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Preface: Stochastic
Processes in
Measure-Theoretic
Probability

This is intended to be a second course in stochastic processes (at least!); I am
going to assume you have all had a first course on stochastic processes, using
elementary probability theory, say our 36-703. You might then ask what the
added benefit is of taking this course, of re-studying stochastic processes within
the framework of measure-theoretic probability. There are a number of reasons
to do this.

First, the measure-theoretic framework allows us to greatly generalize the
range of processes we can consider. Topics like empirical process theory and
stochastic calculus are basically incomprehensible without the measure-theoretic
framework. Much of the impetus for developing measure-theoretic probability
in the first place came from the impossibility of properly handling continuous
random motion, especially the Wiener process, with only the tools of elementary
probability.

Second, even topics like Markov processes and ergodic theory, which can be
discussed without it, greatly benefit from measure-theoretic probability, because
it lets us establish important results which are beyond the reach of elementary
methods.

Third, many of the greatest names in twentieth century mathematics have
worked in this area, and the theories they have developed are profound, useful
and beautiful. Knowing them will make you a better person.

Definitions, lemmas, theorems, corollaries, examples, etc., are all numbered
together, consecutively across lectures. Exercises are separately numbered within
lectures.
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Chapter 1

Basic Definitions: Indexed
Collections and Random
Functions

Section 1.1 introduces stochastic processes as indexed collections
of random variables.

Section 1.2 builds the necessary machinery to consider random
functions, especially the product σ-field and the notion of sample
paths, and then re-defines stochastic processes as random functions
whose sample paths lie in nice sets.

You will have seen, briefly, the definition of a stochastic process in 36-752,
but it’ll be useful to review it here.

We will flip back and forth between two ways of thinking about stochastic
processes: as indexed collections of random variables, and as random functions.

As always, assume we have a nice base probability space (Ω,F , P ), which is
rich enough that all the random variables we need exist.

1.1 So, What Is a Stochastic Process?

Definition 1 (Stochastic Process: As Collection of Random Variables)
A stochastic process {Xt}t∈T is a collection of random variables Xt, taking val-
ues in a common measure space (Ξ,X ), indexed by a set T .

That is, for each t ∈ T , Xt(ω) is an F/X -measurable function from Ω to Ξ,
which induces a probability measure on Ξ in the usual way.

It’s sometimes more convenient to write X(t) in place of Xt. Also, when
S ⊂ T , Xs or X(S) refers to that sub-collection of random variables.

Example 2 Any single random variable is a (trivial) stochastic process. (Take
T = {1}, say.)

2



CHAPTER 1. BASICS 3

Example 3 Let T = {1, 2, . . . k} and Ξ = R. Then {Xt}t∈T is a random vector
in Rk.

Example 4 Let T = {1, 2, . . .} and Ξ be some finite set (or R or C or Rk. . . ).
Then {Xt}t∈T is a one-sided discrete (real, complex, vector-valued, . . . ) random
sequence. Most of the stochastic processes you have encountered are probably of
this sort: Markov chains, discrete-parameter martingales, etc.

Example 5 Let T = Z and Ξ be as in Example 4. Then {Xt}t∈T is a two-sided
random sequence.

Example 6 Let T = Zd and Ξ be as in Example 4. Then {Xt}t∈T is a d-
dimensional spatially-discrete random field.

Example 7 Let T = R and Ξ = R. Then {Xt}t∈T is a real-valued, continuous-
time random process (or random motion or random signal).

Vector-valued processes are an obvious generalization.

Example 8 Let T = B, the Borel field on the reals, and Ξ = R+
, the non-

negative extended reals. Then {Xt}t∈T is a random set function on the reals.

The definition of random set functions on Rd is entirely parallel. Notice that
if we want not just a set function, but a measure or a probability measure,
this will imply various forms of dependence among the random variables in the
collection, e.g., a measure must respect finite additivity over disjoint sets. We
will return to this topic in the next section.

Example 9 Let T = B×N and Ξ = R+
. Then {Xt}t∈T is a one-sided random

sequence of set functions.

Example 10 (Empirical Processes) Suppose Zi, = 1, 2, . . . are independent,
identically-distributed real-valued random variables. (We can see from Example
4 that this is a one-sided real-valued random sequence.) For each Borel set B
and each n, define

P̂n(B) =
1
n

n∑
i=1

1B(Zi)

i.e., the fraction of the samples up to time n which fall into that set. This is
the empirical measure. P̂n(B) is a one-sided random sequence of set functions
— in fact, of probability measures. We would like to be able to say something
about how it behaves. It would be very reassuring, for instance, to be able to
show that it converges to the common distribution of the Zi.
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1.2 Random Functions

X(t, ω) has two arguments, t and ω. For each fixed value of t, Xt(ω) is straight-
forward random variable. For each fixed value of ω, however, X(t) is a function
from T to Ξ — a random function. The advantage of the random function
perspective is that it lets us consider the realizations of stochastic processes as
single objects, rather than large collections. This isn’t just tidier; we will need
to talk about relations among the variables in the collection or their realiza-
tions, rather than just properties of individual variables, and this will help us
do so. In Example 10, it’s important that we’ve got random probability mea-
sures, rather than just random set functions, so we need to require that, e.g.,
P̂n(A ∪B) = P̂n(A) + P̂n(B) when A and B are disjoint Borel sets, and this is
a relationship among the three random variables P̂n(A), P̂n(B) and P̂n(A∪B).
Plainly, working out all the dependencies involved here is going to get rather
tedious, so we’d like a way to talk about acceptable realizations of the whole
stochastic process. This is what the random functions notion will let us do.

We’ll make this more precise by defining a random function as a function-
valued random variable. To do this, we need a measure space of functions, and
a measurable mapping from (Ω,F , P ) to that function space. To get a measure
space, we need a carrier set and a σ-field on it. The natural set to use is ΞT ,
the set of all functions from T to Ξ. (We’ll see how to restrict this to just the
functions we want presently.) Now, how about the σ-field?

Definition 11 (Cylinder Set) Given an index set T and a collection of σ-
fields Xt on spaces Ξt, t ∈ T . Pick any t ∈ T and any At ∈ Xt. Then At ×∏
s 6=t Ξs is a one-dimensional cylinder set.

For any finite k, k−dimensional cylinder sets are defined similarly, and clearly
are the intersections of k different one-dimensional cylinder sets. To see why
they have this name, notice a cylinder, in Euclidean geometry, consists of all the
points where the x and y coordinates fall into a certain set (the base), leaving the
z coordinate unconstrained. Similarly, a cylinder set like At ×

∏
s 6=t Ξs consists

of all the functions in ΞT where f(t) ∈ At, and are otherwise unconstrained.

Definition 12 (Product σ-field) The product σ-field, ⊗t∈TXt, is the σ-field
over ΞT generated by all the one-dimensional cylinder sets. If all the Xt are the
same, X , we write the product σ-field as X T .

The product σ-field is enough to let us define a random function, and is
going to prove to be almost enough for our purposes.

Definition 13 (Random Function; Sample Path) A Ξ-valued random func-
tion on T is a map X : Ω 7→ ΞT which is F/X T -measurable. The realizations
of X are functions x(t) taking values in Ξ, called its sample paths.

Definition 14 (Functional of the Sample Path) Let E, E be a measure-space.
A functional of the sample path is a mapping f : ΞT 7→ E which is X T /E-
measurable.
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Examples of useful and common functionals include maxima, minima, sam-
ple averages, etc. Notice that none of these are functions of any one random
variable, and in fact their value cannot be determined from any part of the
sample path smaller than the whole thing.

Definition 15 (Projection Operator, Coordinate Map) A projection op-
erator or coordinate map πt is a map from ΞT to Ξ such that πtX = X(t).

The projection operators are a convenient device for recovering the individ-
ual coordinates — the random variables in the collection — from the random
function. Obviously, as t ranges over T , πtX gives us a collection of random vari-
ables, i.e., a stochastic process in the sense of our first definition. The following
lemma lets us go back and forth between the collection-of-variables, coordinate
view, and the entire-function, sample-path view.

Lemma 16 X is F/⊗t∈T Xt-measurable iff πtX is F/Xt-measurable for every
t.

Proof: This follows from the fact that the one-dimensional cylinder sets gen-
erate the product σ-field. �

We have said before that we will want to constrain our stochastic processes
to have certain properties — to be probability measures, rather than just set
functions, or to be continuous, or twice differentiable, etc. Write the set of all
functions in ΞT as U . Notice that U does not have to be an element of the
product σ-field, and in general is not. (We will consider some of the reasons for
this later.) As usual, by U ∩ X T we will mean the collection of all sets of the
form U ∩C, where C ∈ X T . Notice that (U,U ∩X T ) is a measure space. What
we want is to ensure that the sample path of our random function lies in U .

Definition 17 (Stochastic Process: As Random Function) A Ξ-valued stochas-
tic process on T with paths in U , U ⊆ ΞT , is a random function X : Ω 7→ U
which is F/U ∩ X T -measurable.

Corollary 18 A function X from Ω to U is F/U ∩ X T -measurable iff Xt is
F/X -measurable for all t.

Proof: Because X(ω) ∈ U , X(ω) is F/U ∩ X T iff it is F/X T -measurable.
Then apply Lemma 16. �

Example 19 (Random Measures) Let T = Bd, the Borel field on Rd, and
let Ξ = R+

, the non-negative extended reals. Then ΞT is the class of set func-
tions on Rd. Let M be the class of such set functions which are also measures
(i.e., which are countably additive and give zero on the null set). Then a random
set function X with paths in M is a random measure.
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Example 20 (Point Process) Let X be a random measure, as in the previous
example. If X(B) is a finite integer for every bounded Borel set B, then X is a
point process. If in addition X(r) ≤ 1 for every r ∈ Rd, then X is simple. The
Poisson process is a simple point process.

Example 21 Let T = R+, Ξ = Rd, and C(T ) the class of continuous functions
from T to Ξ (in the usual topology). Then a Ξ-valued random process on T
with paths in C(T ) is a continuous random process. The Wiener process, or
Brownian motion, is an example. We will see that most sample paths in C(T )
are not differentiable.

1.3 Exercises

Exercise 1.1 (The product σ-field answers countable questions) Let D =⋃
S XS, where the union ranges over all countable subsets S of the index set T .

For any event D ∈ D, whether or not a sample path x ∈ D depends on the value
of xt at only a countable number of indices t.

(a) Show that D is a σ-field.
(b) Show that if A ∈ X T , then A ∈ XS for some countable subset S of T .



Chapter 2

Building Infinite Processes
from Finite-Dimensional
Distributions

Section 2.1 introduces the finite-dimensional distributions of a
stochastic process, and shows how they determine its infinite-dimensional
distribution.

Section 2.2 considers the consistency conditions satisfied by the
finite-dimensional distributions of a stochastic process, and the ex-
tension theorems (due to Daniell and Kolmogorov) which prove the
existence of stochastic processes with specified, consistent finite-
dimensional distributions.

2.1 Finite-Dimensional Distributions

So, we now have X, our favorite Ξ-valued stochastic process on T with paths
in U . Like any other random variable, it has a probability law or distribution,
which is defined over the entire set U . Generally, this is infinite-dimensional.
Since it is inconvenient to specify distributions over infinite-dimensional spaces
all in a block, we consider the finite-dimensional distributions.

Definition 22 (Finite-dimensional distributions) The finite-dimensional dis-
tributions of X are the the joint distributions of Xt1 , Xt2 , . . . Xtn , t1, t2, . . . tn ∈
T , n ∈ N.

You will sometimes see “FDDs” and “fidis” as abbreviations for “finite-dimensional
distributions”. Please do not use “fidis”.

We can at least hope to specify the finite-dimensional distributions. But we
are going to want to ask a lot of questions about asymptotics, and global proper-
ties of sample paths, which go beyond any finite dimension, so you might worry

7
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that we’ll still need to deal directly with the infinite-dimensional distribution.
The next theorem says that this worry is unfounded; the finite-dimensional dis-
tributions specify the infinite-dimensional distribution (pretty much) uniquely.

Theorem 23 Let X and Y be two Ξ-valued processes on T with paths in U .
Then X and Y have the same distribution iff all their finite-dimensional distri-
butions agree.

Proof: “Only if”: Since X and Y have the same distribution, applying the any
given set of coordinate mappings will result in identically-distributed random
vectors, hence all the finite-dimensional distributions will agree.

“If”: We’ll use the π-λ theorem.
Let C be the finite cylinder sets, i.e., all sets of the form

C =
{
x ∈ ΞT |(xt1 , xt2 , . . . xtn) ∈ B

}
where n ∈ N, B ∈ Xn, t1, t2, . . . tn ∈ T . Clearly, this is a π-system, since it is
closed under intersection.

Now let L consist of all the sets L ∈ X T where P (X ∈ L) = P (Y ∈ L).
We need to show that this is a λ-system, i.e., that it (i) includes ΞT , (ii) is
closed under complementation, and (iii) is closed under monotone increasing
limits. (i) is clearly true: P

(
X ∈ ΞT

)
= P

(
Y ∈ ΞT

)
= 1. (ii) is true because

we’re looking at a probability: if L ∈ L, then P (X ∈ Lc) = 1 − P (X ∈ L) =
1 − P (Y ∈ L) = P (Y ∈ Lc). To see (iii), let Ln ↑ L be a monotone-increasing
sequence of sets in L, and recall that, for any measure, Ln ↑ L implies µLn ↑ µL.
So P (X ∈ Ln) ↑ P (X ∈ L), P (Y ∈ Ln) ↑ P (Y ∈ L), and (since P (X ∈ Ln) =
P (Y ∈ Ln)), P (X ∈ Ln) ↑ P (Y ∈ L) as well. A sequence cannot have two
limits, so P (X ∈ L) = P (Y ∈ L), and L ∈ L.

Since the finite-dimensional distributions match, P (X ∈ C) = P (Y ∈ C) for
all C ∈ C, which means that C ⊂ L. Also, from the definition of the product
σ-field, σ(C) = X T . Hence, by the π − λ theorem, X T ⊆ L. �

A note of caution is in order here. If X is a Ξ-valued process on T whose
paths are constrained to line in U , and Y is a similar process that it is not so
constrained, it is nonetheless possible that X and Y agree in all their finite-
dimensional distributions. The trick comes if U is not, itself, an element of X T .
The most prominent instance of this is when Ξ = R, T = R, and the constraint
is continuity of the sample paths: we will see that U 6∈ BR. (This is the point
of Exercise 1.1.)

2.2 Consistency and Extension

The finite-dimensional distributions of a given stochastic process are related
to one another in the usual way of joint and marginal distributions. Take
some collection of indices t1, t2 . . . tn ∈ T , and corresponding measurable sets
B1 ∈ X1, B2 ∈ X2, . . . Bn ∈ Xn. Then, for any m > n, and any further indices
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tn+1, tn2 , . . . tm, it must be the case that

P (Xt1 ∈ B1, Xt2 ∈ B2, . . . Xtn ∈ Bn) (2.1)
= P

(
Xt1 ∈ B1, Xt2 ∈ B2, . . . Xtn ∈ Bn, Xtn+1 ∈ Ξ, Xtn+2 ∈ Ξ, . . . Xtm ∈ Ξ

)
This is going to get really awkward to write over and over, so let’s introduce
some simplifying notation. Fin(T ) will denote the class of all finite sub-sets
of our index set T , and likewise Denum(T ) all denumerable sub-sets. We’ll
indicate such sub-sets, for the moment, by capital letters like J , K, etc., and
extend the definition of coordinate maps (Definition 15) so that πJ maps from
ΞT to ΞJ in the obvious way, and πKJ maps from ΞK to ΞJ , if J ⊂ K. If µ is
the measure for the whole process, then the finite-dimensional distributions are
{µJ |J ∈ Fin(T )}. Clearly, µJ = µ ◦ πJ−1.

Definition 24 (Projective Family of Distributions) A family of distribu-
tions µJ , J ∈ Denum(T ), is projective when for every J,K ∈ Denum(T ), J ⊂ K
implies

µJ = µK ◦
(
πKJ
)−1

(2.2)

Such a family is also said to be consistent or compatible (with one another).

Lemma 25 (FDDs Form Projective Families) The finite-dimensional dis-
tributions of a stochastic process always form a projective family.

Proof: This is just the fact that we get marginal distributions by integrating
out some variables from the joint distribution. But, to proceed formally: Letting
J and K be finite sets of indices, J ⊂ K, we know that µK = µ ◦ πK−1, that
µJ = µ ◦ πJ−1 and that πJ = πKJ ◦ πK . Hence

µJ = µ ◦
(
πKJ ◦ πK

)−1
(2.3)

= µ ◦ π−1
K ◦

(
πKJ
)−1

(2.4)

= µK ◦
(
πKJ
)−1

(2.5)

as required. �
I claimed that the reason to care about finite-dimensional distributions is

that if we specify them, we specify the distribution of the whole process. Lemma
25 says that a putative family of finite dimensional distributions must be consis-
tent, if they are to let us specify a stochastic process. Theorem 23 says that there
can’t be more than one process distribution with all the same finite-dimensional
marginals, but it doesn’t guarantee that a given collection of consistent finite-
dimensional distributions can be extended to a process distribution — it gives
uniqueness but not existence. Proving the existence of an extension requires
some extra assumptions. Either we need to impose topological conditions on Ξ,
or we need to ensure that all the finite-dimensional distributions can be related
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through conditional probabilities. The first approach is due to Daniell and Kol-
mogorov, and will finish this lecture; the second is due to Ionescu-Tulcea, and
will begin the next.

We’ll start with Daniell’s theorem on the existence of random sequences, i.e.,
where the index set is the natural numbers, which uses mathematical induction
to extend the finite-dimensional family. To get there, we need a useful proposi-
tion about our ability to represent non-trivial random variables as functions of
uniform random variables on the unit interval.

Proposition 26 (Randomization, transfer) Let X and X ′ be identically-
distributed random variables in a measurable space Ξ and Y a random variable
in a Borel space Υ. Then there exists a measurable function f : Ξ× [0, 1] 7→ Υ
such that L (X ′, f(X ′, Z)) = L (X,Y ), when Z is uniformly distributed on the
unit interval and independent of X ′.

Proof: See Kallenberg, Theorem 6.10 (p. 112–113). �
Basically what this says is that if we have two random variables with a

certain joint distribution, we can always represent the pair by a copy of one of
the variables (X), and a transformation of an independent random number. It is
important that Υ be a Borel space here; the result, while very natural-sounding,
does not hold for arbitrary measurable spaces, because the proof relies on having
a regular conditional probability.

Theorem 27 (Daniell Extension Theorem) For each n ∈ N, let Ξn be a
Borel space, and µn be a probability measure on

∏n
i=1 Ξi. If the µn form a

projective family, then there exist random variables Xi : Ω 7→ Ξi, i ∈ N, such
that L (X1, X2, . . . Xn) = µn for all n, and a measure µ on

∏∞
i=1 Ξi such that

µn is equal to the projection of µ onto
∏
i = 1nΞi.

Proof: For any fixed n, X1, X2, . . . Xn is just a random vector with distribution
µn, and we can always construct such an object. The delicate part here is
showing that, when we go to n+1, we can use the same random elements for the
first n coordinates. We’ll do this by using the representation-by-randomization
proposition just introduced, starting with an IID sequence of uniform random
variables on the unit interval, and then transforming them to get a sequence
of variables in the Ξi which have the right joint distribution. (This is like the
quantile transform trick for generating random variates.) The proof will go
inductively, so first we’ll take care of the induction step, and then go back to
reassure ourselves about the starting point.

