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SUFFICIENT STATISTICS AND EXTREME POINTS!
By E. B. DYNKIN

Cornell University

A convex set M is called a simplex if there exists a subset M, of M such
that every P e M is the barycentre of one and only one probability measure
e concentrated on M,. Elements of M, are called extreme points of M. To
prove that a set of functions or measures is a simplex, usually the Choquet
theorem on extreme points of convex sets in linear topological spaces is
cited. We prove a simpler theorem which is more convenient for many
applications. Instead of topological considerations, this theorem makes
use of the concept of sufficient statistics.

1. Introduction.

1.1. If M is a simplex in a finite-dimensional linear space, the set M, of extreme
points is finite, and to say that P is a barycentre of a probability measure x con-
centrated on M, means that

P = ZPGM, IU(P)P’
where p(P) = O forall Pe M, and },.,, #(P) = 1. The concept of a barycentre
can be naturally extended to probability measures on spaces of functions and
measures. Simplexes in such spaces play an important role in various fields of
mathematics. Here are some examples:

1.1.A. The set of all probability measures invariant with respect to a meas-
urable transformation 7 of a measurable space (Q, % ). (Extreme points are
ergodic measures.)

1.1.B. The set of all Gibbs states specified by a given family of conditional
distributions.

1.1.C. The set of all symmetric probability measures on a product space (with
infinite number of factors). Extreme points are product measures.

1.1.D. The set of all Markov processes with a given transition function.

1.1.E. The set of all stationary probability distributions for a given stationary
transition function.

1.1.F. The class of all normed excessive functions associated with a given
transition function. A particular case is the class of all positive superharmonic
functions £ ina domain D of a Euclidean space normed by the condition &(c) = 1,
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706 E. B. DYNKIN

where ¢ is a fixed point of D. This class is associated with the Brownian motion
in D.

These classes were treated by many authors from different points of view.
We mention here the works of Krylov and Bogolubov [13] (related to the class
1.1.A); Dobrushin [2] (class 1.1.B); de Finetti [9], [10]; and Hewitt-Savage [11]
(1.1.C); Martin [15]; Doob [3]; and Hunt [12] (1.1.F).

In the present paper, all these classes of measures and functions and some
others will be investigated by constructing suitable sufficient statistics.

1.2. Therole of a special type of sufficient statistics (we call them H-sufficient)
is revealed by Theorem 3.1. This theorem was first published in 1971 ([4],
Section 2) in a slightly different form and without explicitly mentioning sufficient
statistics. The theorem was applied to the class of all Markov processes with a
given transition function (class 1.1.D) in [4] and to excessive measures and ex-
cessive functions (1.1.F) in [5].

We start with general definitions of a barycentre, extreme points, etc., in
Section 2. Relations between H-sufficient statistics and decomposition into ex-
treme points are investigated in Section 3. The main method of constructing
H-sufficient statistics is a special kind of passage to the limit which is studied
in Section 4. The rest of the paper is devoted to various applications. In par-
ticular, Sections 9—12 contain an improved version of the results on Markov
processes published in [4] and [5]. The presentation is self-contained, but we
refer to [5] for some technical details.

2. Convex measurable spaces.

2.1. Let (M, 2%,) be an arbitrary measurable space. We say that a convex
structure is introduced into M if a point P,, the barycentre of y, is associated
with each probability measure ¢ on <%,. A space (M, <%,) provided with such
a structure will be called a convex measurable space.

Wessay that Pis an extreme point of M, and write P e M,, if Pis not a barycentre
of any measure ¢ except the measure concentrated on P. A convex measurable
space M is called a simplex if M, is measurable and each Pe M is a barycentre
of one and only one probability measure z concentrated on M,.

Let (M, 2%,) and (M’, =5),,) be convex measurable spaces and let 7' be a map-
ping of M into M’. We say that T preserves the convex structure if T is measurable
and transforms the barycentre of a measure # into the barycentre of the measure

#(@) = pT7T), Tey .

We say that T is an isomorphism if it is invertible and T and T preserve convex
structure.

An axiomatic theory of convex measurable spaces can be developed but our
task is rather an analysis of concrete spaces.

2.2, Let M be a collection of positive functions on an arbitrary set Z. (By
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a positive function we mean a function with values in an extended real half-line
[0, +o0].) Let &%, be an arbitrary s-algebra in M with the property:

2.2.A. For each ze Z, the function F (¢) = ¢(z) is <5,-measurable.

Let ¢ be a probability measure on =%,. We define a barycentre ¢, of p by the
formula

2.0 ou(2) = Su p(2)1(d) -
If M contains the barycentres of all probability measures, it is a convex meas-
urable space.

A measurable structure in M is called natural if it is determined by the minimal
o-algebra =%, with the property 2.2.A. Unless otherwise stipulated we consider
in M the natural measurable structure, and we always consider in M the convex
structure defined by formula (2.1).

Formula (2.1) makes sense also for finite nonprobabilistic measures ¢. In this
case, we call ¢, a generalized barycentre of 1. If M contains all generalized bary-
centres, we say that M is a convex cone.

2.3. Now let M be a set of probability measures on a measurable space (2, 5#).
The set M can be considered also as a class of positive functions on &, and we
can apply all the definitions of Subsection 2.2.

If M is a simplex, the formula

(2.2) B(A) = 5., P(A)(dP)

establishes a one-to-one correspondence between M and the set of all probability
measures on M,.
We consider one example. Let M(.%) be the class of all probability measures
on a g-algebra &, It is easy to check, step by step, that:
(i) M(F") is convex.
(ii) Measures Q“(A) = 1,(w), Ae & are extreme points of M(.5").
_(iii) Each Pe M(.5") is a barycentre of a measure ¢ defined by formula
(2.3) #(T') = Plw: QveT}.
This measure is concentrated on the set M,(.5# ) of extreme points of M(.5").
(iv) If P is an extreme point, then P = Qv for some w.
(v) If p is a measure concentrated on M,(.% ) and P is a barycentre of p,

then s and P satisfy (2.3).
(vi) M(57) is a simplex.

We prove all these statements in a much more general situation in Section 3.

2.4. We shall use the following abbreviations. If fis a functionand % isa -
algebra, then the expression f € % means that f is .% -measurable and bounded.
An expression Pf (or P(f)) means an integral of f with respect to a measure P.

Let M be a class of probability measures on (Q, .%7). A set A is called M-null
if Ae & and P(4) = O forall Pe M. We say that 4, Be . are P-equivalent if
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1, = 1,a.s. P. Two g-algebras 7, &5 C # are M-equivalent if, for each Pe M,
every Ae %7 is P-equivalent to a Be S and vice versa.

3. H-suﬁciency and the decomposition into extreme points.

3.1. Let Mbeanarbitrary class of probability measures on a measurable space
(Q, 7). We say that M is separable if % contains a countable family .2 sepa-
rating the measures in M (which means that for each pair of different elements
P,, P, of M there exists Ae . such that P,(A) # P,(A)). The class M(F") is
separable if 4 is countably generated (i.e., generated by a countable family of
sets).

