes some data on occu-
pational mobility in Dermark. The data are counts of fathers and sons in five
different occupational categories. We show the distribution of the 2,391 sons in
Table A.1.

Table A.1  Danish social mobility data

Categoryl 1 2 3 4 5
Count | 79 263 658 829 562

We estimate the probability p; that a randomly chosen son from the population
studied is in occupational category i, yielding

p1=003 p;=011 p3=0275 py=035 ps=0235 (A6)
w]

So far we have derived an estimate of p, i.e., a function p(x) of the data x. When
discussing properties of an estimation procedure, it is customary to think of the
estimate p(x) as an instance of the random variable p(X), called the estimator.
Note that X;~Bin(n,p;), so by the law of large numbers p;=X/n—p; with proba-
bility 1. Furthermore, by the central limit theorem,

4 PP, N(,1) in distribution. (AT
(v, (1-p;))

A.2. The parametric case

Sometimes we are interested in p that are a function of a lower-dimensional
parameter 8. Let O be one-dimensional for simplicity. We want to maximize
1{@)=/(p(8)). Presumably, p(8) is parametrized to sum to one, so we do not need
to constrain the maximization. By the chain rule we must solve

4®), _ & 2ip(®) i® _
de = dp(8) 4o 0 (A.8)

or, equivalently,
rox dpd8)
o P8 d0

(A9)
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This equation may or may not have a solution, but it is passible to write dowp
regularity conditions under which it, for n large enough, will have a solution
with probability approaching 1 (see Rao, 1973, sec. Se, for details). Under
regularity conditions Rao also proves consistency of 8, as well as asymptotic
normality in the sense that

3 d
[al,';(ﬁ)] A(G-e) — N(0,1). {(A.10)

Example (ldentical twins)  Human twins are either identical or
nonidentical. The identical twins arise from the splitting of a fertilized egg,
while nonidentical twins occur when two ova are fertilized simultaneousty.
Assuming that the probability of twins being identical is o, and the probability
of male children is £=0.516, how can we estimate o from data on numbers and
genders of twins, but without knowledge of what twins are identical and what
are nonidentical?

First note that two twins can both be male either by being identical or by
being nonidentical. The former case has probability o, while the latter has pro-
bability (1-0)n2, for a total probability of a(ou+m(1-0)). Likewise the probabil-
ity of female twins is (1-m){cw+ 1-7), and that of mixed twins is 2n(l-my(1-op),
since such twins can only be nonidentical. Hence, writing 7, for the number of
male twins, n, for the number of female twins, and n5 for the number of mixed
twins, the log likelihood is

1(0t) o< nylog{o+m(1-00) + nolog(om+1-m) + nilog(l-0) * (A.11)

Differentiating this and setting the derivative ecjual to zero yields a quadratic
equation in ct. g

A.3. Likelihood ratio tests

Suppose we are interested in testing a fully specified hypothesis of the from
p=po=(10, - - - »Pro)- General testing theory suggests the usefulness of the
likelihood ratio

Ao L) _

T L{po i

As before, it is helpful to take logarithms (and this time multiply by two), to get
the log likelihood ratio statistic .

FY x"
Ll - (A12)
Pio

L

r x!.
A =2logA =2Y xlog [—“—] (A.13)

i=1

The likelihood ratio test rejects for large values of A. One can show that under
the null hypothesis p=pq. the statistic A is approximately distributed as yr-1).
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For large n, we can write

r (o) ,
=y — X A.

A E; p— X (A.14)
Since X;~Bin(n,p;o) under the nuil hypothesis, the quantity np;o is simply the
expected value of X;. The quantity %2 is a measure of how far the observations
deviate from their expected values, and was introduced by Karl Pearson!
(1900). To see the validity of the approximation, we do a Taylor expansion of
the logarithm,

Pi—Pio _ B=pio)

log p; —logpio =

Pio 2p%
X.—np; X =D
_ Xonpe | Kerpio) (A.15)
npso 2n*pio
Thus
P r [ Xenpo)  Xnpi)
2Y X;log |— | =2 -
2Xlog [PEO ] ,=Z1 npo 2npl
r (X—npio)*
2 D) - —————|. A.16
+ }1: (Xl nP;o) anio ( )
Some algebra shows that this simplifies to ‘
r (X;—np; 2 r (X —np: 3
2( £ "P:o) _ ( lzpztﬂ) ) ] (A17)
i=1  MPio i=1 P
The last term is bounded by .
r (X;—-np; 2 Bl
Xi—npio) max lpl P:Ol . (A.18)
i=1  Pio f Pio

But p;—p;o in probability under the null hypothesis, so the last term in (A.17) is
negligible compared to the first, and the two statistics A and ? are approxi-
mately the same.