Induction: Assume we already haveX1, X2, . . . Xn such that L (X1, X2, . . . Xn) =
µn, and that we have a Zn+1 ∼ U(0, 1) and independent of all the Xi to date.
As remarked, we can always get Y1, Y2, . . . Yn+1 such that L (Y1, Y2, . . . Yn+1) =
µn+1. Because the µn form a projective family, L (Y1, Y2, . . . Yn) = L (X1, X2, . . . Xn).
Hence, by Proposition 26, there is a measurable f such that, if we set Xn+1 =
f(X1, X2, . . . Xn, Zn+1), then L (X1, X2, . . . Xn, Xn+1) = µn+1.

First step: We need there to be an X1 with distribution µ1, and we need a
(countably!) unlimited supply of IID variables Z2, Z3, . . . all ∼ U(0, 1). But the
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existence of X1 is just the existence of a random variable with a well-defined
distribution, which is unproblematic, and the existence of an infinite sequence of
IID uniform random variates is too. (See 36-752, or Lemma 3.21 in Kallenberg.)

Finally, to convince yourself of the existence of the measure µ on the product
space, recall Lemma 16. �

Remark: Kallenberg, Corollary 6.15, gives a somewhat more abstract version
of this theorem.

Daniell’s extension theorem works fine for one-sided random sequences, but
we often want to work with larger and more interesting index sets. For this
we need the full Kolmogorov extension theorem, where the index set T can be
completely arbitrary. This in turn needs the Carathéodory Extension Theorem,
which I re-state here for convenience.

Theorem 28 (Carathéodory Extension Theorem) Let µ be a non-negative,
finitely additive set function on a field C of subsets of some space Ω. If µ is also
countably additive, then it extends to a measure on σ(C), and, if µ(Ω) <∞, the
extension is unique.

Proof: See 36-752 lecture notes (Theorem 50, Exercise 51), or Kallenberg,
Theorem 2.5, pp. 26–27. Note that “extension” here means extending from a
mere field to a σ-field, not from finite to infinite index sets. �

Theorem 29 (Kolmogorov Extension Theorem) Let Ξt, t ∈ T , be a col-
lection of Borel spaces, with σ-fields Xi, and let µJ , J ∈ Fin(T ), be a projective
family of finite-dimensional distributions on those spaces. Then there exist Ξt-
valued random variables Xt such that L (XJ) = µJ for all J ∈ Fin(T ).

Proof: This will be easier to follow if we first consider the case there T is
countable, which is basically Theorem 27 again, and then the general case,
where we need Theorem 28.

Countable T : We can, by definition, put the elements of T in 1−1 correspon-
dence with the elements of N. This in turn establishes a bijection between the
product space

⊗
t∈T Ξt = ΞT and the sequence space

⊗∞
i=1 Ξt. This bijection

also induces a projective family of distributions on finite sequences. The Daniell
Extension Theorem (27) gives us a measure on the sequence space, which the
bijection takes back to a measure on ΞT . To see that this µ does not depend on
the order in which we arranged T , notice that any two arrangements must give
identical results for any finite set J , and then use Theorem 23.

Uncountable T : For each countable K ⊂ T , the argument of the preceding
paragraph gives us a measure µK on ΞK . And, clearly, these µK themselves form
a projective family. Now let’s define a set function µ on the countable cylinder
sets, i.e., on the class D of sets of the form A×ΞT\K , for some K ∈ Denum(T )
and some A ∈ XK . Specifically, µ : D 7→ [0, 1], and µ(A × ΞT\K) = µK(A).
We would like to use Carathéodory’s theorem to extend this set function to
a measure on the product σ-algebra XT . First, let’s check that the countable
cylinder sets form a field: (i) ΞT ∈ D, clearly. (ii) The complement, in ΞT , of
a countable cylinder A× ΞT\K is another countable cylinder, Ac × ΞT\K . (iii)
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The union of two countable cylinders B1 = A1 × ΞT\K1 and B2 = A2 × ΞT\K2

is another countable cylinder, since we can always write it as A × ΞT\K for
some A ∈ XK , where K = K1 ∪ K2. Clearly, µ(∅) = 0, so we just need to
check that µ is countably additive. So consider any sequence of disjoint cylinder
sets B1, B2, . . .. Because they’re cylinder sets, each i, Bi = Ai × ΞT\Ki

, for
some Ki ∈ Denum(T ), and some Ai ∈ XKi

. Now set K =
⋃
iKi; this is a

countable union of countable sets, and so itself countable. Furthermore, say
Ci = Ai × ΞK\Ki

, so we can say that
⋃
iBi = (

⋃
i Ci) × ΞT\K . With this

notation in place,

µ
⋃
i

Bi = µK
⋃
i

Ci (2.6)

=
∑
i

µKCi (2.7)

=
∑
i

µKi
Ai (2.8)

=
∑
i

µBi (2.9)

where in the second line we’ve used the fact that µK is a probability measure
on ΞK , and so countably additive on sets like the Ci. This proves that µ is
countably additive, so by Theorem 28 it extends to a measure on σ(D), the
σ-field generated by the countable cylinder sets. But we know from Definition
12 that this σ-field is the product σ-field. Since µ(ΞT ) = 1, Theorem 28 further
tells us that the extension is unique. �

Borel spaces are good enough for most of the situations we find ourselves
modeling, so the Daniell-Kolmogorov Extension Theorem (as it’s often known)
see a lot of work. Still, some people dislike having to make topological assump-
tions to solve probabilistic problems; it seems inelegant. The Ionescu-Tulcea
Extension Theorem provides a purely probabilistic solution, available if we can
write down the FDDs recursively, in terms of regular conditional probability
distributions, even if the spaces where the process has its coordinates are not
nice and Borel. Doing this properly will involve our revisiting and extending
some ideas about conditional probability, which you will have seen in 36-752, so
it will be deferred to the next lecture.



Chapter 3

Building Infinite Processes
from Regular Conditional
Probability Distributions

Section 3.1 introduces the notion of a probability kernel, which
is a useful way of systematizing and extending the treatment of
conditional probability distributions you will have seen in 36-752.

Section 3.2 gives an extension theorem (due to Ionescu Tulcea)
which lets us build infinite-dimensional distributions from a family
of finite-dimensional distributions. Rather than assuming topolog-
ical regularity of the space, as in Section 2.2, we assume that the
FDDs can be derived from one another recursively, through applying
probability kernels. This is the same as assuming regularity of the
appropriate conditional probabilities.

3.1 Probability Kernels

Definition 30 (Probability Kernel) A probability kernel from a measurable
space Ξ,X to another measurable space Υ,Y is a function κ : Ξ × Y 7→ [0, 1]
such that

1. for any Y ∈ Y, κ(x, Y ) is X -measurable; and

2. for any x ∈ Ξ, κ(x, Y ) ≡ κx(Y ) is a probability measure on Υ,Y. We will
write the integral of a function f : Υ 7→ R, with respect to this measure,
as
∫
f(y)κ(x, dy),

∫
f(y)κx(dy), or, most compactly, κf(x).

If condition 1 is satisfied and, for fixed x, κ(x, Y ) is a measure but not a prob-
ability measure, then κ is called a measure kernel or even just a kernel.

13
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Notice that we can represent any distribution on Ξ as a kernel where the first
argument is irrelevant: κ(x1, Y ) = κ(x2, Y ) for all x1, x2 ∈ Ξ. The “kernels” in
kernel density estimation are probability kernels, as are the stochastic transition
matrices of Markov chains. (The kernels in support vector machines, however,
generally are not.) Regular conditional probabilities, which you will remember
from 36-752, are all probability kernels. This fact suggests how we define the
composition of kernels.

Definition 31 (Composition of probability kernels) Let κ1 be a kernel from
Ξ to Υ, and κ2 a kernel from Ξ×Υ to Γ. Then we define κ1⊗ κ2 as the kernel
from Ξ to Υ× Γ such that

(κ1 ⊗ κ2)(x,B) =
∫
κ1(x, dy)

∫
κ2(x, y, dz)1B(y, z)

for every measurable B ⊆ Υ× Γ (where z ranges over the space Γ).

Verbally, κ1 gives us a distribution on Υ, from any starting point x ∈ Ξ. Given
a pair of points (x, y) ∈ Ξ×Υ, κ2 gives a distribution on Γ. So their composition
says, basically, how to chain together conditional distributions, given a starting
point.

3.2 Extension via Recursive Conditioning

With the machinery of probability kernels in place, we are in a position to give
an alternative extension theorem, i.e., a different way of proving the existence of
stochastic processes with specified finite-dimensional marginal distributions. In
Section 2.2, we assumed some topological niceness in the sample spaces, namely
that they were Borel spaces. Here, instead, we will assume probabilistic niceness
in the FDDs themselves, namely that they can be obtained through composing
probability kernels. This is the same as assuming that they can be obtained
by chaining together regular conditional probabilities. The general form of this
result is attributed in the literature to Ionescu Tulcea.

Just as proving the Kolmogorov Extension Theorem needed a measure-
theoretic result, the Carathéodory Extension Theorem, our proof of the Ionescu
Tulcea Extension Theorem will require a different measure-theoretic result,
which is not, so far as I know, named after anyone.

Proposition 32 Suppose µ is a finite, non-negative, additive set function on a
field A. If, for any sequence of sets An ∈ A, An ↓ ∅ =⇒ µAn → 0, then (1) µ
is countably additive on A, and (2) µ extends uniquely to a measure on σ(A).

Proof: Part (1) is a weaker version of Theorem F in Chapter 2, §9 of Halmos,
Measure Theory (p. 39). (When reading his proof, remember that every field of
sets is also a ring of sets.) Part (2) follows from part (1) and the Carathéodory
Extension Theorem (28). �

With this preliminary out of the way, let’s turn to the main event.
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Theorem 33 (Ionescu Tulcea Extension Theorem) Consider a sequence
of measurable spaces Ξn,Xn, n ∈ N. Suppose that for each n, there exists a
probability kernel κn from

∏n−1
i=1 Ξi to Ξn (taking κ1 to be a kernel insensitive

to its first argument, i.e., a probability measure). Then there exists a sequence
of random variables Xn, n ∈ N, taking values in the corresponding Ξn, such
that L (X1, X2, . . . Xn) =

⊗n
i=1 κi.

Proof: As before, we’ll be working with the cylinder sets, but now we’ll make
our life simpler if we consider cylinders where the base set rests in the first n
spaces Ξ1, ...Ξn. More specifically, set Bn =

⊗n
i=1 Xi (these are the base sets),

and Cn = Bn ×
∏∞
i=n+1 Ξi (these are the cylinder sets), and C =

⋃
n Cn. C

clearly contains all the finite cylinders, so it generates the product σ-field on
infinite sequences. We will use it as the field in Proposition 32. (Checking that
C is a field is entirely parallel to checking that the D appearing in the proof of
Theorem 29 was a field.)

For each base set A ∈ Bn, let [A] be the corresponding cylinder, [A] =
A×

∏∞
i=n+1 Ξi. Notice that for every set C ∈ C, there is at least one A, in some

Bn, such that C = [A]. Now we define a set function µ on C.

µ([A]) =

(
n⊗
i=1

κi

)
A (3.1)

(Checking that this is well-defined is left as an exercise, 3.2.) Clearly, this is a
finite, and finitely-additive, set function defined on a field. So to use Proposition
32, we just need to check continuity from above at ∅. Let An be any sequence
of sets such that [An] ↓ ∅ and An ∈ Bn. (Any sequence of sets in C ↓ ∅ can be
massaged into this form.) We wish to show that µ([An]) ↓ 0. We’ll get this to
work by considering functions which are (pretty much) conditional probabilities
for these sets:

pn|k =

(
n⊗

i=k+1

κi

)
1An

, k ≤ n (3.2)

pn|n = 1An
(3.3)

Two facts follow immediately from the definitions:

pn|0 =

(
n⊗
i=1

κi

)
1An

= µ([An]) (3.4)

pn|k = κk+1pn|k+1 (3.5)

From the fact that the [An] ↓ ∅, we know that pn+1|k ≤ pn|k, for all k. This
implies that limn pn|k = mk exists, for each k, and is approached from above.
Applied to pn|0, we see from 3.5 that µ([An]) → m0. We would like m0 = 0.
Assume the contrary, that m0 > 0. From 3.5 and the dominated convergence
theorem, we can see that mk = κk+1mk+1. Hence if m0 > 0, κ1m1 > 0, which
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means (since that last expression is really an integral) that there is at least one
point x1 ∈ Ξ1 such that m1(s1) > 0. Recursing our way down the line, we get
a sequence x = x1, x2, . . . ∈ ΞN such that mn(x1, . . . xn) > 0 for all n. But now
look what we’ve done: for each n,

0 < mn(x1, . . . xn) (3.6)
≤ pn|n(x1, . . . xn) (3.7)
= 1An

(x1, . . . xn) (3.8)
= 1[An](x) (3.9)

x ∈ [An] (3.10)

This is the same as saying that x ∈
⋂
n [An]. But [An] ↓ ∅, so there can be no

such x. Hence m0 = 0, meaning that µ([An]) → 0, and µ is continuous at the
empty set.

Since µ is finite, finitely-additive, non-negative and continuous at ∅, by
Proposition 32 it extends uniquely to a measure on the product σ-field. �

Notes on the proof: It would seem natural that one could show m0 = 0
directly, rather than by contradiction, but I can’t think of a way to do it, and
every book I’ve consulted does it in exactly this way.

To appreciate the simplification made possible by the notion of probability
kernels, compare this proof to the one given by Fristedt and Gray (1997, §22.1).

Notice that the Daniell, Kolmogorov and Ionescu Tulcea Extension Theo-
rems all give sufficient conditions for the existence of stochastic processes, not
necessary ones. The necessary and sufficient condition for extending the FDDs
to a process probability measure is something called σ-smoothness. (See Pollard
(2002) for details.) Generally speaking, we will deal with processes which satisfy
both the Kolmogorov and the Ionescu Tulcea type conditions, e.g., real-valued
Markov process.

3.3 Exercises

Exercise 3.1 ( Lomnick-Ulam Theorem on infinite product measures)
Let T be an uncountable index set, and (Ξt,Xt, µt) a collection of probability
spaces. Show that there exist independent random variables Xt in Ξt with dis-
tributions µt. Hint: use the Ionescu Tulcea theorem on countable subsets of T ,
and then imitate the proof of the Kolmogorov extension theorem.

Exercise 3.2 In the proof of the Ionescu Tulcea Theorem, we employed a set
function on the finite cylinder sets, where the measure of an infinite-dimensional
cylinder set [A] is set equal to the measure of its finite-dimensional base set A.
However, the same cylinder set can be specified by different base sets, so it is
necessary to show that Equation 3.1 has a unique value on its right-hand side.
In what follows, C is an arbitrary member of the class C.

(i) Show that, when A,B ∈ Bn, [A] = [B] iff A = B. That is, two cylinders
generated by bases of equal dimensionality are equal iff their bases are equal.
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(ii) Show that there is a smallest n such that C = [A] for an A ∈ Bn.
Conclude that the right-hand side of Equation 3.1 could be made well-defined if
we took n there to be this least possible n.

(iii) Suppose that m < n, A ∈ Bm, B ∈ Bn, and [A] = [B]. Show that
B = A×

∏n
i=m+1 Ξi.

(iv) Continuing the situation in (iii), show that(
m⊗
i=1

κi

)
A =

(
n⊗
i=1

κi

)
B

Conclude that the right-hand side of Equation 3.1 is well-defined, as promised.



Chapter 4

One-Parameter Processes,
Usually Functions of Time

Section 4.1 defines one-parameter processes, and their variations
(discrete or continuous parameter, one- or two- sided parameter),
including many examples.

Section 4.2 shows how to represent one-parameter processes in
terms of “shift” operators.

We’ve been doing a lot of pretty abstract stuff, but the point of this is to
establish a common set of tools we can use across many different concrete situa-
tions, rather than having to build very similar, specialized tools for each distinct
case. Today we’re going to go over some examples of the kind of situation our
tools are supposed to let us handle, and begin to see how they let us do so. In
particular, the two classic areas of application for stochastic processes are dy-
namics (systems changing over time) and inference (conclusions changing as we
acquire more and more data). Both of these can be treated as “one-parameter”
processes, where the parameter is time in the first case and sample size in the
second.

4.1 One-Parameter Processes

The index set T isn’t, usually, an amorphous abstract set, but generally some-
thing with some kind of topological or geometrical structure. The number of
(topological) dimensions of this structure is the number of parameters of the
process.

Definition 34 (One-Parameter Process) A process whose index set T has
one dimension is a one-parameter process. A process whose index set has more
than one dimension is a multi-parameter process. A one-parameter process is

18
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discrete or continuous depending on whether its index set is countable or un-
countable. A one-parameter process where the index set has a minimal element,
otherwise it is two-sided.

N is a one-sided discrete index set, Z a two-sided discrete index set, R+ (in-
cluding zero!) is a one-sided continuous index set, and R a two-sided continuous
index set.

Most of this course will be concerned with one-parameter processes, which
are intensely important in applications. This is because the one-dimensional
parameter is usually either time (when we’re doing dynamics) or sample size
(when we’re doing inference), or both at once. There are also some important
cases where the single parameter is space.

Example 35 (Bernoulli process) You all know this one: a one-sided infinite
sequence of independent, identically-distributed binary variables, where Xt = 1
with probability p, for all t.

Example 36 (Markov models) Markov chains are discrete-parameter stochas-
tic processes. They may be either one-sided or two-sided. So are Markov models
of order k, and hidden Markov models. Continuous-time Markov processes are,
naturally enough, continuous-parameter stochastic processes, and again may be
either one-sided or two-sided.

Instances of physical processes that may be represented by Markov models
include: the positions and velocities of the planets; the positions and velocities
of molecules in a gas; the pressure, temperature and volume of the gas; the
position and velocity of a tracer particle in a turbulent fluid flow; the three-
dimensional velocity field of a turbulent fluid; the gene pool of an evolving
population. Instances of physical processes that may be represented by hidden
Markov models include: the spike trains of neurons; the sonic wave-forms of
human speech; many economic and social time-series; etc.

Example 37 (“White Noise”) For each t ∈ R+, let Xt ∼ N (0, 1), all mutu-
ally independent of one another. This is a process with a one-sided continuous
parameter.

It would be character building, at this point, to convince yourself that the
process just described exists. (You will need the Kolmogorov Extension Theo-
rem, 29).

Example 38 (Wiener Process) Here T = R+ and Ξ = R. The Wiener
process is the continuous-parameter random process where (1) W (0) = 0, (2) for
any three times, t1 < t2 < t3, W (t2)−W (t1) and W (t3)−W (t2) are independent
(the “independent increments” property), (3) W (t2)−W (t1) ∼ N (0, t2−t1) and
(4) W (t, ω) is a continuous function of t for almost all ω. We will spend a lot
of time with the Wiener process, because it turns out to play a role in the theory
of stochastic processes analogous to that played by the Gaussian distribution
in elementary probability — the easily-manipulated, formally-nice distribution
delivered by limit theorems.
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When we examine the Wiener process in more detail, we will see that it
almost never has a derivative. Nonetheless, in a sense which will be made
clearer when we come to stochastic calculus, the Wiener process can be regarded
as the integral over time of something very like white noise, as described in the
preceding example.

Example 39 (Logistic Map) Let T = N, Ξ = [0, 1], X(0) ∼ U(0, 1), and
X(t + 1) = aX(t)(1 −X(t)), a ∈ [0, 4]. This is called the logistic map. Notice
that all the randomness is in the initial value X(0); given the initial condition,
all later values X(t) are fixed. Nonetheless, this is a Markov process, and we will
see that, at least for certain values of a, it satisfies versions of the laws of large
numbers and the central limit theorem. In fact, large classes of deterministic
dynamical systems have such stochastic properties.

