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MASS Book References

W. N. VEnaBLES aND B. D. RieLey, Modern Applied Satisticswith S
(Fourth Edition), New York: Springer, 2002.

Logistic Regression: Section 7.2, pp. 190

Poisson RegressionSection 7.3, pp. 198 (won’t seem a lot like Jim’s
example from last time, but it really is the same thing)

Clustering: Section 11.2, pp. 3Xb (all of Ch 11 is interesting!)

Classification: Chapter 12, pp. 331 (extensions and alternatives to
logistic regression)
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Quick Reprise: Classification With Logistic Regression

Logistic Regression

PLY = 1|X1, X5, X3]
P[Y = 0]Xy, X5, X3]

Useglm(Y ~ X1 + X2 + X3, data=mydata, family=binomial) in R.

log = Bo + B1X1 + B2 X5 + B3 X3

Polytomous Logistic Regression

PLY = 1/Xy, Xz, X3]
lo X X X
g PIY = KXy, X, Xa] Bio + B11X1 + B12Xo + B13X3,

PLY = 2|Xq, X5, X3]
PLY = KI|X1, Xz, X5]

log B20 + B21X1 + B22X5 + B23X3,

PLY = K — 1/X4, Xp, Xa]

lo 10 + Bik_101X1 + Bk _12Xo + Bk _1)3X3.
g PIY = KXo, X, Xa] Bk-1)0 t Bk-1)1X1 + Bk-1)2X2 + Bk-1)3X3

Install VGAM from CRAN. Thenlibrary (VGAM). Then ... (huh?)
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See R notes for VGAM Example. ..
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Clustering and Mixture Models

e Cluster analysis (a.k.a. data segmentation) is a basicaniethexploratory
data analysis (unsupervised learning).

e Grouping by “similarity”: observations within a clustereamore similar to
each other than observations between clusters.

e Two basic kinds:

— Model-Based Clustering [This time]

x Mixture-of-Normals
+ Other Mixtures, Latent Class Analysis

— Distance-Based Clustering [Next time]

+x Measures of similarity

+ Proximity matrices

+ Methods for merging or breaking apart clusters (Dendrogtam
Heierarchical Clustering...)
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Example: Old Faithful Waiting Times

> library (MASS)

> data(faithful)

> attach(faithful)
> hist(waiting)

Histogram of waiting

Frequency

7 36-402 April 5, 2010



suggests

Vi | pa, p2, 01,02, q " {q \/5101 expl-(yi — ,u1)2/20-ﬂ

(4
+ (L= Q) expl( - /203

1=1...,n(nh=272).
Let fi(Vilus, o1) = \/Zlal exp[-(yi — u1)?/2075], and fa(yiluz, 02) =

\@102 exp[-(yi — u2)?/2075]. Then the likelihood is

n
d(Yiu1, o1, 2, 072, Q) = l_[{qfl(yi 1, o1) + (1= q) falViluz, 02)}.
)

We wish to estimate the paramet@ss u,, o1, o> andd.
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nlm() in R canminimize a function (using Newton’s method). For
example,
> nll <- function(phi) {
+ a <- phi[l]
ml <- phi[2]
sl <- phi[3]
m2 <- phi[4]
s2 <- phi[5]
return(-sum(log(a*dnorm(y,ml,sl) + (l1-a)*dnorm(y,m2,s2))))
+ }
> nlm(nll,c(.25,52,10,82,10))
$minimum
[1] 1034.002
festimate
[1] ©0.3608861 54.6148563 5.8712181 80.0910688 5.8677343
$gradient
[1] 5.903871e-05 1.476694e-06 -6.176736e-06
[4] -2.409947e-06 -2.751431e-06
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See R notes for more...
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Model-based Clustering

Y1,...,Yn are iid according to

K
f(yig) = > axNa(yiue Zi)
k=1

Wheregb = (al,...,aK,,ul,...,,uK,Zl,...,ZK),ak > O,Zkak = 1.

e Can be viewed as a kind of density estimation model.

e Can also be viewed as a means of idenfitying clumps or clusters
data.

e Can implement with theclust package (Download from CRAN!,
library(mclust), functionMclust...
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See R notes for Mclust example(s)...
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Another Way to Think About the Normal Mixture Model

e Vi,...,Y¥yare iid according to the density

fYilis, 012, 02,0) = Q- = eXPI-(yi — p1)?/207]

+ (1-0) - 452 explb(yi - 12)?/207]
= d-Nn(ylu1, o5) + (1= ) - n(Yluz, 05)
e An alternative to Newton-Raphsonlim() in R):

Step 1: Decide which “hump” each observatignbelongs in, depending on
whethem(yi|ua, o5) > n(Yiluz, 05) or vice-versa.

