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MASS Book References

W. N. V  B. D. R, Modern Applied Statistics with S

(Fourth Edition), New York: Springer, 2002.

Logistic Regression: Section 7.2, pp. 190ff.

Poisson Regression:Section 7.3, pp. 199ff. (won’t seem a lot like Jim’s

example from last time, but it really is the same thing)

Clustering: Section 11.2, pp. 315ff. (all of Ch 11 is interesting!)

Classification: Chapter 12, pp. 331ff. (extensions and alternatives to

logistic regression)
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Quick Reprise: Classification With Logistic Regression

Logistic Regression

log
P[Y = 1|X1, X2, X3]
P[Y = 0|X1, X2, X3]

= β0 + β1X1 + β2X2 + β3X3

Useglm(Y ∼ X1 + X2 + X3, data=mydata, family=binomial) in R.

Polytomous Logistic Regression

log
P[Y = 1|X1, X2, X3]
P[Y = K|X1, X2, X3]

= β10 + β11X1 + β12X2 + β13X3,

log
P[Y = 2|X1, X2, X3]
P[Y = K|X1, X2, X3]

= β20 + β21X1 + β22X2 + β23X3,

.

..

log
P[Y = K − 1|X1, X2, X3]

P[Y = K|X1, X2, X3]
= β(K−1)0 + β(K−1)1X1 + β(K−1)2X2 + β(K−1)3X3.

InstallVGAM from CRAN. Thenlibrary(VGAM). Then ... (huh?)

3 36-402 April 5, 2010



See R notes for VGAM Example. . .
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Clustering and Mixture Models

• Cluster analysis (a.k.a. data segmentation) is a basic method of exploratory

data analysis (unsupervised learning).

• Grouping by “similarity”: observations within a cluster are more similar to

each other than observations between clusters.

• Two basic kinds:

– Model-Based Clustering [This time]

∗ Mixture-of-Normals

∗ Other Mixtures, Latent Class Analysis

– Distance-Based Clustering [Next time]

∗ Measures of similarity

∗ Proximity matrices

∗ Methods for merging or breaking apart clusters (Dendrograms,

Heierarchical Clustering. . . )
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ASimpleClusteringIdea:MixtureofNormals
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Example: Old Faithful Waiting Times

> library(MASS)

> data(faithful)

> attach(faithful)

> hist(waiting)
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suggests

yi | µ1, µ2, σ1, σ2, q
iid∼
{

q 1√
2πσ1

exp[−(yi − µ1)2/2σ2
1]

+ (1− q) 1√
2πσ2

exp[−(yi − µ2)2/2σ2
2]
} (∗)

i = 1, . . . , n (n = 272).

Let f1(yi|µ1, σ1) = 1√
2πσ1

exp[−(yi − µ1)2/2σ2
1], and f2(yi|µ2, σ2) =

1√
2πσ2

exp[−(yi − µ2)2/2σ2
2]. Then the likelihood is

g(y|µ1, σ1, µ2, σ2, q) =
n
∏

i=1

{q f1(yi|µ1, σ1) + (1− q) f2(yi|µ2, σ2)}.

We wish to estimate the parametersµ1, µ2, σ1, σ2 andq.
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nlm() in R canminimize a function (using Newton’s method). For
example,
> nll <- function(phi) {

+ a <- phi[1]

+ m1 <- phi[2]

+ s1 <- phi[3]

+ m2 <- phi[4]

+ s2 <- phi[5]

+ return(-sum(log(a*dnorm(y,m1,s1) + (1-a)*dnorm(y,m2,s2))))

+ }

> nlm(nll,c(.25,52,10,82,10))

$minimum

[1] 1034.002

$estimate

[1] 0.3608861 54.6148563 5.8712181 80.0910688 5.8677343

$gradient

[1] 5.903871e-05 1.476694e-06 -6.176736e-06

[4] -2.409947e-06 -2.751431e-06
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See R notes for more...
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Model-based Clustering

y1, . . . , yn are iid according to

f (y|φ) =
K
∑

k=1

αk nd(y|µk,Σk)

whereφ = (α1, . . . , αK , µ1, . . . , µK ,Σ1, . . . ,ΣK), αk ≥ 0,
∑

k αk = 1.

• Can be viewed as a kind of density estimation model.

• Can also be viewed as a means of idenfitying clumps or clustersin

data.

• Can implement with themclust package (Download from CRAN!,

library(mclust), functionMclust. . .
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See R notes for Mclust example(s)...
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Another Way to Think About the Normal Mixture Model

• y1, . . . , yn are iid according to the density

f (yi|µ1, σ1, µ2, σ2, q) = q · 1√
2πσ1

exp[−(yi − µ1)2/2σ2
1]

+ (1− q) · 1√
2πσ2

exp[−(yi − µ2)2/2σ2
2]

= q · n(y|µ1, σ
2
1) + (1− q) · n(y|µ2, σ

2
2)

• An alternative to Newton-Raphson (nlm() in R):

Step 1: Decide which “hump” each observationyi belongs in, depending on

whethern(yi|µ1, σ
2
1) > n(yi|µ2, σ

2
2) or vice-versa.