Example 40 (Symbolic Dynamics of the Logistic Map) Let X(t) be the
logistic map, as in the previous example, and let S(t) = 0 if X(t) ∈ [0, 0.5) and
S(t) = 1 if X(t) = [0.5, 1]. That is, we partition the state space of the logistic
map, and record which cell of the partition the original process finds itself in.
X(t) is a Markov process, but these “symbolic” dynamics are not necessarily
Markovian. We will want to know when functions of Markov processes are
themselves Markov. We will also see that there is a sense in which, Markovian
or not, this partition is exactly as informative as the original, continuous state
— that it is generating. Finally, when a = 4 in the logistic map, the symbol
sequence is actually a Bernoulli process, so that a deterministic function of a
completely deterministic dynamical system provides a model of IID randomness.

Here are some examples where the parameter is sample size.

Example 41 (IID Samples) Let Xi, i ∈ N be samples from an IID distribu-
tion, and Zn = 1

n

∑n
i=1Xi be the sample mean. Then Zn is a one-parameter

stochastic process. The point of the ordinary law of large numbers is to reassure
us that Zn → E [Xn] a.s. The point of the central limit theorem is to reassure us
that

√
n(Zn−E [X]) has constant average size, so that the sampling fluctuation

Zn −E [X] must be shrinking as
√
n grows.

If Xi is the indicator of a set, this convergence means that the relative fre-
quency with which the set is occupied will converge on its true probability.

Example 42 (Non-IID Samples) Let Xi be a non-IID one-sided discrete-
parameter process, say a Markov chain, and again let Zn be its sample mean,
now often called its “time average”. The usual machinery of the law of large
numbers and the central limit theorem are now inapplicable, and someone who
has just taken 36-752 has, strictly speaking, no idea as to whether or not their
time averages will converge on expectations. Under the heading of ergodic theory,
we will see when this will happen. Since this is the situation with all interesting
time series, the application of statistical methods to situations where we cannot
contrive to randomize depends crucially on ergodic considerations.
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Example 43 (Estimating Distributions) Recall Example 10, where we looked
at the sequence of empirical distributions P̂n for samples from an IID data-
source. We would like to be able to say that P̂n converges on P . The usual way
to do this, if our samples are of a real-valued random variable, is to consider the
empirical cumulative distribution function, Fn. For each n, this may be regarded
as a one-parameter random process (T = R, Ξ = [0, 1]), and the difficulty is to
show that this sequence of random processes converges to F . The usual way is
to show that

√
n(Fn − F ), the empirical process, converges to a relative of the

Wiener process, which in a sense we’ll examine later has constant “size”; since√
n grows, it follows that Fn−F must shrink. So theorizing even this elementary

bit of statistical inference really requires two doses of stochastic process theory,
one to get a grip on Fn at each n, and the other to get a grip on what happens
to Fn as n grows.

Example 44 (Doob’s Martingale) Let X be a random variable, and F〉, i ∈
N, a sequence of increasing σ-algebras (i.e. a filtration). Then Yi = E

[
X|F〉

]
is

a one-sided discrete-parameter stochastic process, and in fact a martingale. In
fact, martingales in general are one-parameter stochastic processes. Note that
posterior mean parameter estimates, in Bayesian inference, are an example of
Doob’s martingale.

Here are some examples where the one-dimensional parameter is not time
or sample size.

Example 45 (The One-Dimensional Ising Model) This system serves as
a toy model of magnetism in theoretical physics. Atoms sit evenly spaced on the
points of a regular, infinite, one-dimensional crystalline lattice. Each atom has
a magnetic moment, which is either pointing north (+1) or south (−1). Atoms
are more likely to point north if their neighbors point north, and vice-versa. The
natural index here is Z, so the parameter is discrete and two-sided.

Example 46 (Text) Text (at least in most writing systems!) can be repre-
sented by a sequence of discrete values at discrete, ordered locations. Since texts
can be arbitrarily long, but they all start somewhere, they are discrete-parameter,
one-sided processes. Or, more exactly, once we specify a distribution over se-
quences from the appropriate alphabet, we will have such a process.

Example 47 (Polymer Sequences) Similarly, DNA, RNA and proteins are
all heteropolymers — compounds in which distinct constituent chemicals (the
monomers) are joined in a sequence. Position along the sequence (chromosome,
protein) provides the index, and the nature of the monomer at that position the
value.

Linguists believe that no Markovian model (with finitely many states) can
capture human language. Whether this is true of DNA sequences is not known.
In both cases, hidden Markov models are used extensively, even if they can only
be approximately true of language.
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4.2 Operator Representations of One-Parameter
Processes

Consider our favorite discrete-parameter process, say Xt. If we try to relate
Xt to its history, i.e., to the preceding values from the process, we will often
get a remarkably complicated probabilistic expression. There is however an
alternative, which represents the dynamical part of any process as a remarkably
simple semi-group of operators.

Definition 48 (Shift Operators) Consider ΞT , T = N, = Z, = R+ or = R.
The shift-by-τ operator Στ , τ ≥ 0, maps ΞT into itself by shifting forward in
time: (Στ )x(t) = x(t + τ). The collection of all shift operators is the shift
semi-group or time-evolution semi-group.

(A semi-group does not need to have an identity element, and one which does
is technically called a “monoid”. No one talks about the shift or time-evolution
monoid, however.)

Before we had a Ξ-valued stochastic process X on T , i.e., our process was
a random function from T to Ξ. To extract individual random variables, we
used the projection operators πt, which took X to Xt. With the shift operators,
we simply have πt = π0 ◦ Σt. To represent the passage of time, then, we just
apply elements of this semi-group to the function space. Rather than having
complicated dynamics which gets us from one value to the next, by working with
shifts on function space, all of the complexity is shifted to the initial distribution.
This will prove to be extremely useful when we consider stationary processes in
the next lecture, and even more useful when, later on, we want to extend the
limit theorems from IID sequences to dependent processes.

4.3 Exercises

Exercise 4.1 (Existence of proto-Wiener processes) Use Theorem 29 and
the properties of Gaussian distributions to show that processes exist which satisfy
points (1)–(3) of Example 38 (but not necessarily continuity). You will want to
begin by finding a way to write down the FDDs recursively.

Exercise 4.2 (Time-Evolution Semi-Group) These are all very easy, but
worth the practice.

1. Verify that the time-evolution semi-group, as described, is a monoid, i.e.,
that it is closed under composition, that composition is associative, and
that there is an identity element. What, in fact, is the identity?

2. Can a one-sided process have a shift group, rather than just a semi-group?

3. Verify that πτ = π0 ◦ Στ .

4. Verify that, for a discrete-parameter process, Σt = (Σ1)
t, and so Σ1 gen-

erates the semi-group. (For this reason it is often abbreviated to Σ.)



Chapter 5

Stationary One-Parameter
Processes

Section 5.1 describes the three main kinds of stationarity: strong,
weak, and conditional.

Section 5.2 relates stationary processes to the shift operators in-
troduced in the last chapter, and to measure-preserving transforma-
tions more generally.

5.1 Kinds of Stationarity

Stationary processes are those which are, in some sense, the same at different
times — slightly more formally, which are invariant under translation in time.
There are three particularly important forms of stationarity: strong or strict,
weak, and conditional.

Definition 49 (Strong Stationarity) A one-parameter process is strongly sta-
tionary or strictly stationary when all its finite-dimensional distributions are
invariant under trnaslation of the indices. That is, for all τ ∈ T , and all
J ∈ Fin(T ),

L (XJ) = L (XJ+τ ) (5.1)

Notice that when the parameter is discrete, we can get away with just checking
the distributions of blocks of consecutive indices.

Definition 50 (Weak Stationarity) A one-parameter process is weakly sta-
tionary or second-order stationary when, for all t ∈ T ,

E [Xt] = E [X0] (5.2)

and for all t, τ ∈ T ,

E [XτXτ+t] = E [X0Xt] (5.3)

23



CHAPTER 5. STATIONARY PROCESSES 24

At this point, you should check that a weakly stationary process has time-
invariant correlations. (We will say much more about this later.) You should
also check that strong stationarity implies weak stationarity. It will turn out
that weak and strong stationarity coincide for Gaussian processes, but not in
general.

Definition 51 (Conditional (Strong) Stationarity) A one-parameter pro-
cess is conditionally stationary if its conditional distributions are invariant un-
der time-translation: ∀n ∈ N, for every set of n + 1 indices t1, . . . tn+1 ∈ T ,
ti < ti+1, and every shift τ ,

L
(
Xtn+1 |Xt1 , Xt2 . . . Xtn

)
= L

(
Xtn+1+τ |Xt1+τ , Xt2+τ . . . Xtn+τ

)
(5.4)

(a.s.).

Strict stationarity implies conditional stationarity, but the converse is not
true, in general. (Homogeneous Markov processes, for instance, are all con-
ditionally stationary, but most are not stationary.) Many methods which are
normally presented using strong stationarity can be adapted to processes which
are merely conditionally stationary.1

Strong stationarity will play an important role in what follows, because it
is the natural generaliation of the IID assumption to situations with dependent
variables — we allow for dependence, but the probabilistic set-up remains, in a
sense, unchanging. This will turn out to be enough to let us learn a great deal
about the process from observation, just as in the IID case.

5.2 Strictly Stationary Processes and Measure-
Preserving Transformations

The shift-operator representation of Section 4.2 is particularly useful for strongly
stationary processes.

Theorem 52 A process X with measure µ is strongly stationary if and only if µ
is shift-invariant, i.e., µ = µ ◦Σ−1

τ for all Στ in the time-evolution semi-group.

Proof: “If” (invariant distributions imply stationarity): For any finite collec-
tion of indices J , L (XJ) = µ ◦ π−1

J (Lemma 25), and similarly L (XJ+τ ) =
µ ◦ π−1

J+τ .

πJ+τ = πJ ◦ Στ (5.5)
π−1
J+τ = Σ−1

τ ◦ π−1
J (5.6)

µ ◦ π−1
J+τ = µ ◦ Σ−1

τ ◦ π−1
J (5.7)

L (XJ+τ ) = µ ◦ π−1
J (5.8)

= L (XJ) (5.9)
1For more on conditional stationarity, see Caires and Ferreira (2005).
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“Only if”: The statement that µ = µ ◦ Σ−1
τ really means that, for any

set A ∈ X T , µ(A) = µ(Σ−1
τ A). Suppose A is a finite-dimensional cylinder

set. Then the equality holds, because all the finite-dimensional distributions
agree (by hypothesis). But this means that X and ΣτX are two processes
with the same finite-dimensional distributions, and so their infinite-dimensional
distributions agree (Theorem 23), and the equality holds on all measurable sets
A. �

This can be generalized somewhat.

Definition 53 (Measure-Preserving Transformation) A measurable map-
ping F from a measurable space Ξ,X into itself preserves measure µ iff, ∀A ∈ X ,
µ(A) = µ(F−1A), i.e., iff µ = µ◦F−1. This is true just when F (X) d= X, when
X is a Ξ-valued random variable with distribution µ. We will often say that
F is measure-preserving, without qualification, when the context makes it clear
which measure is meant.

Remark on the definition. It is natural to wonder why we write the defining
property as µ = µ ◦ F−1, rather than µ = µ ◦ F . There is actually a subtle
difference, and the former is stronger than the latter. To see this, unpack the
statements, yielding respectively

∀A ∈ X , µ(A) = µ(F−1(A)) (5.10)
∀A ∈ X , µ(A) = µ(F (A)) (5.11)

To see that Eq. 5.10 implies Eq. 5.11, pick any measurable set B, and then
apply 5.10 to F (B) (which is ∈ X , because F is measurable). To go the other
way, from 5.11 to 5.10, it would have to be the case that, ∀A ∈ X , ∃B ∈ X such
that A = F (B), i.e., every measurable set would have to be the image, under
F , of another measurable set. This is not necessarily the case; it would require,
for starters, that F be onto (surjective).

Theorem 52 says that every stationary process can be represented by a
measure-preserving transformation, namely the shift. Since measure-preserving
transformations arise in many other ways, however, it is useful to know about
the processes they generate.

Corollary 54 If F is a measure-preserving transformation on Ξ and X is a Ξ-
valued random variable, then the sequence Fn(X), n ∈ N is strongly stationary.

Proof: Consider shifting the sequence Fn(X) by one: the nth term in the
shifted sequence is Fn+1(X) = Fn(F (X)). But since L (F (X)) = L (X), by
hypothesis, L

(
Fn+1(X)

)
= L (Fn(X)), and the measure is shift-invariant. So,

by Theorem 52, the process Fn(X) is stationary.

5.3 Exercises

Exercise 5.1 (Functions of Stationary Processes) Use Corollary 54 to show
that if g is any measurable function on Ξ, then the sequence g(Fn(X)) is also
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stationary.

Exercise 5.2 (Continuous Measure-Preserving Families of Transformations)
Let Ft, t ∈ R+, be a semi-group of measure-preserving transformations, with F0

being the identity. Prove the analog of Corollary 54, i.e., that Ft(X), t ∈ R+,
is a stationary process.

Exercise 5.3 (The Logistic Map as an M.P.T.) The logistic map with a =
4 is a measure-preserving transformation, and the measure it preserves has the
density 1/π

√
x(1− x) (on the unit interval).

1. Verify that this density is invariant under the action of the logistic map.

2. Simulate the logistic map with uniformly distributed X0. What happens to
the density of Xt as t→∞?



Chapter 6

Random Times and Their
Properties

Section 6.1 recalls the definition of a filtration (a growing col-
lection of σ-fields) and of “stopping times” (basically, measurable
random times).

Section 6.2 defines various sort of “waiting’ times, including hit-
ting, first-passage, and return or recurrence times.

Section 6.3 proves the Kac recurrence theorem, which relates the
finite-dimensional distributions of a stationary process to its mean
recurrence times.

6.1 Reminders about Filtrations and Stopping
Times

You will have seen these in 36-752 as part of martingale theory, though their
application is more general, as we’ll see.

Definition 55 (Filtration) Let T be an ordered index set. A collection Ft, t ∈
T of σ-algebras is a filtration (with respect to this order) if it is non-decreasing,
i.e., f ∈ Ft implies f ∈ mathcalFs for all s > t. We generally abbreviate this
filtration by F . Define F+

t as
⋂
s>t Fs. If F+ = F , then F is right-continuous.

Recall that we generally think of a σ-algebra as representing available infor-
mation — for any event f ∈ F , we can answer the question “did f happen?”
A filtration is a way of representing our information about a system growing
over time. To see what right-continuity is about, imagine it failed, which would
mean Ft ⊂

⋂
s>t Fs. Then there would have to be events which were detectable

at all times after t, but not at t itself, i.e., some sudden jump in our information
right after t. This is what right-continuity rules out.

27
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Definition 56 (Adapted Process) A stochastic process X on T is adapted
to a filtration F if ∀t, Xt is Ft-measurable. Any process is adapted to the
filtration it induces, σ {Xs : s ≤ t}.

A process being adapted to a filtration just means that, at every time, the
filtration gives us enough information to find the value of the process.

Definition 57 (Stopping Time, Optional Time) An optional time or a stop-
ping time, with respect to a filtration F , is a T -valued random variable τ such
that, for all t,

{ω ∈ Ω : τ(ω) ≤ t} ∈ Ft (6.1)

If Eq. 6.1 holds with < instead of ≤, then τ is weakly optional or a weak
stopping time.

Basically, all we’re doing here is defining what we mean by “a random time
at which something detectable happens”.

6.2 Waiting Times

“Waiting times” are particular kinds of optional kinds: how much time must
elapse before a given event happens, either from a particular starting point,
or averaging over all trajectories? Often, these are of particular interest in
themselves, and some of them can be related to other quantities of interest.

Definition 58 (Hitting Time) Given a one-sided Ξ-valued process X, the
hitting time τB of a measurable set B ⊂ Ξ is the first time at which X(t) ∈ B;

τB = inf {t > 0 : Xt ∈ B} (6.2)

Example 59 (Fixation through Genetic Drift) Consider the variation in
a given locus (roughly, gene) in an evolving population. If there are k different
versions of the gene (“alleles”), the state of the population can be represented by
a vector X(t) ∈ Rk, where at each time Xi(t) ≥ 0 and

∑
iXi(t) = 1. This set

is known as the k-dimensional probability simplex Sk. We say that a certain
allele has been fixed in the population or gone to fixation at t if Xi(t) = 1 for
some i, meaning that all members of the population have that version of the
gene. Fixation corresponds to X(t) ∈ V , where V consists of the vertices of
the simplex. An important question in evolutionary theory is how long it takes
the population to go to fixation. By comparing the actual rate of fixation to
that expected under a model of adaptively-neutral genetic drift, it is possible to
establish that some genes are under the influence of natural selection.

Gillespie (1998) is a nice introduction to population genetics, including this
problem among many others, using only elementary probability. More sophis-
ticated models treat populations as measure-valued stochastic processes.
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Example 60 (Stock Options) A stock option1 is a legal instrument giving
the holder the right to buy a stock at a specified price (the strike price, c) before
a certain expiration date te. The point of the option is that, if you exercise it at
a time t when the price of the stock p(t) is above c, you can turn around and sell
the stock to someone else, making a profit of p(t)−c. When p(t) > c, the option
is said to be in money or above water. Options can themselves be sold, and the
value of an option depends on how much money it could be used to make, which
in turn depends on the probability that it will be “in money” before time te. An
important part of mathematical finance thus consists of problems of the form
“assuming prices p(t) follow a process distribution µ, what is the distribution of
hitting times of the set p(t) > c?”

While the financial industry is a major consumer of stochastics, and it has
a legitimate role to play in capitalist society, I do hope you will find something
more interesting to do with your new-found mastery of random processes, so I
will not give many examples of this sort. If you want much, much more, read
Shiryaev (1999).

Definition 61 (First Passage Time) When Ξ = R or Z, we call the hitting
time of the origin the time of first passage through the origin, and similarly for
other points.

Definition 62 (Return Time, Recurrence Time) Fix a set B ∈ Ξ. Sup-
pose that X(t0) ∈ B. Then the return time or first return time of B is recur-
rence time of B is inf {t > t0 : X(t) ∈ B}, and the recurrence time θB is the
difference between the first return time and t0.

Note 1: If I’m to be honest with you, I should admit that “return time”
and “recurrence time” are used more or less interchangeably in the literature to
refer to either the time coordinate of the first return (what I’m calling the return
time) or the time interval which elapses before that return (what I’m calling
the recurrence time). I will try to keep these straight here. Check definitions
carefully when reading papers!

Note 2: Observe that if we have a discrete-parameter process, and are in-
terested in recurrences of a finite-length sequence of observations w ∈ Ξk, we
can handle this situation by the device of working with the shift operator in
sequence space.

The question of whether any of these waiting times is optional (i.e., mea-
surable) must, sadly, be raised. The following result is generally enough for our
purposes.

Proposition 63 Let X be a Ξ-valued process on a one-sided parameter T ,
adapted to a filtration F , and let B be an arbitrary measurable set in Ξ. Then
τB is weakly F-optional under any of the following (sufficient) conditions, and
F-optional under the first two:

1Actually, this is just one variety of option (an “American call”), out of a huge variety. I
will not go into details.
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1. T is discrete.

2. T is R+, Ξ is a metric space, B is closed, and X(t) is a continuous
function of t.

3. T is R+, Ξ is a topological space, B is open, and X(t) is right-continuous
as a function of t.

Proof: See, for instance, Kallenberg, Lemma 7.6, p. 123.

6.3 Kac’s Recurrence Theorem

For strictly stationary, discrete-parameter sequences, a very pretty theorem,
due to Mark Kac (1947), relates the probability of seeing a particular event to
the mean time between recurrences of the event. Throughout, we consider an
arbitrary Ξ-valued process X, subject only to the requirements of stationarity
and a discrete parameter.