Example (Fairness of dice) One of the most extensive dice experi-
ments, performed by an English mathematician named Weldon and his wife,
involved 315,672 thmows of dice. These were rolled, twelve at a time, down a
fixed slope of cardboard. There were 106,602 instances of the outcome 5 or 6. If
the dice were true the probability of 5 or 6 should be 1/3. The expected number

pearson, Karl (1857-1936), English biometrician. A disciple of Francis Galton. Put biological
statistics on a mathematical basis.
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of such outcomes would be 315,672/3=105,224. Pearson’s *-statistic there-

fore is
106,602-105,224)2  {209,070-210,448)>
(0. Ly oot @i
105,224 210,448 .
which is highly significant on one degree of freedom. The likelihood ratig i
statistic is 27.0, virtually identical. _ n .
A.4, Sufficiency 1

A statistic T(X{, ... .X,) is called sufficient for 0 if the conditional density (or
probability function) of the data, given the value of T(X,,...,X,), does not
depend on 9. In other words, if you tell me the value of T(X,,...,X,), I don't
need to know anything else about the sample in order to infer something about
the value of 6.

Example (Binomial case} Let X.X3.X; be iid Bin(l, 0), and let 3
T(X)=(X;+2X,+3X4, 6. Do we need to know more about the sample than just '
the value of Tin order to make a good guess as to the value of 87 To check that,
suppose that the sample is (X,X,,X4)=(1,1,0), so that the observed value of T
is %. Then :

PX=(1,LOnTX)=)
PX=(1,1,0) | TK)=%) = E=1.LOTX)=%

P(T(X)=1)
_ PX=(1,1,0) _ 82(1-0)
= PIX)=4%)  P(X=(1,1,000X=(0,0,1)) (A20)

_ 92(1-6) _
8%(1-6) + 8(1-8)*
Since this probability depends on 8, we need more information about the sam-
ple than just the fact that T(x)='%. When T =Y there are two possible explana-
tions, either X=(1,1,0), which would be likely if 8 were large, or X=(0,0,1),
which would be likely if 8 were small. Thus, the information that T=}: does not
tell is much about the actual value of 6. a

The method used in this example is fine when we want to show that a statistic is
not sufficient, but it is not all that helpful in trying to figure out reasonable can-
didates for sufficient statistics. A criterion for doing this is the following, due to
Fisher! and Neyman.

Fisher, Ronald Ayles (1890-1962). English statistician and geneticist. Introduced the likelihood
approach to statistical inference. Invented the analysis of variance and the randosmization approach
to experimental design.
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Proposition A.1  (Fisher—Neyman factorization criterion) A statistic
T(X) is sufficient if and only if the density (or probability function) can be fac-
tored as

f(x:0) = g(T(x);0) h(x) (A.21)
where g only depends on the x;’s through 7'(x), while x does not depend on 6.

Example (Binomial case, continued) The density of X is
P(X=x) = 8" (1-0)' '8 (1-6) 0™ (1-8) ™ (A22)

1=l

6

i v
5| -9

Using for g the entire expression on the right-hand side, and letting A(x)=1, we
see that g depends on the data x only through their sum ¥ x;, which therefore is
a sufficient statistic. To check back with the definition, notice that

3
- ¥ X; ~ Bin(3,8), so that

i=1

6" (1-0)" > 1

3 ) o3n . wze 3]
e T

Since the right-hand side is independent of 8, regardless of the value of the x's,
we see that 3 X; is indeed a sufficient statistic. Notice that, in fact, the condi-
tional distribution is uniform over the set of possible outcomes with the given
value of the sufficient statistic. a

PX=x|3X;=Yx)= (A.23)

Example (The normal case) Suppose now that Xi,...,X, are iid
N(m,c?). First assume that o? is a known number, so that we are only
interested in estimating m. Then

loxim) = @Ry expl= 5 T s
i=1
myx m? 2‘:2
= - -~ 1 \21)). 24
exp( e ) exp( Py +nlog{cV2n)) (A.24}

The first exponential function is g, the second is h. We see that 3 X; is a
sufficient statistic.
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Now assume instead that m is known, and o is the parameter of interest.
Then we write the density E

ﬁ%(x.-—m)z). (A.25)

In this case Z‘,(X,»—m)2 is a sufficient statistic. We have A(x)=1.

f(x;O'Z) = (G\f??:—t-)“”exp(—

Finally, if both parameters are unknown, we write the density

2¢
from which it follows that (EX,-,ZX?) together are sufficient for (m,6%). a

2
m . i 2
Fom.c?) = exp(— o ;’:}2 +nlog(c\2r)), (A26)
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