A g-algebra & ° C 57 is called sufficient for M if all measures Pe M have a
common conditional distribution relative to % °, in other words, if for each
o € Q there exists a probability measure Qv on .5 such that, for each 4, Q“(4)
is % -measurable and

(3.1 P(A| F° = Q¥A) a.s. P forall PeM.
A sufficient o-algebra will be called H-sufficient if, in addition,
(3.2) Q“eM as. M

(which means that P(Q*e M) = 1 for all Pe M).
If &t is M-equivalent to & °and if & ° is sufficient (H-sufficient) for M,
then so is &%,

THEOREM 3.1. Let F° be an H-sufficient g-algebra for a separable class M.
Then the set M, of extreme points of M is measurable and each P ¢ M is a barycentre
of one and only one probability measure p, concentrated on M,. If M is convex, it
is a simplex.

Let Q be measures satisfying (3.1) and (3.2). Then M, is a subset of a set {Q"}
and the measure pp is given by formula

(3.3) p(l') = Plo: Qe T}.
A measure Pe M belongs to M, if and only if
(3.4) Plw: Q* =P} =1.

Proor. 1°. We start with the following elementary observation: If Pisany
probability measure on a g-algebra &~ and if 5 ° is any subalgebra of %7, then
the conditions (i), (ii), (iii) are equivalent:

(i) P is trivial on & °.
(i) Each & "-measurable function Z is constant a.s. P.
(iii) P{P(A4|.5°) # P(A)} = O for each Ae .5

2°. Denote by M, the set of all measures Pe M which are trivial on F°.
According to 1°, M, can be described by the condition (iii). Taking into account
(3.1), we rewrite (iii) in the form

(3.5) P{Q“(A) # P(A)} =0  forall Ae.5 .
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Let .57 be a countable family of sets separating measures of M. Obviously (3.5)
implies that

(3.6) P{Q“(A) = P(A) forall Ae &} =0,
Since P and Q¢ belong to M, (3.6) implies that
(3.7 P{Q®# P} = 0.

It is clear that (3.5) follows from (3.7); hence each of the conditions (3.5), (3.6)
and (3.7) characterizes the set M;,. The condition (3.5) can be rewritten also in
the following form:

(3.8) f4P)=0 forall Ae 7,

where
(3.9)  fu(P) = (o QU(A)’P(dw) — P(A)* = § [Q*(A) — P(A)}P(dw) .

Evidently, f, is £, -measurable. Therefore M, e <5,. It follows from (3.7) that
for each P e M, there exists w € Q such that P = Q°.
3°. Now we prove that

(3.10) Qe M, as. M.
It follows from (3.1) that Q“Y = P(Y| ) a.s. P. Setting Y, = Q“(A4)}, we
conclude from (3.9) that
Q) =QY, =Y, =Y, |5 = Y,,
and hence

(3.11) Pf,(Q*) = 0.

But it is clear from (3.9) that f, = 0. Therefore (3.11) implies that f,(Q“) = 0
a.s. P. We see that, for almost all w, the measure Q¢ satisfies the condition
(3.8) which implies that Qv e M,,.

4°. Let a measure y, be defined by formula (3.3). Then the formula
(3.12) Vu F(P)pp(dP) = (o F(Q*)P(dw)
holds for indicator functions F = 1, I'e <%,,. Standard arguments show that
(3.12) is true for all bounded <%),-measurable functions F. For F(P) = P(A),
Ae 7 the right side of (3.12) is equal to P(4). Thus P is a barycentre of pp.
According to 3°, u, is concentrated on M,.

5°. Now let Pe M be a barycentre of a measure ¢ concentrated on M,. For
every I' € M, I'e <%,
(3.13) P{Q“eT} = §,, P(Q"e)p(dP).

The left side is equal to p,(T'). By (3.7) P(Q e I') = 1,(P) for Pe M,. Therefore
the right side of (3.13) is equal to

$urp Le(P)p(dP) = p(T') .
Hence yp, = p.
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6°. Let Pe M,. According to 4°, Pis a barycentre of y,. Therefore p, is
concentrated on P which means that P{Q® == P} = 0, and Pe M, by 2°.

7°. Now let Pe M, be a barycentre of a measure 2 on M. According to 2°,
P{Qv # P} = 0. Hence y is concentrated on the set M’ = {P: P(Q“ # P) = 0}.
Butif Pe M’, Ce .7, then P(C) = PP(C| .7 %) = § Q%C)P(dw) = P(C). There-
fore M’ = {P} and p is concentrated on P. This proves that Pe M,.

3.2.

THEOREM 3.2. Let a separable class M have an H-sufficient o-algebra and let
#1 be the class of all sets Ae .F with the following property:

(3.14) P(4) =0 or P(Ay=1 forall PeM,.
Then a o-algebra " is H-sufficient for M if and only if it is M-equivalent to & *.

Proor. We need only to prove that each H-sufficient g-algebra .&7° is M-
equivalent to .5 '. By Theorem 3.1, & ° c & !. Therefore it is sufficient to
construct, for every fixed Pe M, Ae .5 !, aset Be & ° which is P-equivalent
to 4. A function Q“(A) is P-equivalent to a .5 °-measurable function f. Sets
B ={w: flo) =1} and C = {0: f(w) = 0} belong to .~# °, and

l,+1,=1 as. P,
P(BA) = P1,Q“(A) = P(B), P(CA) = P1,Q“(A) = 0.

Hence 1, = 1,1, = 1 a.s. P. Our theorem is proved.
Now suppose that a class M is a simplex and let .5 ! be defined by (3.14).
It is clear that

(3.15) P(A]| &1y = P(A) for each Pe M,.

Therefore .57 is H-sufficient for M, (and consequently for M) if and only if a
measurable mapping @ — Q“ of (Q, .5 ') into M, exists such that P(Q* = P) = 1
forall Pe M,. In this case, every two measures of M, are singular on .5 ! with
respect to each other. If M, is at most countable, this condition is not only .
necessary but also sufficient: It implies the existence of decomposition of Q into
the sets Q, € #7!, Pe M, with the property P(Q,) = 1, and the mapping Q“ can
be defined by formula Qv = P for w € Q,.

3.3. We discuss now the concept of H-sufficiency from a slightly different,
more algebraic point of view.

A real-valued function Q“(A4) = Q(w, A), we Q, Ae > is called a Markov
kernel if, for each w e Q, Q(w, +) is a probability measure and, for each 4 ¢ F,
Q(+, A) is an .~ -measurable function. A linear operator on the space of bounded
Z -measurable functions and a linear operator on the space M(.5*") of all prob-
ability measures are associated with every Markov kernel Q. We denote them
by the same letter and call them Markov operators. They are defined by the
formulas

(3.16) 0f(0) = § Q(o, do")f(o") = Q*(f),
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and
(3.17) (PO)(4) = § P(dw)Q(, 4).

We shall consider the first operator also on unbounded functions f (in this case

Qf is defined only on a part of Q). The second operator can be extended too:

the formula (3.17) makes sense not only for Pe M(.%") but also for Pe M(.&")

if &' is a o-algebra with the property that Qf e &' forall fe .>. Two Markov

operators Q and Q' are called M-equivalent if Qf = Q'f a.s. M for all fe 7.
We say that a set Ae . is Q-invariant if Q1, = 1.

LemMA 3.1. If all sets of a g-algebra <° are Q-invariant, then

(3.18) Q(9f) = 90f
foreach fe &, ge 5 ° and
(3.19) P{f| Y= P{Qf| "} as. P

for every Q-invariant measure P and every fe 7.