Step 2: Estimate ˆµ1 andσ̂2
1 as the sample mean and variance of they’s

assigned to the first “hump”; and estimate ˆµ2 andσ̂2
2 as the sample mean

and variance of they’s assigned to the second “hump”.

Iterate these two steps until no more changes.

This is an “E-M” algorithm (Step 1 puts data points in theExpected cluster,

Step 2 calculatesMaximum likelihood estimates).

Clearly this would generalize to more than two clusters!
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K-means Clustering

Suppose we hypothesizeK clusters. Letzi = k if yi is in thekth cluster.

For squared Euclidean distance between points

dii′ = D(yi, yi′) = ||yi − yi′ ||2, we can write thetotal scatter as

T =
1
2

n
∑

i=1

K
∑

i′=1

dii′ =
1
2

K
∑

k=1

∑

zi=k

















∑

zi′=k

dii′ +
∑

zi′,k

dii′

















= W + B

so we can choosez to minimizeW or maximizeB. To minimizeW, note

that

W =
1
2

K
∑

k=1

∑

zi=k

∑

zi′=k

dii′ =

K
∑

k=1

∑

zi=k

||yi − yk ||2 (∗)

TheK-means algorithm is a heuristic for minimizing (∗) in two

alternating stages:
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The K-means Algorithm

Step 1: Given a set of cluster meansyk, redefine thezi’s by assigning each

observationyi to the closestyk.

Step 2: Given a set of cluster assignmentsz1, . . . , zn, find the means

yk =
1

ncluster k

∑

zi=k yi; this minimizes (∗) for the currentzi’s,

Iterate these two steps until no more changes.

Notes:

• This is basically an “abstraction” of the E-M algorithm for normal mixtures:

ignore the probability model part and just keep re-assigning points to clusters

until you minimize the within-cluster spreads.

• Like E-M and Newton-Raphson it is alocal algorithm;Many different

choices for the starting means should be tried. Hartigan and Wong (1979)

provide some improvements (ensure no single re-assignmentimproves (∗)).
• If dii′ is not squared Euclidean distance, thenyk may not be a good

representative of the center of a cluster. If we use one of theobservations to

represent the center, it is called “K-medoids”.
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Distance-Based Clustering

• Objects: y1, . . . , yn

• Attributes: yi1, . . . , yid

• n × n proximity matrix D(yi, yi′) (distance, (dis-)similarity, etc.)

– D(., .) can be basic data (e.g., marketing, political science,

perception research: human judgement of similarity/dis-similarity

of objects); or

– D(yi, yi′) can be a direct numerical measure of attributes, e.g.:

D(yi, yi′) =
∑d
`=1 dist(yi`, yi′`)

∗ dist(yi`, yi′`) = |yi` − yi′` |p:

– D(yi, yi′) = Corr(yi, yi′) = cos(θyi,yi′ ), etc.

– An explicit measure of similarity between categorical variables. . .

• UsuallyD(., .) is chosen to satisfy

Triangle Inequality: D(y1, y3) ≤ D(y1, y2) + D(y2, y3); or

Ultrametric Inequality: D(y1, y3) ≤ max[D(y1, y2),D(y2, y3)]
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Hierarchical Clustering

• Produce a nested set of clusterings to choose from.

• Can beagglomerative (bottom up, fromn individual-observation

clusters) ordivisive (top-down, starting from a single cluster).

• Both approaches can be represented by adendrogram (tree diagram)

• ExtendD(., .) to measuresimilarity/proximity between clusters.

– In agglomerative clustering, the two most similar clustersare merged at

each stage.

– In divisive clustering the cluster with the greatest within-cluster

dis-similarity is split, by first splitting off the most dissimilar observation,

and then separating the cluster into two, analogously to

K-means/K-medoids. (Kaufman and Rousseeuw, 1990).

• The dendrogram usually indicates along they-axis the values at

which splits take places.
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Extending D(., .) to clusters

Let G andH represent two clusters. The usual approaches to extending

dii′ = D(yi, yi′) to G andH are:

• Single Linkage: (nearest-neighbor)

dS L(G,H) = min
i∈G,i′∈H

dii′

• Complete Linkage: (farthest-neghbor)

dCL(G,H) = max
i∈G,i′∈H

dii′

• Average Linkage:

dA(G,H) =
1

NG

1
NH

∑

i∈G

∑

i′∈H

dii′

(whereNG andNH are the number of observations inG andH,

respectively).
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Pro’s and Con’s

• If the “natural” clusters in the data are compact and well-separated,

then all three approaches produce similar results.

• dS L tends to combine observations linked by a series of close

intermediaries (“chaining”). This can produce large-diameter clusters

with local, but not global, coherence.

diam(G) = max
i∈G,i′∈G

dii′

• dCL tends to produce smaller-diameter clusters, but sometimes

produces clusters containing observations that are closerto other

clusters.

• dA estimatesE[D(y, y′)] wherey andy′ are independent random

draws from the cluster densitiesfG(y) and fH(y′). On the other hand

dA is sensitive to montonote transformations ofdii′ ; whereasdS L and

dCL are not.
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