Fix an arbitrary measurable set A ∈ Ξ with P (X1 ∈ A) > 0, and consider a
new process Y (t), where Yt = 1 if Xt ∈ A and Yt = 0 otherwise. By Exercise
5.1, Yt is also stationary. Thus P (X1 ∈ A,X2 6∈ A) = P (Y1 = 1, Y2 = 0). Let
us abbreviate P (Y1 = 0, Y2 = 0, . . . Yn1 = 0, Yn = 0) as wn; this is the probabil-
ity of making n consecutive observations, none of which belong to the event
A. Clearly, wn ≥ wn+1. Similarly, let en = P (Y1 = 1, Y2 = 0, . . . Yn = 0) and
rn = P (Y1 = 1, Y2 = 0, . . . Yn = 1) — these are, respectively, the probabilities
of starting in A and not returning within n − 1 steps, and of starting in A
and returning for the first time after n − 2 steps. (Set e1 to P (Y1 = 1), and
w0 = e0 = 1.)

Lemma 64 The following recurrence relations hold among the probabilities wn,
en and rn:

en = wn−1 − wn, n ≥ 1 (6.3)
rn = en−1 − en, n ≥ 2 (6.4)
rn = wn−2 − 2wn−1 + wn, n ≥ 2 (6.5)

Proof: To see the first equality, notice that

P (Y1 = 0, Y2 = 0, . . . Yn−1 = 0) (6.6)
= P (Y2 = 0, Y3 = 0, . . . Yn = 0)
= P (Y1 = 1, Y2 = 0, . . . Yn = 0) + P (Y1 = 0, Y2 = 0, . . . Yn = 0) (6.7)

using first stationarity and then total probability. To see the second equality,
notice that, by total probability,

P (Y1 = 1, Y2 = 0, . . . Yn−1 = 0) (6.8)
= P (Y1 = 1, Y2 = 0, . . . Yn−1 = 0, Yn = 0) + P (Y1 = 1, Y2 = 0, . . . Yn−1 = 0, Yn = 1)

The third relationship follows from the first two. �
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Theorem 65 (Recurrence in Stationary Processes) Let X be a Ξ-valued
discrete-parameter stationary process. For any set A with P (X1 ∈ A) > 0, for
almost all ω such that X1(ω) ∈ A, there exists a τ for which Xτ (ω) ∈ A.

∞∑
k=1

P (θA = k|X1 ∈ A) = 1 (6.9)

Proof: The event {θA = k,X1 ∈ A} is the same as the event {Y1 = 1, Y2 = 0, . . . Yk+1 = 1}.
Since P (X1 ∈ A) > 0, we can handle the conditional probabilities in an elemen-
tary fashion:

P (θA = k|X1 ∈ A) =
P (θA = k,X1 ∈ A)

P (X1 ∈ A)
(6.10)

=
P (Y1 = 1, Y2 = 0, . . . Yk+1 = 1)

P (Y1 = 1)
(6.11)

∞∑
k=1

P (θA = k|X1 ∈ A) =
∑∞
k=1 P (Y1 = 1, Y2 = 0, . . . Yk+1 = 1)

P (Y1 = 1)
(6.12)

=
∑∞
k=2 rk
e1

(6.13)

Now consider the finite sums, and apply Eq. 6.5.

n∑
k=2

rk =
n∑
k=2

wk−2 − 2wk−1 + wk (6.14)

=
n−2∑
k=0

wk +
n∑
k=2

wk − 2
n−1∑
k=1

wk (6.15)

= w0 + wn − w1 − wn−1 (6.16)
= (w0 − w1)− (wn−1 − wn) (6.17)
= e1 − (wn−1 − wn) (6.18)

where the last line uses Eq. 6.4. Since wn−1 ≥ wn, there exists a limn wn, which
is ≥ 0 since every individual wn is. Hence limn wn−1 − wn = 0.

∞∑
k=1

P (θA = k|X1 ∈ A) =
∑∞
k=2 rk
e1

(6.19)

= lim
n→∞

e1 − (wn−1 − wn)
e1

(6.20)

=
e1
e1

(6.21)

= 1 (6.22)

which was to be shown. �



CHAPTER 6. RANDOM TIMES 32

Corollary 66 (Poincaré Recurrence Theorem) Let F be a transformation
which preserves measure µ. Then for any measurable set A, for µ-almost-all
x ∈ A, ∃n ≥ 1 such that Fn(x) ∈ A.

Proof: A direct application of the theorem, given the relationship between
stationary processes and measure-preserving transformations we established in
the last lecture. �

Corollary 67 (“Nietzsche”) In the set-up of the previous theorem, if X1(ω) ∈
A, then Xt ∈ A for infinitely many t (a.s.).

Proof: Repeated application of the theorem yields an infinite sequence of times
τ1, τ2, τ3, . . . such that Xτi(ω) ∈ A, for almost all ω such that X1(ω) ∈ A in the
first place. �

Now that we’ve established that once something happens, it will happen
again and again, we would like to know how long we have to wait between
recurrences.

Theorem 68 (Kac’s Recurrence Theorem) Continuing the previous nota-
tion, E [θA|X1 ∈ A] = 1/P (X1 ∈ A) if and only if limn wn = 0.

Proof: “If”: Unpack the expectation:

E [θA|X1 ∈ A] =
∞∑
k=1

k
P (Y1 = 1, Y2 = 0, . . . Yk+1 = 1)

P (Y1 = 1)
(6.23)

=
1

P (X1 ∈ A)

∞∑
k=1

krk+1 (6.24)

so we just need to show that the last series above sums to 1. Using Eq. 6.5
again,

n∑
k=1

krk+1 =
n∑
k=1

k(wk−1 − 2wk + wk+1) (6.25)

=
n∑
k=1

kwk−1 +
n∑
k=1

kwk+1 − 2
n∑
k=1

kwk (6.26)

=
n−1∑
k=0

(k + 1)wk +
n+1∑
k=2

(k − 1)wk − 2
n∑
k=1

kwk (6.27)

= w0 + nwn+1 − (n+ 1)wn (6.28)
= 1− wn − n(wn − wn+1) (6.29)

We therefore wish to show that limn wn = 0 implies limn wn + n(wn − wn+1) =
0. By hypothesis, it is enough to show that limn n(wn − wn+1) = 0. The partial
sums on the left-hand side of Eq. 6.25 are non-decreasing, so wn+n(wn−wn+1)
is non-increasing. Since it is also ≥ 0, the limit limn wn + n(wn − wn+1) exists;
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using wn → 0 again, so does limn wn + n(wn − wn+1). Since limn wn exists,
the series

∑∞
n=1 wn − wn+1 must converge, and so wn − wn+1 must be at most

o(n−1). Hence limn n(wn − wn+1) = 0, as was to be shown.
“Only if”: From Eq. 6.29 in the “if” part, we see that the hypothesis is

equivalent to

1 = lim
n

1− wn − n(wn − wn+1) (6.30)

Since wn ≥ wn+1, 1−wn−n(wn−wn+1) ≤ 1−wn. We know from the proof of
Theorem 65 that limn wn exists, whether or not it is zero. If it is not zero, then
limn 1− wn − n(wn − wn+1) ≤ 1 − limn wn < 1. Hence wn → 0 is a necessary
condition. �

Example 69 One might imagine that the condition wn → 0 in Kac’s Theorem
is redundant, given the assumption of stationarity. Here is a counter-example.
Consider a homogeneous Markov chain on a finite space Ξ, which is partitioned
into two non-communicating components, Ξ1 and Ξ2. Each component is, in-
ternally, irreducible and aperiodic, so there will be an invariant measure µ1

supported on Ξ1, and another invariant measure µ2 supported on Ξ2. But then,
for any s ∈ [0, 1], sµ1+(1−s)µ2 will also be invariant. (Why?) Picking A ⊂ Ξ2

gives limn wn = s, the probability that the chain begins in the wrong component
to ever reach A.

Kac’s Theorem turns out to be the foundation for a fascinating class of
methods for learning the distributions of stationary processes, and for “univer-
sal” prediction and data compression. There is also an interesting interaction
with large deviations theory. This subject is one possibility for further discus-
sion at the end of the course. Whether or not we get there, let me recommend
some papers in the footnote.2

6.4 Exercises

Exercise 6.1 (Weakly Optional Times and Right-Continuous Filtrations)
Show that a random time τ is weakly F-optional iff it is F+-optional.

Exercise 6.2 (Kac’s Theorem for the Logistic Map) First, do Exercise 5.3.
Then, using the same code, suitably modified, numerically check Kac’s Theorem
for the logistic map with a = 4. Pick any interval I ⊂ [0, 1] you like, but be sure
not to make it too small.

1. Generate n initial points in I, according to the invariant measure 1

π
√
x(1−x)

.

For each point xi, find the first t such that F t(xi) ∈ I, and take the mean
over the sample. What happens to this space average as n grows?

2Kontoyiannis et al. (1998); “How Sampling Reveals a Process” (Ornstein and Weiss, 1990);
Algoet (1992).
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2. Generate a single point x0 in I, according to the invariant measure. Iterate
it N times. Record the successive times t1, t2, . . . at which F t(x0) ∈ I,
and find the mean of ti − ti−1 (taking t0 = 0). What happens to this time
average as N grows?



Chapter 7

Continuity of Stochastic
Processes

Section 7.1 describes the leading kinds of continuity for stochastic
processes, which derive from the modes of convergence of random
variables. It also defines the idea of versions of a stochastic process.

Section 7.2 explains why continuity of sample paths is often prob-
lematic, and why we need the whole “paths in U” song-and-dance.
As an illustration, we consider a Gausssian process which is close to
the Wiener process, except that it’s got a nasty non-measurability.

Section 7.3 introduces separable random functions.

7.1 Kinds of Continuity for Processes

Continuity is a convergence property: a continuous function is one where con-
vergence of the inputs implies convergence of the outputs. But we have several
kinds of convergence for random variables, so we may expect to encounter several
kinds of continuity for random processes. Note that the following definitions are
stated broadly enough that the index set T does not have to be one-dimensional.

Definition 70 (Continuity in Mean) A stochastic process X is continuous
in the mean at t0 if t → t0 implies E

[
|X(t)−X(t0)|2

]
→ 0. X is continuous

in the mean if this holds for all t0.

It would, of course, be more natural to refer to this as “continuity in mean
square”, or even “continuity in L2”, and one can define continuity in Lp for
arbitrary p.

Definition 71 (Continuity in Probability) X is continuous in probability
at t0 if t→ t0 implies X(t) P→ X(t0). X is continuous in probability or stochas-
tically continuous if this holds for all t0.

35
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Note that neither Lp-continuity nor stochastic continuity says that the indi-
vidual sample paths, themselves, are continuous.

Definition 72 (Continuous Sample Paths) A process X is continuous at
t0 if, for almost all ω, t→ t0 implies X(t, ω) → X(t0, ω). A process is continu-
ous if, for almost all ω, X(·, ω) is a continuous function.

Obviously, continuity of sample paths implies stochastic continuity and Lp-
continuity.

A weaker pathwise property than strict continuity, frequently used in prac-
tice, is the combination of continuity from the right with limits from the left.
This is usually known by the term “cadlag”, abbreviating the French phrase
“continues à droite, limites à gauche”; “rcll” is an unpronounceable synonym.

Definition 73 (Cadlag) A sample function x on a well-ordered set T is cadlag
if it is continuous from the right and limited from the left at every point. That
is, for every t0 ∈ T , t ↓ t0 implies x(t) → x(t0), and for t ↑ t0, limt↑t0 x(t)
exists, but need not be x(t0). A stochastic process X is cadlag if almost all its
sample paths are cadlag.

As we will see, it will not be easy to show that our favorite random processes
have any of these desirable properties. What will be easy will be to show that
they are, in some sense, easily modified into ones which do have good regularity
properties, without loss of probabilistic content. This is made more precise
by the notion of versions of a stochastic process, related to that of versions of
conditional probabilities.

Definition 74 (Versions of a Stochastic Process) Two stochastic processes
X and Y with a common index set T are called versions of one another if

∀t ∈ T, P (ω : X(t, ω) = Y (t, ω)) = 1

Such processes are also said to be stochastically equivalent.

Lemma 75 If X and Y are versions of one another, they have the same finite-
dimensional distributions.

Proof: Clearly it will be enough to show that P (XJ = YJ) = 1 for arbitrary
finite collections of indices J . Pick any such collection J = {t1, t2, . . . tj}. Then

P (XJ = YJ) = P
(
Xt1 = Yt1 , . . . Xtj = Ytj

)
(7.1)

= 1− P

(⋃
ti∈J

Xti 6= Yti

)
(7.2)

≥ 1−
∑
ti∈J

P (Xti 6= Yti) (7.3)

= 1 (7.4)
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using only finite sub-additivity. �
There is a stronger notion of similarity between processes than that of ver-

sions, which will sometimes be useful.

Definition 76 (Indistinguishable Processes) Two stochastic processes X
and Y are indistinguishable, or equivalent up to evanescence, when

P (ω : ∀t,X(t, ω) = Y (t, ω)) = 1

Notice that saying X and Y are indistinguishable means that their sample
paths are equal almost surely, while saying they are versions of one another
means that, at any time, they are almost surely equal. Indistinguishable pro-
cesses are versions of one another, but not necessarily the reverse. (Look at
where the quantifier and the probability statements go.) However, if T = Rd,
then any two right-continuous versions of the same process are indistinguishable
(Exercise 7.2).

7.2 Why Continuity Is an Issue

In many situations, we want to use stochastic processes to model dynamical
systems, where we know that the dynamics are continuous in time (i.e. the
index set is R, or maybe R+ or [0, T ] for some real T ).1 This means that we
ought to restrict the sample paths to be continuous functions; in some cases we’d
even want them to be differentiable, or yet more smooth. As well as being a
matter of physical plausibility or realism, it is also a considerable mathematical
convenience, as the following shows.

Proposition 77 Let X(t, ω) be a real-valued continuous-parameter process with
continuous sample paths. Then on any finite interval I, M(ω) ≡ supt∈I X(t, ω)
and m(ω) ≡ inft∈I X(t, ω) are measurable random variables.

Proof: It’ll be enough to prove this for the supremum function M ; the proof
for m is entirely parallel. First, notice that M(ω) must be finite, because the
sample paths X(·, ω) are continuous functions, and continuous functions are
bounded on bounded intervals. Next, notice that M(ω) > a if and only if
X(t, ω) > a for some t ∈ I. But then, by continuity, there will be some rational
t′ ∈ I ∩Q such that X(t′, ω) > a; countably many, in fact.2 Hence

{ω : M(ω) > a} =
⋃

t∈I∩Q

{ω : X(t, ω) > a}

1Strictly speaking, we don’t really know that space-time is a continuum, but the discretiza-
tion, if there is one, is so fine that it might as well be.

2Continuity means that we can pick a δ such that, for all t′ within δ of t, X(t′, ω) is within
1
2
(X(t, ω) − a) of X(t, ω). And there are countably many rational numbers within any real

interval. — There is nothing special about the rational numbers here; any countable, dense
subset of the real numbers would work as well.
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Since, for each t, X(t, ω) is a random variable, the sets in the union on the
right-hand side are all measurable, and the union of a countable collection of
measurable sets is itself measurable. Since intervals of the form (a,∞) generate
the Borel σ-field on the reals, we have shown that M(ω) is a measurable function
from Ω to the reals, i.e., a random variable. �

Continuity raises some very tricky technical issues. The product σ-field is
the usual way of formalizing the notion that what we know about a stochas-
tic process are values observed at certain particular times. What we saw in
Exercise 1.1 is that “the product σ-field answers countable questions”: for any
measurable set A, whether x(·, ω) ∈ A depends only on the value of x(t, ω) at
countably many indices t. It follows that the class of all continuous sample
paths is not product-σ-field measurable, because x(·, ω) is continuous at t iff
x(tn, ω) → x(t, ω) along every sequence tn → t, and this is involves the value of
the function at uncountably many coordinates. It is further true that the class
of differentiable functions is not product σ-field measurable. For that matter,
neither is the class of piecewise linear functions! (See Exercise 7.1.)

You might think that, on the basis of Theorem 23, this should not really be
much of an issue: that even if the class of continuous sample paths (say) isn’t
strictly measurable, it could be well-approximated by measurable sets, and so
getting the finite-dimensional distributions right is all that matters. This would
make the theory of stochastic processes in continuous time much simpler, but
unfortunately it’s not quite the case. Here is an example to show just how bad
things can get, even when all the finite-dimensional distributions agree.3

Example 78 (A Horrible Version of the proto-Wiener Process) Example
38 defined the Wiener process by four requirements: starting at the origin,
independent increments, a Gaussian distribution of increments, and continu-
ity of sample paths. Take a Wiener process W (t, ω) and consider M(ω) ≡
supt∈[0,1]W (t, ω), its supremum over the unit interval. By the preceding propo-
sition, we know that M is a measurable random variable. But we can construct
a version of W for which the supremum is not measurable.

For starters, assume that Ω can be partitioned into an uncountable collec-
tion of disjoint measurable sets, one for each t ∈ [0, 1]. (This can be shown
as an exercise in real analysis.) Select any non-measurable real-valued function
B(ω), so long as B(ω) > M(ω) for all ω. (There are uncountably many suit-
able functions.) Set W ∗(t, ω) = W (t, ω) if ω 6∈ Ωt, and = B(ω) if ω ∈ Ωt.
Now, at every t, P (W (t, ω) = W ∗(t, ω)) = 1. W ∗ is a version of W , and all
their finite-dimensional distributions. But, for every ω, there is a t such that
W ∗(t, ω) = B(ω) > suptW (t, ω), so suptW ∗(t, ω) = B(ω), which by design is
non-measurable.4

3I stole this example from Pollard (2002, p. 214).
4Note that the Wiener process is an important model for the price of a stock in financial

theory (more exactly, for the log of its price), and its maximum over an interval is closely
related to the value of an option on that stock, so this is something you really want to be able
to make probability statements about.
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Fundamentally, the issues with continuity are symptoms of a deeper problem.
The reason the supremum function is non-measurable in the example is that it
involves uncountably many indices. A countable collection of ill-behaved sets of
measure zero is a set of measure zero, and may be ignored, but an uncountable
collection of them can have probability 1. Fortunately, there are standard ways
of evading these measure-theoretic issues, by showing that one can always find
random functions which not only have prescribed finite-dimensional distribu-
tions (what we did in Lectures 2 and 3), but also are regular enough that we
can take suprema, or integrate over time, or force them to be continuous. This
hinges on the notion of separability for random functions.

7.3 Separable Random Functions

The basic idea of a separable random function is one whose properties can be
handled by dealing only with a countable, dense subset, just as, in the proof
of Proposition 77, we were able to get away with only looking at X(t) at only
rational values of t. Because a space with a countable, dense subset is called a
“separable” space, we will call such functions “separable functions”.

Definition 79 (Separable Functions) Let Ξ and T be metric spaces, and D
be a countable, dense subset of T . A function x : T 7→ Ξ is D-separable or
separable with respect to D if, forallt ∈ T , there exists a sequence ti ∈ D such
that ti → t and x(ti) → x(t).

Lemma 80 The following conditions are sufficient for separability:

1. T is countable.

2. x is continuous.

3. T is well-ordered and x is right-continuous.

Proof: (1) Take the separating set to be T itself. (2) Pick any countable dense
D. By density, for every t there will be a sequence ti ∈ D such that ti → t. By
continuity, along any sequence converging to t, x(ti) → t. (3) Just like (2), only
be sure to pick the ti > t. (You can do this, again, for any countable dense D.)
�

Definition 81 (Separable Process) A Ξ-valued process X on T is separable
with respect to D if D is a countable, dense subset of T , and there is a measure-
zero set N ⊂ Ω such that for every ω 6∈ N , X(·, ω) is D-separable. That is,
X(·, ω) is almost surely D-separable.