Step 2: Estimateu; ando™ as the sample mean and variance ofytke
assigned to the first “hump”; and estimateahdos as the sample mean
and variance of thg's assigned to the second “hump”.

Iterate these two steps until no more changes.

This is an “E-M” algorithm (Step 1 puts data points in tBepected cluster,
Step 2 calculatesl aximum likelihood estimates).
Clearly this would generalize to more than two clusters!
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K-means Clustering

Suppose we hypothesikeclusters. Let; = Kif y; is in thek™ cluster.

For squared Euclidean distance between points
div = D(V:, Vi) = |lVi — Vi|I%, we can write theotal scatter as

T —ZZd.. = Zk(yd..+2d..)

=1 I’'= k=1
W+ B

Z, =k z, #K

SO we can chooseto minimizeW or maximizeB. To minimizeW, note

that
7 D D b = Zley. yidl? )

klz.kz,k k=1 z=k

The K-means algorithm is a heuristic for minimizing) (n two
alternating stages:

14 36-402 April 5, 2010



The K-means Algorithm

Step 1: Given a set of cluster meaggg redefine the’s by assigning each
observatiory; to the closesy,.

Step 2. Given a set of cluster assignmeats. . ., z,, find the means
Vi = — 2.z-k Yi; this minimizes ¢) for the currentz’s,

Ncluster k

Iterate these two steps until no more changes.
Notes:

e This is basically an “abstraction” of the E-M algorithm fasnmal mixtures:
ignore the probability model part and just keep re-assmpimints to clusters
until you minimize the within-cluster spreads.

Like E-M and Newton-Raphson it islacal algorithm;Many different
choices for the starting means should be tried. Hartigan and Wong (1979)
provide some improvements (ensure no single re-assignmenbves )).
If dii: is not squared Euclidean distance, tijgmay not be a good
representative of the center of a cluster. If we use one obliiservations to
represent the center, it is called “K-medoids”.
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Distance-Based Clustering

e Objects. y1,...,¥n
o Attributes: i1, ..., Yid
e N x nproximity matrix D(y;, yi) (distance, (dis-)similarity, etc.)

— D(.,.) can be basic data (e.g., marketing, political science,
perception research: human judgement of similadigssimilarity
of objects); or

— D(vi,Vir) can be a direct numerical measure of attributes, e.g.:
D(Yi, Yir) = X5y dist(Yie, Yire)

« dist(Yie, Yire) = Yie — Yirel™:
— D(¥i, Yir) = Corr(yi, yir) = cosfy,y, ), etc.
— An explicit measure of similarity between categorical saftes. . .
e UsuallyD(.,.) is chosen to satisfy

Triangle Inequality: D(y1,Y3) < D(y1,Y2) + D(y2,y3); or
Ultrametric Inequality: D(y1, Y3) < max[D(y1, Y2), D(y2, y3)]
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Hierarchical Clustering

Produce a nested set of clusterings to choose from.

Can beagglomerative (bottom up, frorn individual-observation
clusters) odivisive (top-down, starting from a single cluster).

Both approaches can be represented dgnarogram (tree diagram)

ExtendD(., .) to measuraimilarity/proximity between clusters.

— In agglomerative clustering, the two most similar clusemes merged at

each stage.

— In divisive clustering the cluster with the greatest witloster
dis-similarity is split, by first splitting ff the most dissimilar observation,
and then separating the cluster into two, analogously to
K-meangK-medoids. (Kaufman and Rousseeuw, 1990).

The dendrogram usually indicates along yha&xis the values at
which splits take places.
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Extending D(., .) to clusters

Let G andH represent two clusters. The usual approaches to extending
di- = D(y;, Vi) to G andH are:
e 3ngleLinkage: (nearest-neighbor)

dSL(G H) B |eI£3n|IQH d”

e Complete Linkage: (farthest-neghbor)

eu(G.H) = max o

e Average Linkage:

da(G,H) = N_G_szdn

ieG i’eH

(whereNg andNy are the number of observations@andH,
respectively).
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Pro'sand Con’'s

e |f the “natural”’ clusters in the data are compact and weblasated,
then all three approaches produce similar results.
ds. tends to combine observations linked by a series of close
Intermediaries (“chaining”). This can produce large-deden clusters
with local, but not global, coherence.

diam(G) = max di
icG,i’e

dc. tends to produce smaller-diameter clusters, but sometimes
produces clusters containing observations that are closgher
clusters.

da estimateE[D(y, y')] wherey andy’” are independent random
draws from the cluster densitidg(y) and f4(y’). On the other hand
da IS sensitive to montonote transformationspf whereasis, and
dcL are not.
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