Proor. It suffices to check (3.18) for f = 1,,g = 1, where A€ &, Be & °.
In this case

Q(gf) —9Qf = (1 — 9)Q(9f) — 9Q[(1 — 9)f]

and
0<(1-90QNH=1—-90Q9=0,
0<g0[(l —g)f]<g(1—g)=0.

Formula (3.19) follows immediately from (3.18).
A Markov operator Q is called a sufficient statistic for M if there exists a o-
algebra ./ ¢ . such that

(3.20) P(f|.7% = Qf as. P

for all Pe M and all fe . If, in addition, (3.2) holds, we say that Q is H-
sufficient for M. Obviously (3.20) is equivalent to (3.1).

If Q is a sufficient (or an H-sufficient) statistic for M, then so are all operators
M-equivalent to Q.

THEOREM 3.3. If a convex separable class M has an H-sufficient statistic, then
there exists an H-sufficient statistic Q, such that

(3.21) 0(fQg) = QfQg  forall f,ge .~

and M coincides with the class of all Q-invariant measures.

Every Markov operator Q with the property (3.21) is H-sufficient for the class M
of all Q-invariant measures. The corresponding H-sufficient o-algebra .57 ° can be
defined as the collection of all Q-invariant sets. A mapping P — P°, where P is the
restriction of the probability measure P to .54 °, is an isomorphism of M onto M(.~"").
The inverse mapping is given by the formula P = P°Q.
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Proor. 1°. Let 0 be an H-sufficient statistic for M. By Theorem 3.1 Q, =
{w: Q“€ M} is an M-null set. Hence an operator

of = Of on Qp,
= Of(0*) on Q,,

where w* is a fixed point of Q.°, is H-sufficient for M too.
By (3.4), for all w, € Q¢, Q{w: Q° = Q“} = 1, and

2(fQg)(@,) = § flw)Q*(9)Q“(dw) = § f(w)Q*«(g)Q*|(dw)
= QU9)Q“«(f) = Qf(»,)Q¢9(w,) .

2°. Tt follows from (3.20) that PQf = Pfforall Pe M, fe 5%. Therefore all
Pe M are Q-invariant. On the other hand, if Pis Q-invariant, then

P(4) = { P(dw)Q*(4)

and Pe M since Q“e M for all we Q.

3°. Let Q be a Markov operator with the property (3.21) and let < ° be the
totality of all Q-invariant sets. It is easy to see that .~ ° is a g-algebra. By
Lemma 3.1, all functions fe 57 ° are Q-invariant. To prove the converse, we
denote by H the class of all measurable transformations @ of the real line such
that ®(f) is Q-invariant for every Q-invariant f. The class H contains linear
functions and is closed under addition and monotone convergence. By virtue
of (3.21), it is closed also under multiplication. Therefore it contains all bounded
Borel functions, in particular, functions @) = 1, ., for all constant ¢. Hence
for each Q-invariant f, the sets {w: f(w) > c} belong to >° and fis 7 °-
measurable.

4°. Setting f =1 in (3.21), we see that Q* = Q. Hence Qfe .&° for all
fe & . Theidentity (3.21) implies that Q(gf) = gQf forfe ., ge - °. Hence,
for each Q-invariant measure P,

P(gQf) = PQ(9f) = P(9f),

and (3.20) is satisfied; Q is a sufficient statistic for the class M of all Q-invariant
measures and .& ° is the corresponding sufficient o-algebra. On the other hand,
the identity Q* = Q implies that Q“ ¢ M of all w, and Q is H-sufficient.

Since Qf e . °forall fe &, an equality PQ = P implies that P°Q = P where
P’ is a restriction of Pe M to .~ °. Obviously P°Q € M for every P°¢ M.
Therefore we have a one-to-one correspondence between M and M(.5 ). It is
easy to check that this correspondence is an isomorphism in the sense of Subsec-
tion 2.1.

3.4. We shall prove that under certain circumstances sufficiency implies the
H-sufficiency.

A family of Markov operators V, satisfying the condition V,V, = V,,, for all
s, t is called a one-parameter semigroup if ¢ takes values on the positive real
half-line, and it is called a one-parameter group if ¢ takes values on the real line.
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We say that V, is measurable if, for each fe <, the function V, f(w) is meas-
urable with respect to the pair f, » (the measurable structure on  is given by
% and on the real line by the g-algebra <% of all Borel sets).

THEOREM 3.4. Let 7 be a finite or countable family of Markov operators or a
measurable one-parameter semigroup or group in (Q, .5°) and let . be countably
generated. Suppose that & ° C F is sufficient for the class M of all 7 -invariant
measures and (3.19) holds for all Pe M, Q e 7. Then & Yis H-sufficient for M.

Proor. Consider a Markov operator Q satisfying condition (3.20). To prove
(3.2), we need only to check that for each Pe M and each fe &

(3.22) QVf=Qf forall Ve ? as. P.

(Indeed (3.22) implies that, for almost all w, all measures Q“V, Ve 2 coincide
with Q“ on a countable family of sets separating measures of M(.>") and there-
fore coincide everywhere.)

It follows from (3.19) that

(3.23) QVf=Qf as. P  forevery Ve 7.

If 77is at most countable, then (3.23) implies (3.22) and our theorem is proved.

In the case of a Markov semigroup or a group, we consider the set 4 =
{(t, w): Q“V, = Q*}. It follows from (3.23) that for each 1, P{w: (¢, w) € 4} = 1.
The set A4 belongs to %' x .% . By Fubini’s theorem there exists a set Q, such
that P(Q,) = land, ifw € Q,, then, for almost all ¢, (¢, w) € 4, thatis, Q*V, = Q.
Taking into account that V,V, = V,, for all 5, t, we easily prove that Q“V, = Q¢
for all w € Q, and all 1.

REMARK. Theorem 3.4 and its proof are valid for a group & of Markov op-
erators if there exists a o-algebra 2%, in & and a ¢-finite measure 2 on 2%, such
that: (i) Vf(w) is &%, x # -measurable for each fe .5 (ii) 4(VB) = A(B) for
each Be <%, and each Ve &Z.

3.5. Let &, and &, be sufficient s-algebras for a class M and let Q, and Q,
be correspondent sufficient statistics. It is easy to see that 0,0, = 0,0, a.s. M
for all fe & if and only if &, and &, are conditionally independent given
0= F n.F, Inthiscase & °isasufficient g-algebra for Mand Q,, = 0,0,
and Q,, = Q,Q, are corresponding sufficient statistics.

Now let M be a convex class and let Q, and Q, be H-sufficient. The set Q; =
{0': Q,*" € M} is M-null and therefore

04(4) = Jor 0.(de)0:* (A) .
Hence Q4 e M if 0,*e M, and Q,, is H-sufficient for M.
4. Asymptotic sufficiency.

4.1. We say that a sequence of Markov operators Q, converges M-almost
surely to a Markov operator Q and write Q, — Q a.s. M if for each Pe M and
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each fe &
(4.1) Qf=1limQ,f as. P.

A sequence Q, is called an asymptotically sufficient statistic for M if there exists
a sufficient statistic Q such that Q, — Q a.s. M. If Q is H-sufficient, we say
that Q, is asymptotically H-sufficient.

To prove that a sequence Q, is asymptotically sufficient, we use a concept of
a support system.

4.2. A countable family W of bounded measurable functions in a measurable
space (R, 57) is called a support system if the following two conditions are
satisfied:

4.2.A. If p, is a sequence of probability measures on % and if lim § fdu, =
I(f) exists for each fe W, then there is a probability measure y such that I(f) =
{ fdu forall fe w.