We cannot easily guarantee that a process is separable. What we can easily
do is go from one process, which may or may not be separable, to a separa-
ble process with the same finite-dimensional distributions. This is known as
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a separable modification of the original process. Combined with the extension
theorems (Theorems 27, 29 and 33), this tells that we can always construct a
separable process with desired finite-dimensional distributions. We shall there-
fore feel entitled to assume that our processes are separable, without further
ado. The proofs of the existence of separable and continuous versions of gen-
eral processes are, however, somewhat involved, and so postponed to the next
lecture.

7.4 Exercises

Exercise 7.1 Consider real-valued functions on the unit interval (i.e., Ξ = R,
T = [0, 1], X = B). The product σ-field is thus B[0,1]. In many circumstances,
it would be useful to constrain sample paths to be piece-wise linear functions of
the index. Let PL([0, 1]) denote this class of functions. Use the argument of
Exercise 1.1 to show that PL([0, 1]) 6∈ B[0,1].

Exercise 7.2 Show that, if X and Y are versions of one another, with index
set Rd, and both are right-continuous, then they are indistinguishable.



Chapter 8

More on Continuity

Section 8.1 constructs separable modifications of reasonable but
non-separable random functions, and explains how separability re-
lates to non-denumerable properties like continuity.

Section 8.2 constructs versions of our favorite one-parameter pro-
cesses where the sample paths are measurable functions of the pa-
rameter.

Section 8.3 gives conditions for the existence of cadlag versions.
Section 8.4 gives some criteria for continuity, and for the existence

of “continuous modifications” of discontinuous processes.

Recall the story so far: last time we saw that the existence of processes with
given finite-dimensional distributions does not guarantee that they have desir-
able and natural properties, like continuity, and in fact that one can construct
discontinuous versions of processes which ought to be continuous. We therefore
need extra theorems to guarantee the existence of continuous versions of pro-
cesses with specified FDDs. To get there, we will first prove the existence of
separable versions. This will require various topological conditions on both the
index set T and the value space Ξ.

In the interest of space (or is it time?), Section 8.1 will provide complete and
detailed proofs. The other sections will simply state results, and refer proofs
to standard sources, mostly Gikhman and Skorokhod (1965/1969). (They in
turn follow Doob (1953), but are explicit about what he regarded as obvious
generalizations and extensions, and they cost about $20, whereas Doob costs
$120 in paperback.)

8.1 Separable Versions

We can show that separable versions of our favorite stochastic processes exist
under quite general conditions, but first we will need some preliminary results,
living at the border between topology and measure theory. This starts by re-
calling some facts about compact spaces.

41



CHAPTER 8. MORE ON CONTINUITY 42

Definition 82 (Compactness, Compactification) A set A in a topological
space Ξ is compact if every covering of A by open sets contains a finite sub-cover.
Ξ is a compact space if it is itself a compact set. Every non-compact topological
space Ξ is a sub-space of some compact topological space Ξ̃. The super-space Ξ̃
is a compactification of Ξ. Every compact metric space is separable.1

Example 83 The real numbers R are not compact: they have no finite covering
by open intervals (or other open sets). The extended reals, R ≡ R ∪ +∞ ∪
−∞, are compact, since intervals of the form (a,∞] and [−∞, a) are open.
This is a two-point compactification of the reals. There is also a one-point
compactification, with a single point at ±∞, but this has the undesirable property
of making big negative and positive numbers close to each other.

Recall that a random function is separable if its value at any arbitrary in-
dex can be determined almost surely by examining its values on some fixed,
countable collection of indices. The next lemma states an alternative charac-
terization of separability. The lemma after that gives conditions under which a
weaker property holds — the almost-sure determination of whetherX(t, ω) ∈ B,
for a specific t and set B, by the behavior of X(tn, ω) at countably many tn.
The final lemma extends this to large collections of sets, and then the proof of
the theorem puts all the parts together.

Lemma 84 Let T be a separable set, Ξ a compact metric space, and D a count-
able dense subset of T . Define V as the class of all open balls in T centered at
points in D and with rational radii. For any G ⊂ T , let

R(G,ω) ≡ closure

( ⋃
t∈G∩D

X(t, ω)

)
(8.1)

R(t, ω) ≡
⋂

S: S∈V, t∈S
R(S, ω) (8.2)

Then X(t, ω) is D-separable if and only if there exists a set N ⊂ Ω such that

ω 6∈ N ⇒ ∀t, X(t, ω) ∈ R(t, ω) (8.3)

and P (N) = 0.

Proof: Roughly speaking, R(t, ω) is what we’d think the range of the function
would be, in the vicinity of t, if it we went just by what it did at points in
the separating set D. The actual value of the function falling into this range
(almost surely) is necessary and sufficient for the function to be separable. But
let’s speak less roughly.

“Only if”: Since X(t, ω) is D-separable, for almost all ω, for any t there
is some sequence tn ∈ D such that tn → t and X(tn, ω) → X(t, ω). For any

1This last statement requires the axiom of choice.
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ball S centered at t, there is some N such that tn ∈ S if n ≥ N . Hence the
values of x(tn) are eventually confined to the set

⋃
t∈S∩DX(t, ω). Recall that

the closure of a set A consists of the points x such that, for some sequence
xn ∈ A, xn → x. As X(tn, ω) → X(t, ω), it must be the case that X(t, ω) ∈
closure

(⋃
t∈S∩DX(t, ω)

)
. Since this applies to all S, X(t, ω) must be in the

intersection of all those closures, hence X(t, ω) ∈ R(t, ω) — unless we are on
one of the probability-zero bad sample paths, i.e., unless ω ∈ N .

“If”: Assume that, with probability 1, X(t, ω) ∈ R(t, ω). Thus, for any
S ∈ V , we know that there exists a sequence of points tn ∈ S ∩ D such that
X(tn, ω) → X(t, ω). However, this doesn’t say that tn → t, which is what we
need for separability. We will now build such a sequence. Consider a series
of spheres Sk ∈ V such that (i) every point in Sk is within a distance 2−k of
t and (ii) Sk+1 ⊂ Sk. For each Sk, there is a sequence t(k)n ∈ Sk such that
X(t(k)n , ω) → X(t, ω). In fact, for any m > 0, |X(t(k)n , ω) − X(t, ω)| < 2−m if
n ≥ N(k,m), for some N(k,m). Our final sequence of indices ti then consists of
the following points: t(1)n for n from N(1, 1) to N(1, 2); t(2)n for n from N(2, 2)
to N(2, 3); and in general t(k)n for n from N(k, k) to N(k, k+1). Clearly, ti → t,
and X(ti, ω) → X(t, ω). Since every ti ∈ D, we have shown that X(t, ω) is
D-separable. �

Lemma 85 Let T be a separable index set, Ξ a compact space, X a random
function from T to Ξ, and B be an arbitrary Borel set of Ξ. Then there exists
a denumerable set of points tn ∈ T such that, for any t ∈ T , the set

N(t, B) ≡ {ω : X(t, ω) 6∈ B} ∩

( ∞⋂
n=1

{ω : X(tn, ω) ∈ B}

)
(8.4)

has probability 0.

Proof: We proceed recursively. The first point, t1, can be whatever we like.
Suppose t1, t2, . . . tn are already found, and define the following:

Mn ≡
n⋂
k=1

{ω : X(tk, ω) ∈ B} (8.5)

Ln(t) ≡ Mn ∩ {ω : X(t, ω) 6∈ B} (8.6)
pn ≡ sup

t
P (Ln(t)) (8.7)

Mn is the set where the random function, evaluated at the first n indices, gives a
value in our favorite set; it’s clearly measurable. Ln(t), also clearly measurable,
gives the collection of points in Ω where, if we chose t for the next point in
the collection, this will break down. pn is the worst-case probability of this
happening. For each t, Ln+1(t) ⊆ Ln(t), so pn+1 ≤ pn. Suppose pn = 0;
then we’ve found the promised denumerable sequence, and we’re done. Suppose
instead that pn > 0. Pick any t such that P (Ln(t)) ≥ 1

2pn, and call it tn+1.
(There has to be such a point, or else pn wouldn’t be the supremum.) Now notice
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that L1(t2), L2(t3), . . . Ln(tn+1) are all mutually exclusive, but not necessarily
jointly exhaustive. So

1 = P (Ω) (8.8)

≥ P

(⋃
n

Ln(tn+1)

)
(8.9)

=
∑
n

P (Ln(tn+1)) (8.10)

≥
∑
n

1
2
pn > 0 (8.11)

so pn → 0 as n→∞.
We saw that Ln(t) is a monotone-decreasing sequence of sets, for each t,

so a limiting set exists, and in fact limn Ln(t) = N(t, B). So, by monotone
convergence,

P (N(t, B)) = P
(
lim
n
Ln(t)

)
(8.12)

= lim
n

P (Ln(t)) (8.13)

≤ lim
n
pn (8.14)

= 0 (8.15)

as was to be shown. �

Lemma 86 Let B0 be any countable class of Borel sets in Ξ, and B the closure
of B0 under countable intersection. Under the hypotheses of the previous lemma,
there is a denumerable sequence tn such that, for every t ∈ T , there exists a set
N(t) ⊂ Ω with P (N(t)) = 0, and, for all B ∈ B,

{ω : X(t, ω) 6∈ A} ∩

( ∞⋂
n=1

{ω : X(tn, ω) ∈ A}

)
⊆ N(t) (8.16)

Proof: For each B ∈ B0, construct the sequence of indices as in the previous
lemma. Since there only countably many sets in B, if we take the union of all of
these sequences, we will get another countable sequence, call it tn. Then we have
that, ∀B ∈ B0, ∀t ∈ T , P (X(tn, ω) ∈ B,n ≥ 1, X(t, ω) 6∈ B) = 0. Take this set
to be N(t, B), and define N(t) ≡

⋃
B∈B0

N(t, B). Since N(t) is a countable
union of probability-zero events, it is itself a probability-zero event. Now, take
any B ∈ B, and any B0 ∈ B0 such that B ⊆ B0. Then

{X(t, ω) 6∈ B0} ∩

( ∞⋂
n=1

{X(tn, ω) ∈ B}

)
(8.17)

⊆ {X(t, ω) 6∈ B0} ∩

( ∞⋂
n=1

{X(tn, ω) ∈ B0}

)
⊆ N(t) (8.18)
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Since B =
⋂
k B

(k)
0 for some sequence of sets B(k)

0 ∈ B0, it follows (via De
Morgan’s laws and the distributive law) that

{X(t, ω) 6∈ B} =
∞⋃
k=1

{
X(t, ω) 6∈ B(k)

0

}
(8.19)

{X(t, ω) 6∈ B} ∩

( ∞⋂
n=1

{X(tn, ω) ∈ B}

)

=
∞⋃
k=1

{
X(t, ω) 6∈ B(k)

0

}
∩

( ∞⋂
n=1

{X(tn, ω) ∈ B}

)
(8.20)

⊆
∞⋃
n=1

N(t) (8.21)

= N(t) (8.22)

which was to be shown. �

Theorem 87 (Separable Versions, Separable Modifications) Suppose that
Ξ is a compact metric space and T is a separable metric space. Then, for any
Ξ-valued stochastic process X on T , there exists a separable version X̃. This is
called a separable modification of X.

Proof: Let D be a countable dense subset of T , and V the class of open spheres
of rational radius centered at points in D. Any open subset of T is a union of
countably many sets from V , which is itself countable. Similarly, let C be a
countable dense subset of Ξ, and let B0 consist of the complements of spheres
centers at points in D with rational radii, and (as in the previous lemma) let B
be the closure of B0 under countable intersection. Every closed set in Ξ belongs
to B.2 For every S ∈ V , consider the restriction of X(t, ω) to t ∈ S, and apply
Lemma 86 to the random function X(t, ω) to get a sequence of indices I(S) ⊂ T ,
and, for every t ∈ S, a measure-zero set NS(t) ⊂ Ω where things can go wrong.
Set I =

⋃
S∈V I(S) and N(t) =

⋃
S∈V NS(t). Because V is countable, I is still

a countable set of indices, and N(t) is still of measure zero. I is going to be our
separating set, and we’re going to show that we have uncountably many sets
N(t) won’t be a problem.

Define X̃(t, ω) = X(t, ω) if t ∈ I or ω 6∈ N(t) — if we’re at a time in the
separating set, or we’re at some other time but have avoided the bad set, we’ll
just copy our original random function. What to do otherwise, when t 6∈ I and
ω ∈ N(t)? Construct R(t, ω), as in the proof of Lemma 84, and let X̃(t, ω) take
any value in this set. Since R(t, ω) depends only on the value of the function
at indices in the separating set, it doesn’t matter whether we build it from
X or from X̃. In fact, for all t and ω, X̃(t, ω) ∈ R(t, ω), so, by Lemma 84,

2You show this.
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X̃(t, ω) is separable. Finally, for every t,
{
X̃(t, ω) = X(t, ω)

}
⊆ N(t), so ∀t,

P
(
X̃(t) = X(t)

)
, and X̃ is a version of X (Definition 74). �

Corollary 88 If the situation is as in the previous theorem, but Ξ is not com-
pact, there exists a separable version of X in some compactification Ξ̃ of Ξ.

Proof: Because Ξ is a sub-space of any of its compactifications Ξ̃, X is also a
process with values in Ξ̃.3 Since Ξ̃ is compact, X has a separable modification
X̃ with values in Ξ̃, but (with probability 1) X̃(t) ∈ Ξ. �

Corollary 89 Let Ξ be a compact metric space, T a separable index set, and
µJ , J ∈ Fin(T ) a projective family of probability distributions. Then there is a
separable stochastic process with finite-dimensional distributions given by µJ .

Proof: Combine Theorem 87 with the Kolmogorov Extension Theorem 29. �

8.2 Measurable Versions

It would be nice for us if X(t) is a measurable function of t, because we are
going to want to write down things like∫ t=b

t=a

X(t)dt

and have them mean something. Irritatingly, this will require another modifi-
cation.

Definition 90 (Measurable sample paths) Let T, T , τ be a measurable space,
its σ-field and a measure defined thereon. A random function X on T with val-
ues in Ξ,X has measurable sample paths or is measurable if X : T ×Ω 7→ Ξ is
T̃ × F/X measurable, where T ×F is the product σ-field on T ×Ω, and T̃ × F
its completion by the null sets of the product measure τ × P.

It would seem more natural to simply define measurable sample paths by
saying that X(·, ω) is a T -measurable function of t for P-almost-all ω. However,
Definition 90 implies this version, via Fubini’s Theorem, and facilitates the
proofs of the two following theorems.

Theorem 91 If X(t) is measurable, and E [X(t)] is integrable (with respect to
the measure τ on T ), then for any set I ∈ T ,∫

I

E [X(t)] τ(dt) = E
[∫

I

X(t)τ(dt)
]

(8.23)

3If you want to be really picky, define a 1-1 function h : Ξ 7→ Ξ̃ taking points to their
counterparts. Then X and h−1(X) are indistinguishable. Do I need to go on?
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Proof: This is just Fubini’s Theorem! �

Theorem 92 (Measurable Separable Modifications) Suppose that T and
Ξ are both compact. If X(t, ω) is continuous in probability at τ -almost-all t,
then it has a version which is both separable and measurable, its measurable
separable modification.

Proof: See Gikhman and Skorokhod (1965/1969, ch. IV, sec. 3, thm. 1, p.
157). �

8.3 Cadlag Versions

Theorem 93 Let X be a separable random process with T = [a, b] ⊆ R, and
Ξ a complete metric space with metric ρ. Suppose that X(t) is continuous in
probability on T , and there are real constants p, q, C ≥ 0, r > 1 such that, for
any three indices t1 < t2 < t3 ∈ T ,

E [ρp(X(t1), X(t2))ρq(X(t2), X(t3))] ≤ C|t3 − t1|r (8.24)

The there is a version of X whose sample paths are cadlag (a.s.).

Proof: Combine Theorem 1 and Theorem 3 of Gikhman and Skorokhod
(1965/1969, ch. IV, sec. 4, pp. 159–169). �

8.4 Continuous Modifications

Theorem 94 Let X be a separable stochastic process with T = [a, b] ⊆ R,
and Ξ a complete metric space with metric ρ. Suppose that there are constants
C, p > 0, r > 1 such that, for any t1 < t2 ∈ T ,

E [ρp(X(t1), X(t2))] ≤ C|t2 − t1|r (8.25)

Then X(t) has a continuous version.

Proof: See Gikhman and Skorokhod (1965/1969, ch. IV, sec. 5, thm. 2, p.
170), and the first remark following the theorem. �

A slightly more refined result requires two preliminary definitions.

Definition 95 (Modulus of continuity) For any function x from a metric
space T, d to a metric space Ξ, ρ, the modulus of continuity is the function
mx(r) : R+ 7→ R+ given by

mx(r) = sup {ρ(x(s), x(t)) : s, t ∈ T, d(s, t) ≤ r} (8.26)



CHAPTER 8. MORE ON CONTINUITY 48

Lemma 96 x is uniformly continuous if and only if its modulus of continuity
→ 0 as r → 0.

Proof: Obvious from Definition 95 and the definition of uniform continuity.

Definition 97 (Hölder-continuous) Continuing the notation of Definition
95, we say that x is Hölder-continuous with exponent c if there are positive con-
stants c, γ such that mx(r) ≤ γrc for all sufficiently small r; i.e., mx(r) = O(rc).
If this holds on every bounded subset of T , then the function is locally Hölder-
continuous.

Theorem 98 Let T be Rd and Ξ a complete metric space with metric ρ. If
there are constants p, q, γ > 0, such that, for any t1, t2 ∈ T ,

E [ρp(X(t1), X(t2))] ≤ γ|t1 − t2|d+q (8.27)

then X has a continuous version X̃, and almost all sample paths of X̃ are locally
Hölder-continuous for any exponent between 0 and q/p exclusive.

Proof: See Kallenberg, theorem 3.23 (pp. 57–58). Note that part of Kallen-
berg’s proof is a restricted case of what we’ve already done in prove the existence
of a separable version! �

This lecture, the last, and even a lot of the one before have all been pretty
hard and abstract. As a reward for our labor, however, we now have a collection
of very important tools — operator representations, filtrations and optional
times, recurrence times, and finally existence theorems for continuous processes.
These are the devices which will let us take the familiar theory of elementary
Markov chains, with finitely many states in discrete time, and produce the
general theory of Markov processes with continuous states and/or continuous
time. The next lecture will begin this work, starting with the operators.



Chapter 9

Markov Processes

This lecture begins our study of Markov processes.
Section 9.1 is mainly “ideological”: it formally defines the Markov

property for one-parameter processes, and explains why it is a nat-
ural generalization of both complete determinism and complete sta-
tistical independence.

Section 9.2 introduces the description of Markov processes in
terms of their transition probabilities and proves the existence of
such processes.

9.1 The Correct Line on the Markov Property

The Markov property is the independence of the future from the past, given the
present. Let us be more formal.

Definition 99 (Markov Property) A one-parameter process X is a Markov
process with respect to a filtration F when Xt is adapted to the filtration, and,
for any s > t, Xs is independent of Ft given Xt, Xs |= Ft|Xt. If no filtration is
mentioned, it may be assumed to be the natural one generated by X. If X is also
conditionally stationary, then it is a time-homogeneous (or just homogeneous)
Markov process.

Lemma 100 Let X+
t stand for the collection of Xu, u > t. If X is Markov,

then X+
t |= Ft|Xt.

Proof: See Exercise 9.1. �
There are two routes to the Markov property. One is the path followed by

Markov himself, of desiring to weaken the assumption of strict statistical inde-
pendence between variables to mere conditional independence. In fact, Markov
specifically wanted to show that independence was not a necessary condition for
the law of large numbers to hold, because his arch-enemy claimed that it was,

49
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and used that as grounds for believing in free will and Christianity.1 It turns
out that all the key limit theorems of probability — the weak and strong laws of
large numbers, the central limit theorem, etc. — work perfectly well for Markov
processes, as well as for IID variables.

The other route to the Markov property begins with completely deterministic
systems in physics and dynamics. The state of a deterministic dynamical system
is some variable which fixes the value of all present and future observables.
As a consequence, the present state determines the state at all future times.
However, strictly deterministic systems are rather thin on the ground, so a
natural generalization is to say that the present state determines the distribution
of future states. This is precisely the Markov property.

Remarkably enough, it is possible to represent any one-parameter stochastic
process X as a noisy function of a Markov process Z. The shift operators give
a trivial way of doing this, where the Z process is not just homogeneous but
actually fully deterministic. An equally trivial, but slightly more probabilistic,
approach is to set Zt = X−

t , the complete past up to and including time t. (This
is not necessarily homogeneous.) It turns out that, subject to mild topological
conditions on the space X lives in, there is a unique non-trivial representation
where Zt = ε(X−

t ) for some function ε, Zt is a homogeneous Markov process,
and Xu |= σ({Xt, t ≤ u})|Zt. (See Knight (1975, 1992).) We may explore such
predictive Markovian representations at the end of the course, if time permits.

9.2 Transition Probability Kernels

The most obvious way to specify a Markov process is to say what its transition
probabilities are. That is, we want to know P (Xs ∈ B|Xt = x) for every s > t,
x ∈ Ξ, and B ∈ X . Probability kernels (Definition 30) were invented to let us
do just this.

Definition 101 (Product of Probability Kernels) Let µ and ν be two prob-
ability kernels from Ξ to Ξ. Then their product µν is a kernel from Ξ to Ξ,
defined by

(µν)(x,B) ≡
∫
µ(x, dy)ν(y,B) (9.1)

= (µ⊗ ν)(x,Ξ×B) (9.2)

Intuitively, all the product does is say that the probability of starting at the
point x and landing in the set B is equal the probability of first going to y and
then ending in B, integrated over all intermediate points y. (Strictly speaking,
there is an abuse of notation in Eq. 9.2, since the second kernel in a composition
⊗ should be defined over a product space, here Ξ×Ξ. So suppose we have such a

1I am not making this up. See Basharin et al. (2004) for a nice discussion of the origin of
Markov chains and of Markov’s original, highly elegant, work on them. There is a translation
of Markov’s original paper in an appendix to Howard (1971), and I dare say other places as
well.
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kernel ν′, only ν′((x, y), B) = ν(y,B).) Finally, observe that if µ(x, ·) = δx, the
delta function at x, then (µν)(x,B) = ν(x,B), and similarly that (νµ)(x,B) =
ν(x,B).

Definition 102 For every (t, s) ∈ T × T , s ≥ t, let µt,s be a probability kernel
from Ξ to Ξ. These probability kernels form a transition semi-group when

1. For all t, µt,t(x, ·) = δx.

2. For any t ≤ s ≤ u ∈ T , µt,u = µt,sµs,u.

A transition semi-group for which ∀t ≤ s ∈ T , µt,s = µ0,s−t ≡ µs−t is homoge-
neous.

As with the shift semi-group, this is really a monoid (because µt,t acts as the
identity).

The major theorem is the existence of Markov processes with specified tran-
sition kernels.

Theorem 103 Let µt,s be a transition semi-group and νt a collection of distri-
butions on a Borel space Ξ. If

νs = νtµt,s (9.3)

then there exists a Markov process X such that

∀t, L (Xt) = νt (9.4)
∀t1 ≤ t2 ≤ . . . ≤ tn, L (Xt1 , Xt2 . . . Xtn) = νt1 ⊗ µt1,t2 ⊗ . . .⊗ µtn−1,tn(9.5)

Conversely, if X is a Markov process with values in Ξ, then there exist distri-
butions νt and a transition kernel semi-group µt,s such that Equations 9.4 and
9.3 hold, and

P (Xs ∈ B|Ft) = µt,s a.s. (9.6)

Proof: (From transition kernels to a Markov process.) For any finite set of
times J = {t1, . . . tn} (in ascending order), define a distribution on ΞJ as

νJ ≡ νt1 ⊗ µt1,t2 ⊗ . . .⊗ µtn−1,tn (9.7)

It is easily checked, using point (2) in the definition of a transition kernel semi-
group (Definition 102), that the νJ form a projective family of distributions.
Thus, by the Kolmogorov Extension Theorem (Theorem 29), there exists a
stochastic process whose finite-dimensional distributions are the νJ . Now pick
a J of size n, and two sets, B ∈ Xn−1 and C ∈ X .

P (XJ ∈ B × C) = νJ(B × C) (9.8)
= E [1B×C(XJ)] (9.9)
= E

[
1B(XJ\tn)µtn−1,tn(Xtn−1 , C)

]
(9.10)
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Set Ft to be the natural filtration, σ({Xu, u ≤ s}). If A ∈ Fs for some s ≤ t,
then by the usual generating class arguments we have

P
(
Xt ∈ C,X−

s ∈ A
)

= E [1Aµs,t(Xs, C)] (9.11)
P (Xt ∈ C|Fs) = µs,t(Xs, C) (9.12)

i.e., Xt |= Fs|Xs, as was to be shown.
(From the Markov property to the transition kernels.) From the Markov

property, for any measurable set C ∈ X , P (Xt ∈ C|Fs) is a function of Xs

alone. So define the kernel µs,t by µs,t(x,C) = P (Xt ∈ C|Xs = x), with a pos-
sible measure-0 exceptional set from (ultimately) the Radon-Nikodym theorem.
(The fact that Ξ is Borel guarantees the existence of a regular version of this
conditional probability.) We get the semi-group property for these kernels thus:
pick any three times t ≤ s ≤ u, and a measurable set C ⊆ Ξ. Then

µt,u(Xt, C) = P (Xu ∈ C|Ft) (9.13)
= P (Xu ∈ C,Xs ∈ Ξ|Ft) (9.14)
= (µt,s ⊗ µs,u)(Xt,Ξ× C) (9.15)
= (µt,sµs,u)(Xt, C) (9.16)

The argument to get Eq. 9.3 is similar. �
Note: For one-sided discrete-parameter processes, we could use the Ionescu-

Tulcea Extension Theorem 33 to go from a transition kernel semi-group to a
Markov process, even if Ξ is not a Borel space.

Definition 104 Let X be a homogeneous Markov process with transition ker-
nels µt. A distribution ν on Ξ is invariant when, ∀t, ν = νµt, i.e.,

(νµt)(B) ≡
∫
ν(dx)µt(x,B) (9.17)

= ν(B) (9.18)

ν is also called an equilibrium distribution.

The term “equilibrium” comes from statistical physics, where however its
meaning is a bit more strict, in that “detailed balance” must also be satisified:
for any two sets A,B ∈ X ,∫

ν(dx)1Aµt(x,B) =
∫
ν(dx)1Bµt(x,A) (9.19)

i.e., the flow of probability from A to B must equal the flow in the opposite
direction. Much confusion has resulted from neglecting the distinction between
equilibrium in the strict sense of detailed balance and equilibrium in the weaker
sense of invariance.

Theorem 105 Suppose X is homogeneous, and L (Xt) = ν, where ν is an
invariant distribution. Then the process X+

t is stationary.

Proof: Exercise 9.4. �



CHAPTER 9. MARKOV PROCESSES 53

9.3 Exercises

Exercise 9.1 Prove Lemma 100.

Exercise 9.2 Show that if X is a Markov process, then, for any t ∈ T , X+
t is

a one-sided Markov process.

Exercise 9.3 Let X be a continuous-parameter Markov process, and tn a count-
able set of strictly increasing indices. Set Yn = Xtn . Is Yn a Markov process?
If X is homogeneous, is Y also homogeneous? Does either answer change if
tn = nt for some constant interval t > 0?

Exercise 9.4 Prove Theorem 105.



Chapter 10

Alternate Characterizations
of Markov Processes

This lecture introduces two ways of characterizing Markov pro-
cesses other than through their transition probabilities.

Section 10.1 addresses a question raised in the last class, about
when being Markovian relative to one filtration implies being Markov
relative to another.

Section 10.2 describes discrete-parameter Markov processes as
transformations of sequences of IID uniform variables.

Section 10.3 describes Markov processes in terms of measure-
preserving transformations (Markov operators), and shows this is
equivalent to the transition-probability view.

10.1 The Markov Property Under Multiple Fil-
trations

In the last lecture, we defined what it is for a process to be Markovian relative
to a given filtration Ft. The question came up in class of when knowing that
X Markov with respect to one filtration Ft will allow us to deduce that it is
Markov with respect to another, say Gt.

To begin with, let’s introduce a little notation.

Definition 106 (Natural Filtration) The natural filtration for a stochastic
process X is FXt ≡ σ({Xu, u ≤ t}). Obviously, every process X is adapted to
FXt .

Definition 107 (Comparison of Filtrations) A filtration Gt is finer than or
more refined than or a refinement of Ft, Ft ≺ Gt, if, for all t, Ft ⊆ Gt, and
at least sometimes the inequality is strict. Ft is coarser or less fine than Gt. If
Ft ≺ Gt or Ft = Gt, we write Ft � Gt.

54
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Lemma 108 If X is adapted to Gt, then FXt � Gt.

Proof: For each t, Xt is Gt measurable. But FXt is, by construction, the
smallest σ-algebra with respect to which Xt is measurable, so, for every t,
FXt ⊆ Gt, and the result follows. �

Theorem 109 If X is Markovian with respect to Gt, then it is Markovian with
respect to any coarser filtration to which it is adapted, and in particular with
respect to its natural filtration.

Proof: Use the smoothing property of conditional expectations: For any two
σ-fields F ⊂ G and random variable Y , E [Y |F ] = E [E [Y |G] |F ] a.s. So, if Ft is
coarser than Gt, and X is Markovian with respect to the latter, for any function
f ∈ L1 and time s > t,

E [f(Xs)|Ft] = E [E [f(Xs)|Gt] |Ft] a.s. (10.1)
= E [E [f(Xs)|Xt] |Ft] (10.2)
= E [f(Xs)|Xt] (10.3)

where the last line uses the facts that (i) E [f(Xs)|Xt] is a function Xt, (ii) X
is adapted to Ft, so Xt is Ft-measurable, and (iii) if Y is F-measurable, then
E [Y |F ] = Y . Since this holds for all f ∈ L1, it holds in particular for 1A, where
A is any measurable set, and this established the conditional independence which
constitutes the Markov property. Since (Lemma 108) the natural filtration is
the coarsest filtration to which X is adapted, the remainder of the theorem
follows. �

The converse is false, as the following example shows.

Example 110 We revert to the symbolic dynamics of the logistic map, Ex-
amples 39 and 40. Let S1 be distributed on the unit interval with density
1/π

√
s(1− s), and let Sn = 4Sn−1(1 − Sn−1). Finally, let Xn = 1[0.5,1.0](Sn).

It can be shown that the Xn are a Markov process with respect to their natural
filtration; in fact, with respect to that filtration, they are independent and iden-
tically distributed Bernoulli variables with probability of success 1/2. However,
P
(
Xn+1|FSn , Xn

)
6= P (Xn+1|Xn), since Xn+1 is a deterministic function of Sn.

But, clearly, FSn is a refinement of FXn .

The issue can be illustrated with graphical models (Spirtes et al., 2001;
Pearl, 1988). A discrete-time Markov process looks like Figure 10.1a. Xn blocks
all the pasts from the past to the future (in the diagram, from left to right),
so it produces the desired conditional independence. Now let’s add another
variable which actually drives the Xn (Figure 10.1b). If we can’t measure the
Sn variables, just the Xn ones, then it can still be the case that we’ve got the
conditional independence among what we can see. But if we can see Xn as
well as Sn — which is what refining the filtration amounts to — then simply
conditioning on Xn does not block all the paths from the past of X to its future,
and, generally speaking, we will lose the Markov property. Note that knowing
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a

X1 X2 X3 ...

b

S1

X1

S2

X2

S3

X3

...

...

Figure 10.1: (a) Graphical model for a Markov chain. (b) Refining the filtration,
say by conditioning on an additional random variable, can lead to a failure of
the Markov property.

Sn does block all paths from past to future — so this remains a hidden Markov
model. Markovian representation theory is about finding conditions under which
we can get things to look like Figure 10.1b, even if we can’t get them to look
like Figure 10.1a.

10.2 Markov Sequences as Transduced Noise

A key theorem says that discrete-time Markov processes can be viewed as the
result of applying a certain kind of filter to pure noise.

Theorem 111 Let X be a one-sided discrete-parameter process taking values in
a Borel space Ξ. X is Markov iff there are measurable functions fn : Ξ×[0, 1] 7→
Ξ such that, for IID random variables Zn ∼ U(0, 1), all independent of X1,
Xn+1 = fn(Xn, Zn) almost surely. X is homogeneous iff fn = f for all n.

Proof: Kallenberg, Proposition 8.6, p. 145. Notice that, in order to get the
“only if” direction to work, Kallenberg invokes what we have as Proposition 26,
which is where the assumptions that Ξ is a Borel space comes in. You should
verify that the “if” direction does not require this assumption. �

Let us stick to the homogeneous case, and consider the function f in some-
what more detail.

In engineering or computer science, a transducer is an apparatus — really, a
function — which takes a stream of inputs of one kind and produces a stream
of outputs of another kind.

Definition 112 (Transducer) A (deterministic) transducer is a sextuple 〈Σ,Υ,Ξ, f, h, s0〉
where Σ, Υ and Ξ are, respectively, the state, input and output spaces, f : Σ×
Ξ 7→ Σ is the state update function or state transition function, h : Σ×Υ 7→ Ξ
is the measurement or observation function, and s0 ∈ Σ is the starting state.
(We shall assume both f and h are always measurable.) If h does not depend
on its state argument, the transducer is memoryless. If f does not depend on
its state argument, the transducer is without after-effect.
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It should be clear that if a memoryless transducer is presented with IID
inputs, its output will be IID as well. What Theorem 111 says is that, if
we have a transducer with memory (so that h depends on the state) but is
without after-effect (so that f does not depend on the state), IID inputs will
produce Markovian outputs, and conversely any reasonable Markov process can
be represented in this way. Notice that if a transducer is without memory,
we can replace it with an equivalent with a single state, and if it is without
after-effect, we can identify Σ and Ξ.

Notice also that the two functions f and h determine a transition func-
tion where we use the input to update the state: g : Σ × Υ 7→ Σ, where
g(s, y) = f(s, h(s, y)). Thus, if the inputs are IID and uniformly distributed,
then (Theorem 111) the successive states of the transducer are always Marko-
vian. The question of which processes can be produced by noise-driven transduc-
ers is this intimately bound up with the question of Markovian representations.
While, as mentioned, quite general stochastic processes can be put in this form
(Knight, 1975, 1992), it is not necessarily possible to do this with a finite in-
ternal state space Σ, even when Ξ is finite. The distinction between finite and
infinite Σ is crucial to theoretical computer science, and we might come back to
it later, but

Two issues suggest themselves in connection with this material. One is
whether, given a two-sided process, we can pull the same trick, and represent a
Markovian X as a transformation of an IID sequence extending into the infinite
past. (Remember that the theorem is for one-sided processes, and starts with
an initial X1.) This is more subtle than it seems at first glance, or even than it
seemed to Norbert Wiener when he first posed the question (Wiener, 1958); for
a detailed discussion, see Rosenblatt (1971), and, for recent set of applications,
Wu (2005). The other question is whether the same trick can be pulled in
continuous time; here much less is known.

10.3 Time-Evolution (Markov) Operators

Let’s look again at the evolution of the one-dimensional distributions for a
Markov process:

νs = νtµt,s (10.4)

νs(B) =
∫
νt(dx)µt,s(x,B) (10.5)

The transition kernels define linear operators taking distributions on Ξ to dis-
tributions on Ξ. This can be abstracted.

Definition 113 (Markov Operator) Take any probability space Ξ,X , µ, and
let L1 be as usual the class of all µ-integrable generalized functions on Ξ. A
linear operator P : L1 7→ L1 is a Markov operator when:

1. If f ≥ 0 (a.e. µ), Pf ≥ 0 (a.e. µ).
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2. If f ≤M (a.e. µ), Pf ≤M (a.e. µ).

3. P1Ξ = 1Ξ.

4. If fn ↓ 0, then Pfn ↓ 0.

Lemma 114 Every probability kernel κ from Ξ to Ξ induces a Markov operator
K,

Kf(x) =
∫
κ(x, dy)f(y) (10.6)

and conversely every operator defines a transition probability kernel,

κ(x,B) = K1B(x) (10.7)

Proof: Exercise 10.1. �
Clearly, if κ is part of a transition kernel semi-group, then the collection of

induced Markov operators also forms a semi-group.

Theorem 115 (Markov operator semi-groups and Markov processes)
Let X be a Markov process with transition kernels µt,s, and let Kt,s be the cor-
responding semi-group of operators. Then for any f ∈ L1,

E [f(Xs)|Ft] = (Kt,sf)(Xt) (10.8)

Conversely, let X be any stochastic process, and let Kt,s be a semi-group of
Markov operators such that Equation 10.8 is valid (a.s.). Then X is a Markov
process.

Proof: Exercise 10.2. �
Remark. The proof works because the expectations of all L1 functions to-

gether determine a probability measure. If we knew of another collection of
functions which also sufficed to determine a measure, then linear operators on
that collection would work just as well, in the theorem, as do the Markov op-
erators, which by definition apply to all of L1. In particular, it is sometimes
possible to define operators only on much smaller, more restricted collections of
functions, which can have technical advantages. See Ethier and Kurtz (1986,
ch. 4, sec. 1) for details.

The next two lemmas will prove useful in establishing asymptotic results.

Lemma 116 (Markov Operators are Contractions) For any Markov op-
erator P and f ∈ L1,

‖Pf‖ ≤ ‖f‖ (10.9)
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Proof (after Lasota and Mackey (1994, prop. 3.1.1, pp. 38–39)): First, notice
that (Pf(x))+ ≤ Pf+(x), because (Pf(x))+ = (Pf+ − Pf−)+ = max (0, Pf+ − Pf−) ≤
max (0, Pf+) = Pf+. Similarly (Pf(x))− ≤ Pf−(x). Therefore |Pf | ≤ P |f |,
and then the statement follows by integration. �

Lemma 117 For any Markov operator, and any f, g ∈ L1, ‖Pnf − Png‖ is
non-increasing.

Proof: By linearity, ‖Pnf − Png‖ = ‖Pn(f − g)‖. By the definition of Pn,
‖Pn(f − g)‖ = ‖PPn−1(f − g)‖. By the contraction property (Lemma 116),
‖PPn−1(f − g)‖ ≤ ‖Pn−1(f − g)‖ = ‖Pn−1f − Pn−1g‖ (by linearity again). �

Theorem 118 A probability measure ν is invariant for a homogeneous Markov
process iff it is a fixed point of all the transition operators, νKt = ν.

Proof: Clear from the definitions! �

10.4 Exercises

Exercise 10.1 Prove Lemma 114. Hint: you will want to use the fact that
1B ∈ L1 for all measurable sets B.