4.2.B. If a class H of real-valued functions contains W and is closed under
addition, multiplication by constants, and bounded convergence, then H contains
all bounded measurable functions. (We say that f, converges boundedly to f if
f» converges pointwise to f and all the functions f, are uniformly bounded.)

A measurable space (Q, %) will be called a B-space if there exists a support
system in (Q, .%7). The unit interval / = [0, 1] with the Borel measurable
structure is an example of a B-space: a support system is formed by functions
Lx, x « oo, x™, - .n,

A measurable space (Q, ~7) is called a Borel space if it is isomorphic to a
Borel subset of a complete separable metric space. It is well known (see, e.g.,
[7] or [19]) that all uncountable Borel spaces are isomorphic. By this fact it is
easy to prove that all Borel spaces are B-spaces.

It follows from 4.2.B that a support system generates g-algebra .5, Therefore,
for any B-space (Q, 57), the g-algebra .5 is countably generated and M(5")
is separable.

4.3.
LEmMMA 4.1. Let (Q, &) be a B-space and let
(4.2) P{f| ¥ =1lim,..Q,f as. P

for every Pe M and all fe .54, Then Q, is asymptotically sufficient for M and .5#°
is a sufficient o-algebra for M.

ProoF. Put we Q' if lim Q,“(f) = I“(f) exists for all elements f of a support
system W. If w e Q', then, by 4.1.A, there exists a probability measure Q“ such
that Q“(f) = I*(f) for all fe W. It follows from (4.2) that P(Q") = 1 and that

(4.3) P15 = 0%(f) = Of (@) as. P

for all fe W, Pe M. By 4.1.B, (4.3) holds for all fe 5. Therefore Q is suf-
ficient for M. It follows from (4.2) and (4.3) that 0, — Q a.s. M.
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4.4. It follows from Theorem 3.1 that, if Q, is an asymptotically H-sufficient
statistic for M, then

(4.4) Pf=1imQ,f as. P

for Pe M, and fe 2. Formula (4.4) is valid also for all unbounded functions
f for which (4.2) is true. In most applications, (4.2) and (4.4) hold for all P-
integrable f.

Let us fix an arbitrary countable family W of bounded .# -measurable func-
tions and define a convergence of measures by the condition that P, — P if
P,(f)— P(f) for all fe W. The formula (4.4) implies that each P in M, is the
limit of 0, for some w.

4.5.

LemMMA 4.2. Let M be a class of probability measures on a B-space (2, 7). If
A1 F, are sufficient a-algebras for M, then ¥ ° = % N 7, is also sufficient
for M. (Here 7, is the minimal c-algebra which contains 5, and all M-null sets.)
If V, is a sufficient statistic corresponding to = ; (i = 1, 2), then formulas

(45) Ql = V1 ) Q2k = V2Q2k—1 s Q2k+1 = V1Q2k for k=1,2,...
define an asymptotically sufficient statistic corresponding to & °.

PrROOF. According to Lemma 4.1 it is sufficient to check formula (4.2). This
formula follows from one result of Burkholder ([1], Theorem 4).

CoRrOLLARY. If &, i = 1,2, ... are sufficient for M, then & °= (&, is
also sufficient for M.

ProOF. By Lemma 4.2 all g-algebras &/, = %, n ... N.F ,,n=1,2,..-
are sufficient for M. Let Q, be corresponding sufficient statistics. Then

lim Q, f = lim P{f|.%,} = P(f|.% %} as. P
for all Pe M and all fe 5.
5. Gibbs states.

5.1. Let L be a directed set, i.e., a partially ordered set with the property
that for each two elements A,, A, of L, there exists A € L such that A > A, and
A > A,. We consider two directed families indexed by L: a family of g-algebras
&, C o4 and a family of Markov operators II, in (Q, 7).

Following H. Follmer, we say that (=, II,) is a specification in (Q, &) if:

5.1.A. 3, for A > A.

5.1.B. II; I, = I; if A > A.

5.1.C. II, fe &7, for fe &

5.1.D. II, f= ffor fe &,.

Concrete examples of specifications will be discussed in Sections 8 and 9.

A probability measure P on (Q, 57) is called a Gibbs state specified by
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Il = (&, 1I,) if
(5.1) P{f|#}=1,f as. P
for each fe .~ and A e L.
We assume that the directed set A contains a cofinal sequence A, i.e., a se-
quence with the property that for every A € L there exists A, > A.
Evidently, each Gibbs state P is a II,-invariant measure for all Ae L. On

the other hand, if a probability measure P is invariant relative to the family
{IL,}, then, by 1.5.D, 1.5.C, and Lemma 3.1,

P{f|>") = PII, f|.5,} = I, f as. P

and P is a Gibbs state. Now let P be invariant with respect to operators II,
corresponding to a cofinal sequence A,. For each A € L there existsa A, > A
and, by 5.1.B, II, II, = II, . Therefore

P=PI, =PI, II, = PII, .

We see that the class G(II) of all Gibbs states specified by II coincides with the
class of all probability measures which are invariant with respect to a countable
family II, .

5.2. We define the tail o-algebra > ° as the intersection of all =~,.

" THEOREM 5.1. LetII = (.7, II,) be a specification in a B-space (Q, =#"). Then
the tail o-algebra .5 ° is H-sufficient for the class G(II) and, to each cofinal sequence
A, there corresponds an asymptotically H-sufficient statistic II Ay

Proor. It is clear that .5, | ~#7°. Therefore
(5.2) lim P{f| 5, } = P{f| "} as. P

for each probability measure P and each P-integrable f. If Pe G(II) then (5.2)
implies (5.1). By Lemma 4.1, II, is an asymptotically sufficient statistic and
< Yis a sufficient g-algebra for G(II). Since

KL, f17) = PP{f 170 ) = P17} as. P
for Pe G(I), fe .5, the g-algebra .57 °is H-sufficient for G(II) by Theorem 3.4.
6. Shifts.

6.1. To each measurable transformation T of a space (Q, .7), there cor-
responds a Markov operator which transforms functions according to the formula

Tf(o) = f(Tw)
and measures according to the formula
(PT)(A) = § P(dw)l (Tw) = P(T7'4).
Markov operators of this kind will be called shifts.
LemMA 6.1. If T is a shift of a B-space (Q, "), then
(6.1) Q,=ntR T
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is an asymptotically H-sufficient statistic for the class M of all T-invariant meas-
ures and the g-algebra 7 ° of all T-invariant sets is the corresponding H-sufficient
g-algebra.

Proor. By Birkhoff’s ergodic theorem (see, e.g., [18], V-6), the relation (4.2)
is satisfied, and Q, is asymptotically sufficient for M by Lemma 4.1. H-suf-
ficiency follows from Theorem 3.4 and Lemma 3.1.

COROLLARY. Suppose that a shift T of a B-space (Q, ") transforms into itself
aclass M c M(Z") and a o-algebra & ° C . If & ° is H-sufficient for M,
then the collection & }° of all T-invariant sets of & ° is H-sufficient for the class
M, of all T-invariant measures Pe M.

This follows from Lemma 6.1 and 3.5 because the limit Q of operators (6.1)
commutates with the conditioning with respect to & °.

THEOREM 6.1. Let G be afinite or countable group of shifts of a B-space (2, ).
The o-algebra 5 ° of all G-invariant sets is H-sufficient for the class M of all G-
invariant measures.

Proor. Denote by % the minimal o-algebra containing all M-null sets and
all T-invariant sets A€ 5. By Lemma 6.1, % is sufficient for M. By Lemma
4.2, an intersection % of % over all T e G is sufficient for M. Obviously,
F 0 c . Ontheother hand, if Ae %, thenT1, = 1,a.s. M for each TeG.
The union B of T-'(A4) over all T € G is G-invariantand 1, = 1 a.s. M. Hence
&7 and & °are M-equivalent and & is sufficient for M. H-sufficiency of 5°
follows from Theorem 3.4 and Lemma 3.1.

REMARK. Theorem 6.1 holds for important classes of uncountable groups G.
Suppose that there exists a countable subgroup G* of group G with the property
that % % is M-equivalent to the s-algebra .5 ! of all G'-invariant sets. As we
know, & ! is sufficient for the class of all G'-invariant measures. Hence # !
1is sufficient for M, and .5 ° is sufficient for M too. By the remark at the end
of 3.4, & is H-sufficient for M if G satisfies conditions (i), (ii).

Now let G be a locally compact group. Then condition (ii) is satisfied for Borel
o-algebra <%, and Haar measure 2. Condition (i) implies that, for each Pe M
and every square integrable f, T — Tf is a continuous mapping of G into L¥Q, P)
(see, e.g., [17], Section 29). Using this fact, it is easy to prove that, if G has a
countable everywhere dense subgroup G*, then .5 * is M-equivalent to .5 °and
% is H-sufficient for M.

The role of g-algebra 5 for decomposition of invariant measures into extreme
elements was discovered independently by Farrell [8] and Varadarajan [21]. The
fact that & is a sufficient g-algebra for M is proved in [8] also for a certain
class of abelian semigroups.

6.2. We consider now a slightly wider class of operators than shifts.

THEOREM 6.2. Let T be an invertible transformation of a B-space (R, &), let
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T and T-* be measurable, and let Y(w) be a strictly positive & -measurable function.
Let Uf(w) = Y(o)f(Tw). Then

V f Z —-n ka
» U¥1
is an asymptotically H-sufficient statistic for the class M of all U-invariant probability
measures. The corresponding H-sufficient o-algebra & ° consists of all T-invariant
sets.

Proor. We prove that
(6.2) P{f| &% =lim, . V,f as. P

for every Pe M and every P-integrable f.

Put y~! = 3} U*1, ¢ = U*f, summing over all integers k. Let Q, = {w: y = 0},
Q, = {w: y > 0}. By the Chacon-Ornstein theorem (see, e.g., [18], V, 6.4) (6.2)
holds on Q, and, in order to prove that it holds on Q,, we need only check that
(6.3) P{f| F %) =¢r as. P on Q.

The obvious relations Up = ¢, Uy~ = y~'imply that To = ¢Y~!, Ty = rY, and
T(¢7) = ¢r. Hence ¢y is & *-measurable. On the other hand, (Uf)g = U(fT"'g)
and therefore

(6.4) P(gUf) = P(fT"'9)
for all Pe M and all positive .5 -measurable f, g. It follows from this that
P(grU'f) = P(9fT™*7)

forge ¥ %and k =0, +1, .... Hence

(6.5) P(gre) = P(gfa) .

where a« = Y] T-*y. Since a is & °-measurable, (6.5) implies that
(6.6) aP{f| F %} =710p.

Now « does not depend on f. Taking f = 1, we see that « = 1, and (6.6)
goes into (6.3). By Lemma 4.1, 5 ° is sufficient for M. Formula (6.4) implies
(3.19), and &~ is H-sufficient for M by Theorem 3.4.

REMARK. Suppose that T, is a one-parameter group of shifts and U, f(w) =
Y, f(T,w) where Y, , = Y,T,Y,. Then Theorem 6.2 holds with
¢, U, ds
{51 U,1ds

V, =

t

instead of ¥,. This result was first proved by Yu. I. Kifer and S. A. Pirogov
in an appendix to [5].

6.3.

THEOREM 6.3. Let a class M of positive functions be a B-space and a simplex
and let kp€ M if o€ M and k + 1. Suppose that T is an automorphism of a
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cone M* = {ko: e M, k > 0} (which means that T and T-* preserve generalized
barycentres). Then the set M, of all points ¢ € M such that T = ¢ is also a simplex.
This statement is true also for a one-parameter group of transformations T,.

Proor. For each ¢ € M* there exists one and only one positive number k(¢)
such that ¢/k(¢) e M. Put Y(¢) = k(Tp)and To = Te/Y(¢). Obviously Tisan
invertible transformation of the measurable space (M,, B, ), and T and T-! are
measurable. Each ¢ € M can be uniquely represented in the form

(6.7) ¢ = S, pr(d9) .

Hence

T = Sy, TPp(dP) = Su, Y(@)TP(dP) = (u, Pr(d9)
where
m(dg) = Y(T-g)p(T-1dg) .
It is clear that T¢ = ¢ if and only if 4, = ¢ which is equivalent to the relation
#U = pwhere UF(¢) = Y(¢)F(T¢). By Theorem 6.2, the class of all U-invariant

probability measures is a simplex, and formula (6.12) establishes an isomorphism
of this class and M.

7. Symmetric measures.

7.1. In the rest of the paper we investigate various classes of measures on
product spaces. We start with the necessary notations.

Let there be given an arbitrary set S and a set E, associated with each s of S.
We call a configuration and denote by x; a collection of x, € E,, se S. The product
space Ej is the set of all configurations x;5. A space E, of configurations x, over
A corresponds to each subset A of the set S.

Now let a g-algebra <%, in E, be fixed for each se S. We denote by <%, the
minimal ¢-algebra in E, which contains sets {x,: x,e I'} for all se A, I" ¢ <5,.
To each probability measure P on (Es, %) and each A C S, there corresponds
a probability measure P, on (E,, <%,) defined by the formula

(7.1) P\(A) = P{xg: x,€ A}, Ae B, .

A collection of measures P, for all finite A C S is called a system of finite-dimen-
sional distributions. If (E,, <,) are Borel spaces, then (7.1) establishes a one-to-
one correspondence between all probability measures P on (Es, %) and all
consistent systems of finite-dimensional distributions (Kolmogorov’s theorem).
In particular, to each family of probability measures p,, s€ S, there corresponds
a product measure P for which all finite-dimensional distributions P, are the
products of p,, se A.

A system of random variables on the probability space (Eg, &, P) is given
by the formula

X, (0) = x, for w=1x;, seS.

These random variables are independent if and only if P is a product measure.
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Sets {xs: x, € A}, A finite, A € &Z,, are called cylinders. Two measures on =%
are identical if they coincide on all cylinders.

7.2. In this section we assume that (E,, £%,) = (E, <#') does not depend on s
and we write ES for Eg and <#° for <5;. Any transformation g of S induces a
transformation xi’ = T,xg of the space E¥ given by the formula x,” = x,,. Put
ge G if g is invertible and gs + s only for a finite number of s. Measures,
measurable sets, and functions invariant with respect to the family of operators
T,, g€ G, will be called symmetric.