Exercise 10.2 Prove Theorem 115. Hint: in showing that a collection of op-
erators determines a Markov process, try using mathematical induction on the
finite-dimensional distributions.
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Markov Examples

Section 11.1 finds the transition kernels for the Wiener process,
as an example of how to manipulate such things.

Section 11.2 looks at the evolution of densities under the action
of the logistic map; this shows how deterministic dynamical systems
can be brought under the sway of the theory we’ve developed for
Markov processes.

11.1 Transition Kernels for the Wiener Process

We have previously defined the Wiener process (Examples 38 and 78) as the
real-valued process on R+ with the following properties:

1. W (0) = 0;

2. For any three times t1 ≤ t2 ≤ t3, W (t3) −W (t2) |= W (t2) −W (t1) (inde-
pendent increments);

3. For any two times t1 ≤ t2, W (t2) − W (t1) ∼ N (0, t2 − t1) (Gaussian
increments);

4. Continuous sample paths (in the sense of Definition 72).

Here we will use the Gaussian increment property to construct a transition
kernel, and then use the independent increment property to show that these
keernels satisfy the Chapman-Kolmogorov equation, and hence that there exist
Markov processes with the desired finite-dimensional distributions.
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First, notice that the Gaussian increments property gives us the transition
probabilities:

P (W (t2) ∈ B|W (t1) = w1) = P (W (t2)−W (t1) ∈ B − w1) (11.1)

=
∫
B−w1

du
1√

2π(t2 − t1)
e
− u2

2(t2−t1) (11.2)

=
∫
B

dw2
1√

2π(t2 − t1)
e
− (w2−w1)2

2(t2−t1) (11.3)

≡ µt1,t2(w1, B) (11.4)

To show that W (t) is a Markov process, we must show that, for any three
times t1 ≤ t2 ≤ t3, µt1,t2µt2,t3 = µt1,t3 .

Notice that W (t3)−W (t1) = (W (t3)−W (t2)) + (W (t2)−W (t1)). Because
increments are independent, then, W (t3) −W (t1) is the sum of two indepen-
dent random variables, W (t3)−W (t2) and W (t2)−W (t1). The distribution of
W (t3) −W (t1) is then the convolution of distributions of W (t3) −W (t2) and
W (t2)−W (t1). Those areN (0, t3−t2) andN (0, t2−t1) respectively. The convo-
lution of two Gaussian distributions is a third Gaussian, summing their parame-
ters, so according to this argument, we must have W (t3)−W (t1) ∼ N (0, t3−t1).
But this is precisely what we should have, by the Gaussian-increments property.
Since the trick we used above to get the transition kernel from the increment
distribution can be applied again, we conclude that µt1,t2µt2,t3 = µt1,t3 and the
Chapman-Kolmogorov property is satisfied; therefore (Theorem 103), W (t) is a
Markov process (with respect to its natural filtration).

To see that W (t) has, or can be made to have, continuous sample paths,
invoke Theorem 94.

11.2 Probability Densities in the Logistic Map

Let’s revisit the first part of Exercise 5.3, from the point of view of what we now
know about Markov processes. The exercise asks us to show that the density

1

π
√
x(1−x)

is invariant under the action of the logistic map with a = 4.

Let’s write the mapping as F (x) = 4x (1− x). Solving a simple quadratic
equation gives us the fact that F−1 (x) is the set

{
1
2

(
1−

√
1− x

)
, 1

2

(
1 +

√
1− x

)}
.

Notice, for later use, that the two solutions add up to 1. Notice also that
F−1 ([0, x]) =

[
0, 1

2

(
1−

√
1− x

)]
∪
[
1
2

(
1 +

√
1− x

)
, 1
]
. Now we consider P (Xn+1 ≤ x),



CHAPTER 11. MARKOV EXAMPLES 62

the cumulative distribution function of Xn+1.

P (Xn+1 ≤ x)
= P (Xn+1 ∈ [0, x]) (11.5)
= P

(
Xn ∈ F−1 ([0, x])

)
(11.6)

= P
(
Xn ∈

[
0,

1
2
(
1−

√
1− x

)]
∪
[
1
2
(
1 +

√
1− x

)
, 1
])

(11.7)

=
∫ 1

2 (1−
√

1−x)

0

ρn (y) dy +
∫ 1

1
2 (1+

√
1−x)

ρn (y) dy (11.8)

where ρn is the density of Xn. So we have an integral equation for the evolution
of the density,∫ x

0

ρn+1 (y) dy =
∫ 1

2 (1−
√

1−x)

0

ρn (y) dy +
∫ 1

1
2 (1+

√
1−x)

ρn (y) dy (11.9)

This sort of integral equation is complicated to solve directly. Instead, take
the derivative of both sides with respect to x; we can do this through the
fundamental theorem of calculus. On the left hand side, this will just give
ρn+1 (x), the density we want.

ρn+1 (x) (11.10)

=
d

dx

∫ 1
2 (1−

√
1−x)

0

ρn (y) dy +
d

dx

∫ 1

1
2 (1+

√
1−x)

ρn (y) dy

= ρn

(
1
2
(
1−

√
1− x

)) d

dx

(
1
2
(
1−

√
1− x

))
(11.11)

−ρn
(

1
2
(
1 +

√
1− x

)) d

dx

(
1
2
(
1 +

√
1− x

))
=

1
4
√

1− x

(
ρn

(
1
2
(
1−

√
1− x

))
+ ρn

(
1
2
(
1 +

√
1− x

)))
(11.12)

Notice that this defines a linear operator taking densities to densities. (You
should verify the linearity.) In fact, this is a Markov operator, by the terms of
Definition 113. Markov operators of this sort, derived from deterministic maps,
are called Perron-Frobenius or Frobenius-Perron operators, and accordingly de-
noted by P . Thus an invariant density is a ρ∗ such that ρ∗ = Pρ∗. All the
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problem asks us to do is to verify that 1

π
√
x(1−x)

is such a solution.

ρ∗
(

1
2
(
1−

√
1− x

))
(11.13)

=
1
π

(
1
2
(
1−

√
1− x

)(
1−

(
1
2
(
1−

√
1− x

))))−1/2

=
1
π

(
1
2
(
1−

√
1− x

) 1
2
(
1 +

√
1− x

))−1/2

(11.14)

=
2

π
√
x

(11.15)

Since ρ∗ (x) = ρ∗ (1− x), it follows that

Pρ∗ = 2
1

4
√

1− x
ρ∗
(

1
2
(
1−

√
1− x

))
(11.16)

=
1

π
√
x (1− x)

(11.17)

= ρ∗ (11.18)

as desired.
By Lemma 117, for any distribution ρ, ‖Pnρ − Pnρ∗‖ is a non-increasing

function of n. However, Pnρ∗ = ρ∗, so the iterates of any distribution, under
the map, approach the invariant distribution monotonically. It would be very
handy if we could show that any initial distribution ρ eventually converged on
ρ∗, i.e. that ‖Pnρ − ρ∗‖ → 0. When we come to ergodic theory, we will see
conditions under which such distributional convergence holds, as it does for the
logistic map, and learn how such convergence in distribution is connected to
both pathwise convergence properties, and to the decay of correlations.

11.3 Exercises

Exercise 11.1 (Brownian Motion with Constant Drift) Consider a pro-
cess X(0) which, like the Wiener process, has X(0) = 0 and independent in-
crements, but where X(t2)−X(t1) ∼ N (a(t2 − t1), σ2(t2 − t1)). a is called the
drift rate and σ2 the diffusion constant. Show that X(t) is a Markov process,
following the argument for the standard Wiener process (a = 0, σ2 = 1) above.
Do such processes have continuous modifications for all (finite) choices of a and
σ2? If so, prove it; if not, give at least one counter-example.

Exercise 11.2 (Perron-Frobenius Operators) Verify that P defined in the
section on the logistic map above is a Markov operator.



Chapter 12

Generators of Markov
Processes

This lecture is concerned with the infinitessimal generator of a
Markov process, and the sense in which we are able to write the evo-
lution operators of a homogeneous Markov process as exponentials
of their generator.

Take our favorite continuous-time homogeneous Markov process, and con-
sider its semi-group of time-evolution operators Kt. They obey the relationship
Kt+s = KtKs. That is, multiplication of the operators corresponds to addition
of their parameters, and vice versa. This is reminiscent of the exponential func-
tions on the reals, where, for any k ∈ R, k(t+s) = ktks. In the discrete-parameter
case, in fact, Kt = (K1)

t, where integer powers of operators are defined in the
obvious way, through iterated composition, i.e., K2f = K ◦ (Kf). It would
be nice if we could extend this analogy to continuous-parameter Markov pro-
cesses. One approach which suggests itself is to notice that, for any k, there’s
another real number g such that kt = etg, and that etg has a nice representation
involving integer powers of g:

etg =
∞∑
i=0

(tg)i

i!

The strategy this suggests is to look for some other operator G such that

Kt = etG ≡
∞∑
i=0

tiGi

i!

Such an operator G is called the generator of the process, and the purpose of this
section is to work out the conditions under which this analogy can be carried
through.

In the exponential function case, we notice that g can be extracted by taking
the derivative at zero: d

dte
tg
∣∣
t=0

= g. This suggests the following definition.
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Definition 119 (Infinitessimal Generator) Let Kt be a continuous-parameter
semi-group of homogeneous Markov operators. Say that a function f ∈ L1 be-
longs to Dom(G) if the limit

lim
h↓0

Khf −K0f

h
≡ Gf (12.1)

exists in an L1-norm sense, i.e., there exists some element of L1, which we shall
call Gf , such that

lim
h↓0

∥∥∥∥Khf −K0f

h
−Gf

∥∥∥∥ = 0 (12.2)

The operator G defined through Eq. 12.1 is called the infinitessimal generator of
the semi-group Kt.

Lemma 120 G is a linear operator.

Proof: Exercise 12.1. �

Lemma 121 If µ is an invariant distribution of the semi-group Kt, then, ∀f ∈
Dom(G), µGf = 0.

Proof: Since µ is invariant, µKt = µ for all t, hence µKhf = µf for all
h ≥ 0 and all f . Since taking expectations with respect to a measure is a linear
operator, µ(Khf − f) = 0, and obviously then µGf = 0. �

Remark: The converse statement, that if µGf = 0 for all f , then µ is an
invariant measure, requires extra conditions.

You will usually see the definition of the generator written with f instead
of K0f , but I chose this way of doing it to emphasize that G is, basically,
the derivative at zero, that G = dK/dt|t=0. Recall, from calculus, that the
exponential function can kt be defined by the fact that d

dtk
t ∝ kt (and e can

be defined as the k such that the constant of proportionality is 1). As part of
our program, we will want to extend this differential point of view. The next
lemma builds towards it, by showing that if f ∈ Dom(G), then Ktf is too.

Lemma 122 If G is the generator of the semi-group Kt, and f is in the domain
of G, then Kt and G commute, for all t:

KtGf = lim
t′→t

Kt′f −Ktf

t′ − t
(12.3)

= GKtf (12.4)

Proof: Exercise 12.2. �
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Definition 123 (Time Derivative in Function Space) For every t ∈ T ,
let u(t, x) be a function in L1. When the limit

u′(t0, x) = lim
t→t0

u(t, x)− u(t0, x)
t− t0

(12.5)

exists in the L1 sense, then we say that u′(t0) is the time derivative or strong
derivative of u(t) at t0.

Lemma 124 Let Kt be a homogeneous semi-group of Markov operators with
generator G. Let u(t) = Ktf for some f ∈ Dom(G). Then u(t) is differentiable
at t = 0, and its derivative there is Gf .

Proof: Obvious from the definitions. �

Theorem 125 Let Kt be a homogeneous semi-group of Markov operators with
generator G, and let u(t, x) = (Ktf)(x), for fixed f ∈ Dom(G). Then u′(t)
exists for all t, and is equal to Gu(t).

Proof: Since f ∈ Dom(G), KtGf exists, but then, by Lemma 122, KtGf =
GKtf = Gu(t), so u(t) ∈ Dom(G) for all t. Now let’s consider the time deriva-
tive of u(t) at some arbitrary t0, working from above:

(u(t)− u(t0)
t− t0

=
Kt−t0u(t0)− u(t0)

t− t0
(12.6)

=
Khu(t0)− u(t0)

h
(12.7)

Taking the limit as h ↓ 0, we get that u′(t0) = Gu(t0), which exists, because
u(t0) ∈ Dom(G). �

Corollary 126 (Initial Value Problems in Function Space) u(t) = Ktf ,
f ∈ Dom(G), solves the initial value problem u(0) = f , u′(t) = Gu(t).

Proof: Immediate from the theorem. �
Remark: Such initial value problems are sometimes called Cauchy problems,

especially when G takes the form of a differential operator.
We are now almost ready to state the sense in which Kt is the result of

exponentiating G. This is given by the remarkable Hille-Yosida theorem, which
in turn involves a family of operators related to the time-evolution operators,
the “resolvents”, again built by analogy to the exponential functions. Notice
that, for any positive constant λ,∫ ∞

t=0

e−λtetgdt =
1

λ− g
(12.8)

from which we could recover g. The left-hand side is just the Laplace transform
of etg.
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Definition 127 (Continuous Functions Vanishing at Infinity) Let Ξ be
a locally compact and separable metric space. The class of functions C0 will
consist of functions f : Ξ 7→ R which are continuous and for which x → ∞
implies f(x) → 0.

Definition 128 (Resolvents) Given a continuous-parameter time-homogeneous
Markov semi-group Kt, for each λ > 0, the resolvent operator or resolvent Rλ
is the “Laplace transform” of Kt: for every f ∈ C0,

(Rλf)(x) ≡
∫ ∞

t=0

e−λt(Ktf)(x)dt (12.9)

Remark 1: The name “resolvent”, like some of the other ideas an terminol-
ogy of Markov operators, comes from the theory of integral equations; invariant
densities (when they exist) are solutions of homogeneous linear Fredholm in-
tegral equations of the second kind. Rather than pursue this analogy, or even
explain what that means, I will refer you to the classic treatment of integral
equations by Courant and Hilbert (1953, ch. 3), which everyone else seems to
follow very closely.

Remark 2: When the function f is a value (loss, benefit, utility, ...) function,
(Ktf)(x) is the expected value at time t when starting the process in state x.
(Rλf)(x) can be thought of as the net present expected value when starting at
x and applying a discount rate λ.

Definition 129 (Yosida Approximation of Operators) The Yosida approx-
imation to a semi-group Kt with generator G is given by

Kλ
t ≡ etG

λ

(12.10)
Gλ ≡ λGRλ = λ(λRλ − I) (12.11)

The domain of Gλ contains all C0 functions, not just those in Dom(G).

Theorem 130 (Hille-Yosida Theorem) Let G be a linear operator on some
linear subspace D of L1. G is the generator of a continuous semi-group of
contractions Kt if and only if

1. D is dense in L1;

2. For every f ∈ L1 and λ > 0, there exists a unique g ∈ D such that
λg −Gg = f ;

3. For every g ∈ D and positive λ, ‖λg −Gg‖ ≥ λ‖g‖.

Under these conditions, the resolvents of Kt are given by Rλ = (λ−G)−1, and
Kt is the limit of the Yosida approximations as λ→∞:

Ktf = lim
λ→∞

Kλ
t f, ∀f ∈ L1 (12.12)

Proof: See Kallenberg, Theorem 19.11. �



CHAPTER 12. GENERATORS 68

12.1 Exercises

Exercise 12.1 Prove Lemma 120.

Exercise 12.2 Prove Lemma 122.

a Prove Equation 12.3, restricted to t′ ↓ t instead of t′ → t. Hint: Write Tt
in terms of an integral over the corresponding transition kernel, and find
a reason to exchange integration and limits.

b Show that the limit as t′ ↑ t also exists, and is equal to the limit from
above. Hint: Re-write the quotient inside the limit so it only involves
positive time-differences.

c Prove Equation 12.4.



Chapter 13

The Strong Markov
Property and Martingale
Problems

Section 13.1 introduces the strong Markov property — indepen-
dence of the past and future conditional on the state at random
(optional) times.

Section 13.2 describes “the martingale problem for Markov pro-
cesses”, explains why it would be nice to solve the martingale prob-
lem, and how solutions are strong Markov processes.

13.1 The Strong Markov Property

A process is Markovian, with respect to a filtration F , if for any fixed time t,
the future of the process is independent of Ft given Xt. This is not necessarily
the case for a random time τ , because there could be subtle linkages between
the random time and the evolution of the process. If these can be ruled out, we
have a strong Markov process.

Definition 131 (Strongly Markovian at a Random Time) Let X be a Markov
process with respect to a filtration F , with transition kernels µt,s and evolution
operators Kt,s. Let τ be an F-optional time which is almost surely finite. Then
X is strongly Markovian at τ when either of the two following (equivalent)
conditions hold

P (Xt+τ ∈ B|Fτ ) = µτ,τ+t(Xτ , B) (13.1)
E [f(Xτ+t)|Fτ ] = (Kτ,τ+tf)(Xτ ) (13.2)

for all t ≥ 0, B ∈ X and bounded measurable functions f .
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Definition 132 (Strong Markov Property) If X is Markovian with respect
to F , and strongly Markovian at every F-optional time which is almost surely
finite, then it is a strong Markov process with respect to F .

If the index set T is discrete, then the strong Markov property is implied
by the ordinary Markov property (Definition 99). If time is continuous, this is
not necessarily the case. It is generally true that, if X is Markov and τ takes
on only countably many values, X is strongly Markov at τ (Exercise 13.1). We
would like to find conditions under which a process is strongly Markovian for
all optional times, however.

13.2 Martingale Problems

One approach to getting strong Markov processes is through martingales, and
more specifically through what is known as the martingale problem.

Notice the following consequence of Theorem 125:

Ktf(x)− f(x) =
∫ t

0

KsGf(x)ds (13.3)

for any t ≥ 0 and f ∈ Dom(G). The relationship between Ktf and the condi-
tional expectation of f suggests the following definition.

Definition 133 (Martingale Problem) Let Ξ be a Polish space, D a class
of bounded, continuous, real-valued functions on Ξ, and G an operator from D
to bounded, measurable functions on Ξ. A Ξ-valued stochastic process on R+ is
a solution to the martingale problem for G and D if, for all f ∈ D,

f(Xt)−
∫ t

0

Gf(Xs)ds (13.4)

is a martingale with respect to FX , the natural filtration of X.

Proposition 134 Suppose X is a cadlag solution to the martingale problem
for G,D. Then for any f ∈ D, the stochastic process given by Eq. 13.4 is also
cadlag.

Proof: Follows from the assumption that f is continuous. �

Lemma 135 X is a solution to the martingale problem for G,D if and only if,
for all t, s ≥ 0,

E
[
f(Xt+s)|FXt

]
−E

[∫ t+s

t

Gf(Xu)du|FXt
]

= f(Xt) (13.5)
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Proof: Take the definition of a martingale and re-arrange the terms in Eq.
13.4. �

Martingale problems are important because of the two following theorems
(which can both be refined considerably).

Theorem 136 (Markov Processes Solve Martingale Problems) Let X be
a homogeneous Markov process with generator G and cadlag sample paths, and
let D be the continuous functions in Dom(G). Then X solves the martingale
problem for G,D.

Proof: Exercise 13.2. �

Theorem 137 (Solutions to the Martingale Problem are Strongly Markovian)
Suppose that for each x ∈ Ξ, there is a unique cadlag solution to the martingale
problem for G,D such that X0 = x. Then the collection of these solutions is a
homogeneous strong Markov family X, and the generator is equal to G on D.