Let I" be a finite subset of S. Denote by GT the totality of all g € G such that
gs = soutside G. Denote by & T the class of all elements of <#S-invariant
relative to T,, g € G*. Let V; be an arithmetic mean of operators 7, g € G". It
is easy to see that

(7.2) P{f|ZTy=V.f as. P
for each symmetric measure P and each P-integrable f.

THEOREM 7.1. Let S be a countable set, (E, %) a Borel space and M the class
of all symmetric measures on (ES, &2°). Then:

(a) M is a simplex;

(b) a measure P is an extreme point of M if and only if P is a product of identical
probability measures p, = p, s € S (in other words, if X,, se€ S are identically dis-
tributed independent random variables);

(c) the class Z° of all symmetric sets is an H-sufficient g-algebra for M and
Vv, is the corresponding asymptotically H-sufficient statistic if ', 1 S.

Proor. The fact that & ° is H-sufficient for M follows immediately from
Theorem 6.1. If I', 1 S, then & T» | & °and (7.2) implies that

Pf| #}=IlimV; f as. P

for all Pe M and all fe & By Lemma 4.1, Vrn is an asymptotically sufficient
statistic for M. The statement (c) is proved. By Theorem 3.1, (c) implies (a).

It remains to prove (b). LetS = {0,1,..-,n,...}andT’, = {0, 1, ---,n — 1}.
By virtue of (c) and (4.4)
(7.3) Pf=1limV, f as. P

for Pe M, and fe =Z°. In order to prove that Pis a product measure, it suffices
to check that, for all m and all A e &8, Be 2%,

(7.4) P{x;, € A4, x, € B} = P{x; € A}P(x, € B}.
It follows from (7.3) that
(7.5) P{lA(xrm)Pl_B(xm)} = lim,_., P{ld(xrm)VFn Lp(x,)} -

Evidently V; 1,(x,) = n7' 3%_, 15(x,) for n = m. Since
P{x; €A, x,eB} = P{x;_eA4,x,c B}
for all k = m, (7.5) implies (7.4).
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Now we prove that each product measure P e M belongs to M,. Since Pis a
barycentre of a probability measure ¢ concentrated on M,, we have

(7.6) P[@(xo)‘/’(xl)] = SM¢ Plo(x0)p(x,)](dP)

for every ¢ € <. Here P and P are symmetric product measures and therefore
(7.6) is equivalent to

[Po(xo)]* = §u, Po(x,)12(dP) ,
which implies that

(7.7) $or, [Poo(x0) — P‘/’(Xo)]zﬂ(dP) =0.
It follows from (7.7) that u{P: Pe M,, P = P} = 1. Thus Pe M,.

7.3. The statements (a) and (b) of Theorem 7.1 are true for uncountable §
too. Indeed, if A is a countable subset of S, then the measure P,, introduced
by (7.1), characterizes a symmetric measure P uniquely because it defines all
finite-dimensional distributions of P. Hence the mapping P — P, is a one-to-
one mapping of M onto the set of all symmetric measures on (E*, 2£*). This
mapping preserves the convex structure, and P is a product measure if and only
if P, is a product measure also.

The statement (c) has to be modified as follows. Let A be an arbitrary count-
able subset of S. Denote by .%° the collection of all sets of the form 4 x ES\A
where A4 is a symmetric subset of E*. Then .5 ° is an H-sufficient o-algebra
for M.

8. Stochastic fields.

8.1. Let (E;, %) be a product of spaces (E,, &%), se S, and let L be a col-
lection of subsets of S ordered by inclusion. Denote by .5, a g-algebra in Ej
generated by random variables X,, se S\A. Assume that, for each AeL, a
measure p,(+ | xg,) is given on (E,, £%,) which depends on x,,, and put

(8.1) I, f(xs) = $esia S(Xsua Ya)Pa(dys | Xaa) -

(We denote by x,, y, a configuration which coincides with y, over A and with
xsp over S\A.) If II = (&, II,) is a specification (i.e., if 5.1.A—5.1.D are
satisfied), we say that p is a specifying function.

We say that (X,, P) is a stochastic field specified by p if
(8.2) P{X, € A| X5,} = pr(A| Xs,) a.s. P

for each A € L and each 4 e £%,. Obviously (8.2) is equivalent to (5.1). Hence
Theorem 5.1 can be applied to the set of all stochastic fields specified by p.

8.2. Let S be a countable set and let L be the collection of all finite subsets
of S. To each real-valued function U(T', x;), ' € L, x; € E;, there corresponds
a specifying function

(8.3) Pa(Clxsa) = Z71 (o [exp X U(T, x;)] 10, , 4,(dx,) ,
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where I' runs over all finite subsets of § such that ' N A # @, 4, is a measure
on (E,, <%,) and Z is independent of x, and can be calculated from the condition
Pa(Ex| x54) = 1. (The only restriction on U is convergence of series in (8.3).)
Now suppose that S is a graph. A specifying function p is called Markov if
Pa(+ | xs4) depends only on x;, where dA is a collection of all points of S\A
which have neighbors in A. A function (8.3) is Markov if and only if the
inequality U(T', x;) s 0 implies that each two points s;, s, of I" are neighbors.
Proofs of all statements of subsection 8.2 can be found, for example, in [20].

8.3. Now suppose (E,, &%,) = (E, <#) does not depend on 5. Let L be the
collection of all finite subsets of a countable set S. Consider the family {5 T,
I e L} of g-algebras in ES which has been defined in 7.2. Obviously & T 5 & T
if I c I'. Suppose that, for each I € L, a measure p;(+ | xs) on (ET, <#7) is given
depending on x; and such that operators

IL; f(x5) = §es f(Xsi0)Pr(@ya | Xs)

satisfy conditions 5.1.B—5.1.D. Theorem 5.1 can be applied to the class of all
probability measures P satisfying the condition

P{X; € A| F T} = p{4| Xg} as. P forall T'eL andall A4e<g’.

The tail g-algebra % ° = (| # T coincides with a collection of all symmetric
subsets of ES.

9. Markov processes with a given transition function.

9.1. A stochastic field (X,, P), s S, is called a stochastic process if S is a
subset of a real line. The case when S is an interval is the most important.

We denote by &, the g-algebra in Eg generated by X,, t < s, e S. The
notations &% _,, % ,,, & ., have an analogous meaning.

A real-valued function p(s, x; 1, I'), s < te S, xe E,, I e <%,, is called a Markov
transition function if p(s, x; t, +) is a probability measure, p(s, +; ¢, 1I') is a <Z;-
measurable function, and

9.1 pls, x;u, L) = §g, p(s, x5 t, dy)p(t, y; u, T)
foralls<t<uesS,xekE, I'ecr

Starting from a transition function p, we define a specification II(p) in the
following way. We consider a family of finite-dimensional distributions

P(sy, dxyy - - -y 5, dX,)
9.2) = P(S, X; 83 dx)P(Sy5 X35 Sg5 dX3) + o+ P(Sp_is Xposs S,y dX,)
55 <85 . <S,,,€A,=Sﬂ(s,+oo)

and denote by P, , the corresponding probability measure on & ,,. We define
L as the totality of all sets A,, se S, and put

(9.3) \QA, = F s HA,f(xs) = Sf(xS\A‘yA,)Pl,z,(dyA,) = P.,z,f(XS\A,XA,) .
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Then II(p) = (F,, I1,) is a specification. (Formula (9.3) is a particular case of
(8.1) with p, (4| x54,) = P, . {Xs, € 4}.) We will use an abbreviation II, for the
operator II, .

We say that (X,, P)is a Markov process with a transition function p and we write
Pe M(p) if
(9.4) P{A| 5} =P, (4) as. P

for eachse S, 4e & ,,. Obviously M(p) coincides with the set of all Gibbs
states specified by II(p).

9.2. THEOREM 9.1. Letr = infS. IfreS, then I, is an H-sufficient statistic
for M(p) and the corresponding H-sufficient o-algebra is generated by X,. If r€ S,
then an intersection & ° of all g-algebras & _,, se S is an H-sufficient g-algebra
for M(p) and, to each sequence s, | r, s, S these corresponds an asymptotically
H-sufficient statistic 11, .

Proor. In the case re S, we need only check that
(9.5) P{f|X,}=1I,f as. P

if Pe M(p) and fe <#%,. It is sufficient to prove this only for functions of the
form f(xs) = ¢(x,)¢(x,,). But for such f the left side of (9.5) is equal to

X IPAAXN ) sk = §(X )P, H(Xy,)
and, by the definition of II,, the right side of (9.5) is the same.

Suppose now that r € S. Then to eachs, | r, s, € Sthere corresponds a cofinal
sequence A, , and, if (Es, Bg) is a B-space, we can apply Theorem 5.1. This is
the case if S is countable.

If S is not countable, we consider a countable subset A = {s,} of S where
s, | r and we use the same trick as in 7.3 replacing each measure P by P,.

Since Jj“fgam |} # %, we have
(9.6) P{f| &%) = lim,_ .0, [ as. P
for each Pe M(p) and each P-integrable f, and our theorem will be proved if
we construct a Markov operator Q with the properties
(9.7) P{f| 5% = Qf as. P,

Q“e M(p) as. P,
for each Pe M(p). It follows from (9.4) that, for Pe M(p),
P(f|.5% = PPf| 5o} 5% = PP, /|57 as. P.
Therefore if
9-8) Plp(X,)| 57 = 0p(X,) as. PeM(p)

foralln=1,2, ... and all p e %’,ﬂ, then (9.7) is true for all n and all fe &,
and hence, it is true for all fe &,
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Denote by M(p) the class of all Markov processes on (E,, £%,) with the transi-
tion function p and by # 0 the corresponding tail g-algebra. It follows from
(9.5) and an analogous formula for & that

9-9) Plp(x, )| -7} = Ple(x, )|} as. PeM(p).

The mapping P — P, is a one-to-one mapping of M(p) onto M(p). As we know,
there exists a Markov operator §J in (E,, B,) such that 0° e M(p) a.s. M(p) and

(9.10) Plp(x, )| Z %) = Qp(x,) as. P

for each P e M(p) and each ¢ e %, . Denote by Q° a measure of class M(p)
which corresponds to 0¢. It follows from (9.9) and (9.10) that Q satisfies (9.8).

10. Entrance and exit laws.

10.1. Let p(s, x; t, I') be a Markov transition function. Put

Prh(x) = (g, p(s, X3 t, dY)R(y) »
(v YT = (g, vidx)p(s, x; 1, 1)
(Here ht is a <%-measurable function with the values in the extended half-line
[0, +o0]; v, is a measure on £Z,.)
We say that v is an entrance law if v, P’ = v, for all s < re S and we say that
h is an exit law if P*h* = h* for all s < te S.
If v is an entrance law and 4 is an exit law, then the value of v,(4,) does not
depend on r and we denote it by {v, &}. If {v, A} = 1, then the formula

p(ty, dxy, -, t,, dx,)
(10.1) = th(dxx)l’(fv X5 by dX5) < oo P(Ea_ys Xpoys by dX,)H(X,)
t < o <L t, € S

defines a family of consistent finite-dimensional distributions, and we denote
by P,* the corresponding probability measure on (Es, ).

Let oo > A*(x) > O for all s, x.

Let R* be the class of all entrance laws v normed by the condition {v, £} =1
with natural measurable and convex structures. Let M(p*) be the class of all
Markov processes with the transition function '

(10.2) Pr(s, x5 t, dy) = he(x)7'p(s, x; t, dy)h'(y) .

It is easy to see that v — P,* is an isomorphism of convex measurable spaces R,*
and M(p"). According to Theorem 9.1 and 3.1, the space R,* is a simplex. If
v is an extreme point of R, and if P*[¢*(X,)] < co, then by 4.4, for every
sequence s, | 1y,

(10.3) PMeH(X)]=lim P} , o%X,) as. P}.
Formula (10.3) implies that for each v,-integrable f
(10.4) v(f) = lim ken(X, )7 §5, p(sa X, 6 dy)f(y) as. PP
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10.2. Now we investigate a class S,? of all exit laws normed by the condition
{v, B} = 1 under the following additional assumption:

10.2.A. Ify(I') = 0, then p(s, x; t,I') = O for all se ¢, xe E,.

We proved in [6] (see Lemma 4.2) that a density o(s, x; 1, y) = p(s, x; t, dy)/v,(dy)
can be selected in such a way that

(10.5) Sz, 005 %3 1, Yldy)o(ts 5w, 2) = (s, x5 u, 2)
foralls < t<u, xekE, z¢ E, and
(10.6) § o(s, x; t, y)y(dx) = 1 forall s, x.

The formula

(10.7) B(s, dx; t, y) = v (dx)o(s, x; t, y)

defines a backward transition function. Starting from p, we define probability
measures P** on & _, exactly in the same way as measures P, , were defined
with the help of forward transition function p. We say that (X,, P) is a Markov
process with a backward transition function p if

P{4| & ,,} = P“*«(A) as. P for Ae s ,.

We consider a measurable structure in S,? generated by functions F(k) =
v(oh), se S, o e <5, It was proved in [4] (Lemma 4.2) that #*(x) is measurable
with respect to the pair %, x, and hence the condition 2.2.A is satisfied. It is
easy to check that the mapping # — P,* is an isomorphism of S,” onto the class
M( p) of all Markov processes with the backward transition function p defined
by (10.7). Now we use Theorem 3.1 and propositions dual to Theorem 9.1 and
to formula (4.4), and we conclude that S? is a simplex and that
(10.8) v(ht¢*) = lim P*w*uuoi(x,) = lim § o*(x)A(t, dx; u,, X, ) a.s. P}

if 4 is an extreme point of S,?, if u, | r, and if P*|o!(X,)| < oo.

v

1t follows from (10.8) and (10.7) that
' § B(x)¢!(x) v(dx) = lim § p(t, X; u,, X, )p(x)v(dx) a.s. P}
if h'¢* is v,-integrable. Applying the last formula to
o' (x) = p(s, x; t, y) for t>s,
=0 for t<s,
we see that, if 4 is extreme and if 4*(x) < oo, then
k*(x) = lim o(s, x; u,, X, ) a.s. Pr.

RemARK. S. E. Kuznecov [14] has proved that the assumption 10.2.A is not
only sufficient but also necessary for the class S,? to be a simplex.

11. Excessive measures and excessive functions.

11.1. In this section, the results of Section 10 will be extended to wider
classes of measures and functions associated with a transition function p. Let
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S coincide with the set of all real numbers. An excessive function h and an
excessive measure v are defined, respectively, by conditions

Pzrht < b, Plht T h as t|s
and

v, P <y, v,P* Ty, as st.

It is convenient to replace in the definition of a Markov transition function
the condition p(s, x; t, E,) = 1 by a weaker condition p(s, x; ¢, E,) < 1. An
immediate gain is that an extended class is invariant with respect to transforma-
tion p — p* defined by formula (10.2) for each strictly positive finite excessive
function 4.

Let v be an excessive measure and / be an excessive function. We put {v, h} =
+ oo if v (ht) = + oo for some ¢. If v(h') < oo for all ¢, we define {v, h} as a
supremum of sums

v () + Tfea [v0, (A1) — vy (Pig1h")]

over all finite subsets t, < 7, < --- < t, of S. (This is consistent with the defini-
tion given in Section 10 for the case of an entrance law v and an exit law 4.)
The crucial point is the construction of a probability measure P,* corresponding
to a triple p, v, A such that {v, A} = 1. As in Section 10, we start from formula
(10.1). However P} will be defined not on (Es, %) but on a different space
(R, F). In order to construct this space, we add to E, two extra points a, and
b, and denote by 27, a o-algebra in E, = E, U a, U b, generated by <%, and the
one-point sets {a,} and {b,}. We define Q as a subset of the product space
(Es, Fs) = 1,5 (E,, £5,), namely, xs of Eg belongs to Q if there exist two real

numbers a < § such that
x,=a, for s<a, x,e E, for se(a,p), x,=b, for s=§.

8

The random variables a(w) and S(w) are called the birth time and the death time.
To each s S there corresponds a function X, on Q defined by the formula

X(0) = x, for o = xg,
and we denote by & the g-algebra in Q generated by X,, s S.

We proved in [5] that, if {v, £} = 1, then there exists one and only one prob-
ability measure P,* on (@, F) such that, forevery, < --- <r,e S, IeZ,, .-,
T'.e :/5’,",

Puh{a < t, X,le Fp c "Xt,,e F,,,,‘B > t'n} =P(’u Fv sy b Fn)’
where the right side is defined by formula (10.1).
To each se S, x e E, there corresponds an excessive measure
v (') = p(s, x, 1, T) for >3,
=0 for <.

We say that a probability measure P on 24 defines a Markov process (X,, P)
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with a transition function p* if, for all se Sand Ae & ,,,
PA| F} =Pl (A) as. P on {w:a<s< g},

Let A = {r, < --- < t,} be afinite subset of Sand let t, = —oo, ¢,,, = -+ oo.
Put

ay =ty if L2a< ty,, Br =1, if 6 < B = by s
k:0717"'$m;

I, flw) = H(aA(m.+oo)f(“’) .

Theorem 9.1 can be extended to processes with random birth and death times
as follows.

THEOREM 11.1. Put Ae Fif {A,a < s}e F, forallse S. Then & °isan
H-sufficient o-algebra for M(p*). To each increasing sequence of finite sets A, with
a union everywhere dense in S, there corresponds an asymptotically H-sufficient sta-
tistic II .

Now all the results of Section 10 can be easily carried over to excessive measure
and functions. We have to replace s, by a, in (10.4) and u, by 8, in (10.6).

11.2. We proved in [5] that the space of all p-excessive measures is a Borel
space (the main point is that each p-excessive measure is defined uniquely by
the values v, for rational 7). Therefore all simplexes M(p), R,*, S,? investigated
in Sections 9, 10 and 11 are Borel spaces.

12. Stationary transition functions.

12.1. Wesuppose now that a Markov transition function p(s, x; ¢, I') is szation-
ary which means that: (i) Sis a subgroup of the additive group of real numbers;
(ii) all spaces (E,, .<%,) = (E, £%) are identical; (iii) p(s, x; ¢, I') = p(t — 5, x, T')
depends only on the difference + — s. We shall consider only two possibilities:
S is the group of all integers (the discrete case) and S is the group of all real
numbers (the continuous case). In the second case we assume that p(z, x, I') is
measurable with respect to the pair 7, x.

We denote by 6, a shift in (ES, ££°) which corresponds to the transformation
s— s+ tof S. A Markov process (X,, P) is called stationary if P is invariant
with respect to the group 6,, 1€ S.

THEOREM 12.1. Let & ° = (| & g, be the tail o-algebra and let 5" be a col-
lection of all A€ 5 ° which are invariant with respect to the group 0,. Then &
is an H-sufficient c-algebra for the class My(P) of all stationary Markov processes
with a transition function p.

Proor. In the discrete case we can apply the corollary to Lemma 6.1 to
T = 6,, the class M = M(p), and g-algebra .5 °(which are invariant with respect
to T'). In the continuous case (ES, ££°) is not a B-space. This obstacle can be
overcome in the same way as in the proof of Theorem 9.1 but we will not go
into details.
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12.2. A probability measure v is called a stationary distribution for p if vP, = v
for all e §. (Here P, = P, are the Markov operators associated with the transi-
tion function p.) Each stationary distribution defines an entrance law v, = v,
t&S. The corresponding Markov process P,! belongs to the class M,(p) inves-
tigated in Theorem 12.1. In this way we establish an isomorphism between the
class N of all stationary distributions and M,(p). Hence N is a simplex.

12.3. An excessive measure v, is called stationary if v, does not depend on ¢.
Obviously a measure v on (E, £Z) is a stationary excessive measure if and only
ifvP, <vforallteSand vP,tvast|0. Ina similar way, we introduce the
concept of a stationary excessive function.

THEOREM 12.2. Let | be a strictly positive measurable function on (E, <8). A
class of all stationary excessive measures v normed by the condition v(l) = 1l is a
simplex.

Proor. Since p is stationary, the formula (T,v), = v,,, defines for each ¢ a
transformation of the set of all p-excessive measures. Obviously, v is stationary
if and only if it is invariant with respect to the group 7.

Consider a p-excessive function

h(x) = 4 {5 e P, I(x)du .

A simple calculation shows that, for each excessive measure v,

(12.1) {v, i} = 3 {2 e ™y, (1) du
which implies that

(12.2) {v, B} = v(I) if v is stationary,
and

(12.3) {T,v, h} < e*'{v, A} .

Denote by M* the set of all excessive measures v satisfying the condition
{v, B} < oo and by M the set of ve M* for which {y, i} = 1. According to
Section 11, M is a Borel space and a simplex. It follows from (12.3) that M*
is invariant with respect to 7,, and Theorem 12.2 follows from Theorem 6.3.

12.4.

THEOREM 12.3. Suppose a stationary transition function p(t, x, I') is absolutely
continuous with respect to a measure y for each t and x. Then the set of all stationary
excessive functions h normed by the condition y(h) = 1 is a simplex.

Proor. We consider transformations (7T, k)* = h*** of the set of all excessive
functions. The formula

v(l') = 3 {¢ e "(yP,)(T) du
defines an excessive measure, and we have

(o B} = § §3 () d



SUFFICIENT STATISTICS AND EXTREME POINTS 729

for every excessive function 4. In particular {v, i} = y(h) for a stationary .
To complete the proof, we apply Theorem 6.3 in the same way as in the proof
of Theorem 12.2.

REMARK. Put
gi(x, T) = {re*p(t, x,T)dt, 2=0.
If a measure | '
(1) = (z 7(dx)g;(x, T)

is o-finite for some 4, then Theorem 12.2 remains true if p(z, x, T') is absolutely
continuous with respect to »; (Kuznecov [14], Theorem 3).
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