Proof: Exercise 13.3. �
The main use of Theorem 136 is that it lets us prove convergence of some

functions of Markov processes, by showing that they can be cast into the form of
Eq. 13.4, and then applying the martingale convergence devices. The other use
is in conjunction with Theorem 137. We will often want to show that a sequence
of Markov processes converges on a limit which is, itself, a Markov process. One
approach is to show that the terms in the sequence solve martingale problems
(via Theorem 136), argue that then the limiting process does too, and finally
invoke Theorem 137 to argue that the limiting process must itself be strongly
Markovian. This is often much easier than showing directly that the limiting
process is strongly Markovian. Theorem 137 itself is often a convenient way of
showing that the strong Markov property holds.

13.3 Exercises

Exercise 13.1 (Strongly Markov at Discrete Times) Let X be a homo-
geneous Markov process with respect to a filtration F and τ be an F-optional
time. Prove that if P (τ <∞) = 1, and τ takes on only countably many values,
then X is strongly Markovian at τ . (Note: the requirement that X be homoge-
neous can be lifted, but requires some more technical machinery I want to avoid.)

Exercise 13.2 (Markovian Solutions of the Martingale Problem) Prove
Theorem 136. Hints: Use Lemma 135, bounded convergence, and Theorem 125.

Exercise 13.3 (Martingale Solutions are Strongly Markovian) Prove The-
orem 137. Hint: use the Optional Sampling Theorem (from 36-752, or from
chapter 7 of Kallenberg).



Chapter 14

Feller Processes

Section 14.1 fulfills the demand, made last time, for an example
of a Markov process which is not strongly Markovian.

Section 14.2 makes explicit the idea that the transition kernels
of a Markov process induce a kernel over sample paths, mostly to
fix notation for later use.

Section 14.3 defines Feller processes, which link the cadlag and
strong Markov properties.

14.1 An Example of a Markov Process Which Is
Not Strongly Markovian

This is taken from Fristedt and Gray (1997, pp. 626–627).

Example 138 We will construct an R2-valued Markov process on [0,∞) which
is not strongly Markovian. Begin by defining the following map from R to R2:

f(w) =

 (w, 0) w ≤ 0
(sinw, 1− cosw) 0 < w < 2π
(w − 2π, 0) w ≥ 2π

(14.1)

When w is less than zero or above 2π, f(w) moves along the x axis of the plane;
in between, it moves along a circle of radius 1, centered at (0, 1), which it enters
and leaves at the origin. Notice that f is invertible everywhere except at the
origin, which is ambiguous between w = 0 and w = 2π.

Let X(t) = f(W (t) + π), where W (t) is a standard Wiener process. At
all t, P (W (t) + π = 0) = P (W (t) + π = 2π) = 0, so, with probability 1, X(t)
can be inverted to get W (t). Since W (t) is a Markov process, it follows that
P (X(t+ h) ∈ B|X(t) = x) = P

(
X(t+ h) ∈ B|FXt

)
almost surely, i.e., X is

Markov. Now consider τ = inftX(t) = (0, 0), the hitting time of the origin.
This is clearly an FX-optional time, and equally clearly almost surely finite,
because, with probability 1, W (t) will leave the interval (−π, π) within a finite
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time. But, equally clearly, the future behavior of X will be very different if it hits
the origin because W = π or because W = −π, which cannot be determined just
from X. Hence, there is at least one optional time at which X is not strongly
Markovian, so X is not a strong Markov process.

14.2 Markov Families

We have been fairly cavalier about the idea of a Markov process having a par-
ticular initial state or initial distribution, basically relying on our familiarity
with these ideas from elementary courses on stochastic processes. For future
purposes, however, it is helpful to bring this notions formally within our general
framework, and to fix some notation.

Definition 139 (Initial Distribution, Initial State) Let Ξ be a Borel space
with σ-field X , T be a one-sided index set, and µt,s be a collection of Markovian
transition kernels on Ξ. Then the Markov process with initial distribution ν,
Xν , is the Markov process whose finite-dimensional distributions are given by
the action of µt,s on ν. That is, for all 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn,

Xν(0), Xν(t1), Xν(t2), . . . Xν(tn) ∼ ν ⊗ µ0,t1 ⊗ µt1,t2 ⊗ . . .⊗ µtn−1,tn(14.2)

If ν = δ(x − a), the delta distribution at a, then we write Xa and call it the
Markov process with initial state a.

The existence of processes with given initial distributions and initial states
is a trivial consequence of Theorem 103, our general existence result for Markov
processes.

Lemma 140 For every initial state x, there is a probability distribution Px on
ΞT ,X T . The function Px(A) : Ξ×X T → [0, 1] is a probability kernel.

Proof: The initial state fixes all the finite-dimensional distributions, so the
existence of the probability distribution follows from Theorem 23. The fact
that Px(A) is a kernel is a straightforward application of the definition of kernels
(Definition 30). �

Definition 141 The Markov family corresponding to a given set of transition
kernels µt,s is the collection of all Px.

That is, rather than thinking of a different stochastic process for each initial
state, we can simply think of different distributions over the path space ΞT .
This suggests the following definition.

Definition 142 For a given initial distribution ν on Ξ, we define a distribution
on the paths in a Markov family as, ∀A ∈ X T ,

Pν(A) ≡
∫

Ξ

Px(A)ν(dx) (14.3)
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In physical contexts, we sometimes refer to distributions ν as mixed states,
as opposed to the pure states x, because the path-space distributions induced by
the former are mixtures of the distributions induced by the latter. You should
check that the distribution over paths given by a Markov process with initial
distribution ν, according to Definition 139, agrees with that given by Definition
142.

14.3 Feller Processes

Working in the early 1950s, Feller showed that, by imposing very reasonable
conditions on the semi-group of evolution operators corresponding to a homo-
geneous Markov process, one could obtain very powerful results about the near-
continuity of sample paths (namely, the existence of cadlag versions), about the
strong Markov property, etc. Ever since, processes with such nice semi-groups
have been known as Feller processes, or sometimes as Feller-Dynkin processes,
in recognition of Dynkin’s work in extending Feller’s original approach. Unfor-
tunately, to first order there are as many definitions of a Feller semi-group as
there are books on Markov processes. I am going to try to follow Kallenberg as
closely as possible, because his version is pretty clearly motivated, and you’ve
already got it.

One point to notice is that, in developing the theory of Feller operators, we
need to switch from operators on L1, where we have been working before, to
operators on L∞. The L∞ norm, supx |f(x)|, is much stronger than the L1 norm,∫
|f(x)|µ(dx), and the former will let us make some regularity arguments which

just aren’t possible in the latter, at least not without a lot of extra machinery
and assumptions.

As usual, we warm up with some definitions.

Definition 143 (Positive Operator) An operator O is positive when f ≥ 0
a.e. implies Of ≥ 0 a.e.

Definition 144 (Contraction Operator) An operator O is an Lp-contraction
when ‖Of‖p ≤ ‖f‖p.

Definition 145 (Strongly Continuous Semigroup) A semigroup of opera-
tors Ot is strongly continuous in the Lp sense on a set of functions L when,
∀f ∈ L

lim
t→0

‖Otf − f‖p = 0 (14.4)

In the two preceding definitions, the p in Lp should be understood to be
anything from 1 to ∞ inclusive.

Definition 146 (Conservative Operator) An operator O is conservative when
O1Ξ = 1Ξ.
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In these terms, our earlier Markov operators are linear, positive, conservative
L1 contractions.

Lemma 147 If Ot is a strongly continuous semigroup of linear Lp contractions,
then, for each f , Otf is a continuous function of t.

Proof: Continuity here means that limt′→t ‖Ot′f −Ot‖p = 0 — we are using
the Lp norm as our metric in function space. Consider first the limit from above:

‖Ot+hf −Otf‖p = ‖Ot(Ohf − f)‖p (14.5)
≤ ‖Ohf − f‖p (14.6)

since the operators are contractions. Because they are strongly continuous,
‖Ohf − f‖p can be made smaller than any ε > 0 by taking h sufficiently small.
Hence limh↓0Ot+hf exists and is Otf . Similarly, for the limit from below,

‖Ot−hf −Otf‖p = ‖Otf −Ot−hf‖p (14.7)
= ‖Ot−h(Ohf − f)‖p (14.8)
≤ ‖Ohf − f‖p (14.9)

using the contraction property again. So limh↓0Ot−hf = Otf , also, and we can
just say that limt′→tOt′f = Otf . �

Remark: The result actually holds if we just assume strong continuity, with-
out contraction, but the proof isn’t so pretty; see Ethier and Kurtz (1986, ch.
1, corollary 1.2, p. 7).

Definition 148 (Feller Semigroup) A semigroup of linear, positive, conser-
vative L∞ contraction operators Kt is a Feller semigroup if, for every f ∈ C0

and x ∈ Ξ, (Definition 127),

Ktf ∈ C0 (14.10)
lim
t→0

Ktf(x) = f(x) (14.11)

Remark: Some authors omit the requirement that Kt be conservative. Also,
this is just the homogeneous case, and one can define inhomogeneous Feller
semigroups. However, the homogeneous case will be plenty of work enough for
us!

Definition 149 (Feller Process) A homogeneous Markov family X is a Feller
process when, for all x ∈ Ξ,

∀t, y → x ⇒ Xy(t)
d→ Xx(t) (14.12)

t→ 0 ⇒ Xx(t)
P→ x (14.13)

Lemma 150 Eq. 14.10 holds if and only if Eq. 14.12 does.
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Proof: Exercise 14.2. �

Lemma 151 Eq. 14.11 holds if and only if Eq. 14.13 does.

Proof: Exercise 14.3. �

Theorem 152 A Markov process is a Feller process if and only if its evolution
operators form a Feller semigroup.

Proof: Combine the lemmas. �
Feller semigroups in continuous time have generators, as in Chapter 12. In

fact, the generator is especially useful for Feller semigroups, as seen by this
theorem.

Theorem 153 (Generator of a Feller Semigroup) If Kt and Ht are Feller
semigroups with generator G, then Kt = Ht.

Proof: Because Feller semigroups consist of contractions, the Hille-Yosida
Theorem 130 applies, and, for every positive λ, the resolvent Rλ = (λI −G)−1.
Hence, if Kt and Ht have the same generator, they have the same resolvent
operators. But this means that, for every f ∈ C0 and x, Ktf(x) andHtf(x) have
the same Laplace transforms. Since, by Eq. 14.11 Ktf(x) and Htf(x) are both
right-continuous, their Laplace transforms are unique, so Ktf(x) = Htf(x). �

Theorem 154 Every Feller semigroup Kt with generator G is strongly contin-
uous on Dom(G).

Proof: From Corollary 126, we have, as seen in Chapter 13, for all t ≥ 0,

Ktf − f =
∫ t

0

KsGfds (14.14)

Clearly, the right-hand side goes to zero as t→ 0. �
The two most important properties of Feller processes is that they are cadlag

(or, rather, always have cadlag versions), and that they are strongly Markovian.
First, let’s look at the cadlag property. We need a result which I really should
have put in Chapter 8.

Proposition 155 Let Ξ be a locally compact, separable metric space with metric
ρ, and let X be a separable Ξ-valued stochastic process on T . For given ε, δ > 0,
define α(ε, δ) to be

inf
Γ∈FX

s : P(Γ)=1
sup

s,t∈T : s≤t≤s+δ
P
(
ω : ρ(X(s, ω), X(t, ω)) ≥ ε, ω ∈ Γ|FXs

)
(14.15)

If, for all ε,

lim
δ→0

α(ε, δ) = 0 (14.16)

then X has a cadlag version.
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Proof: Combine Theorem 2 and Theorem 3 of Gikhman and Skorokhod
(1965/1969, Chapter IV, Section 4). �

Lemma 156 Let X be a separable homogeneous Markov process. Define

α(ε, δ) = sup
t∈T : 0≤t≤δ; x∈Ξ

P (ρ(Xx(t), x) ≥ ε) (14.17)

If, for every ε > 0,

lim
δ→0

α(ε, δ) = 0 (14.18)

then X has a cadlag version.

Proof: The α in this lemma is clearly the α in the preceding proposition,
using the fact that X is Markovian with respect to its natural filtration and
homogeneous. �

Lemma 157 A separable homogeneous Markov process X has a cadlag version
if

lim
δ↓0

sup
x∈Ξ, 0≤t≤δ

E [ρ(Xx(t), x)] = 0 (14.19)

Proof: Start with the Markov inequality.

∀x, t > 0, ε > 0, P (ρ(Xx(t), x) ≥ ε) ≤ E [ρ(Xx(t), x)]
ε

(14.20)

∀x, δ > 0, ε > 0, sup
0≤t≤δ

P (ρ(Xx(t), x) ≥ ε) ≤ sup
0≤t≤δ

E [ρ(Xx(t), x)]
ε

(14.21)

∀δ > 0, ε > 0, sup
x, 0≤t≤δ

P (ρ(Xx(δ), x) ≥ ε) ≤ 1
ε

sup
x, 0≤t≤δ

E [ρ(Xx(δ), x)](14.22)

Taking the limit as δ ↓ 0, we have, for all ε > 0,

lim
δ→0

α(ε, δ) ≤ 1
ε

lim
δ↓0

sup
x, 0≤t≤δ

E [ρ(Xx(δ), x)] = 0 (14.23)

So the preceding lemma applies. �

Theorem 158 (Feller Implies Cadlag) Every Feller process X has a cadlag
version.

Proof: First, by the usual arguments, we can get a separable version of X.
Next, we want to show that the last lemma is satisfied. Notice that, because Ξ
is compact, limx ρ(xn, x) = 0 if and only if fk(xn) → fk(x), for all fk in some
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countable dense subset of the continuous functions on the state space.1 Since the
Feller semigroup is strongly continuous on the domain of its generator (Theorem
154), and that domain is dense in C0 by the Hille-Yosida Theorem (130), we can
pick our fk to be in this class. The strong continuity is with respect to the L∞
norm, so supx |Ktf(x)−Ksf(x)| = supx |Ks(Kt−sf(x)− f(x))| → 0 as t−s→
0, for every f ∈ C0. But supx |Ktf(x)−Ksf(x)| = supx E [|f(Xx(t))− f(Xx(s))|].
So supx, 0≤t≤δ E [|f(Xx(t))− f(x)|] → 0 as δ → 0. Now Lemma 157 applies. �

Remark: Kallenberg (Theorem 19.15, p. 379) gives a different proof, using
the existence of cadlag paths for certain kinds of supermartingales, which he
builds using the resolvent operator. This seems to be the favored approach
among modern authors, but obscures, somewhat, the work which the Feller
properties do in getting the conclusion.

Theorem 159 (Feller Processes are Strongly Markovian) Any Feller pro-
cess X is strongly Markovian with respect to FX+, the right-continuous version
of its natural filtration.

Proof: The strong Markov property holds if and only if, for all bounded,
continuous functions f , t ≥ 0 and FX+-optional times τ ,

E
[
f(X(τ + t))|FX+

τ

]
= Ktf(X(τ)) (14.24)

We’ll show this holds for arbitrary, fixed choices of f , t and τ . First, we discretize
time, to exploit the fact that the Markov and strong Markov properties coincide
for discrete parameter processes. For every h > 0, set

τh ≡ inf
u
{u ≥ τ : u = kh, k ∈ N} (14.25)

Now τh is almost surely finite (because τ is), and τh → τ a.s. as h → 0. We
construct the discrete-parameter sequence Xh(n) = X(nh), n ∈ N. This is a
Markov sequence with respect to the natural filtration, i.e., for every bounded
continuous f and m ∈ N,

E
[
f(Xh(n+m))|FXn

]
= Kmhf(Xh(n)) (14.26)

Since the Markov and strong Markov properties coincide for Markov sequences,
we can now assert that

E
[
f(X(τh +mh))|FXτh

]
= Kmhf(X(τh)) (14.27)

Since τh ≥ τ , FXτ ⊆ FXτh
. Now pick any set B ∈ FX+

τ and use smoothing:

E [f(X(τh + t))1B ] = E [Ktf(X(τh))1B ] (14.28)
E [f(X(τ + t))1B ] = E [Ktf(X(τ))1B ] (14.29)

1Roughly speaking, if f(xn) → f(x) for all continuous functions f , it should be obvious
that there is no way to avoid having xn → x. Picking a countable dense subset of functions
is still enough.
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where we let h ↓ 0, and invoke the fact that X(t) is right-continuous (Theorem
158) and Ktf is continuous. Since this holds for arbitrary B ∈ FX+

τ , and
Ktf(X(τ)) has to be FX+

τ -measurable, we have that

E
[
f(X(τ + t))|FX+

τ

]
= Ktf(X(τ)) (14.30)

as required. �
Here is a useful consequence of Feller property, related to the martingale-

problem properties we saw last time.

Theorem 160 (Dynkin’s Formula) Let X be a Feller process with generator
G. Let α and β be two almost-surely-finite F-optional times, α ≤ β. Then, for
every continuous f ∈ Dom(G),

E [f(X(β))− f(X(α))] = E

[∫ β

α

Gf(X(t))dt

]
(14.31)

Proof: Exercise 14.4. �
Remark: A large number of results very similar to Eq. 14.31 are also called

“Dynkin’s formula”. For instance, Rogers and Williams (1994, ch. III, sec. 10,
pp. 253–254) give that name to three different equations. Be careful about what
people mean!

14.4 Exercises

Exercise 14.1 (Yet Another Interpretation of the Resolvents) Consider
again a homogeneous Markov process with transition kernel µt. Let τ be an
exponentially-distributed random variable with rate λ, independent of X. Show
that E [Kτf(x)] = λRλf(x).

Exercise 14.2 (The First Pair of Feller Properties) Prove Lemma 150. Hint:
you may use the fact that, for measures, νt → ν if and only if νtf → νf , for
every bounded, continuous f .

Exercise 14.3 (The Second Pair of Feller Properties) Prove Lemma 151.

Exercise 14.4 (Dynkin’s Formula) Prove Theorem 160



Chapter 15

Convergence of Feller
Processes

This chapter looks at the convergence of sequences of Feller pro-
cesses to a limiting process.

Section 15.1 lays some ground work concerning weak convergence
of processes with cadlag sample paths.

Section 15.2 states and proves the central theorem about the
convergence of sequences of Feller processes.

Section 15.3 examines a particularly important special case, the
approximation of ordinary differential equations by pure-jump Markov
processes.

15.1 Weak Convergence of Processes with Cad-
lag Paths (The Skorokhod Topology)

Recall that a sequence of random variables X1, X2, . . . converges in distribution
on X, or weakly converges on X, Xn

d→ X, if and only if E [f(Xn)] → E [f(X)],
for all bounded, continuous functions f . This is still true when Xn are ran-
dom functions, i.e., stochastic processes, only now the relevant functions f are
functionals of the sample paths.

Definition 161 (Convergence in Finite-Dimensional Distribution) Random

processes Xn on T converge in finite-dimensional distribution on X, Xn
fd→ X,

when, ∀J ∈ Fin(T ), Xn(J) d→ X(J).

Proposition 162 Convergence in finite-dimensional distribution is necessary
but not sufficient for convergence in distribution.

80
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Proof: Necessity is obvious: the coordinate projections πt are continuous func-
tionals of the sample path, so they must converge if the distributions converge.
Insufficiency stems from the problem that, even if a sequence of Xn all have
sample paths in some set U , the limiting process might not: recall our example
(78) of the version of the Wiener process with unmeasurable suprema. �

Definition 163 (The Space D) By D(T,Ξ) we denote the space of all cadlag
functions from T to Ξ. By default, D will mean D(R+,Ξ).

D admits of multiple topologies. For most purposes, the most convenient one
is the Skorokhod topology, a.k.a. the J1 topology or the Skorokhod J1 topology,
which makes D(Ξ) a complete separable metric space when Ξ is itself complete
and separable. (See Appendix A2 of Kallenberg.) For our purposes, we need
only the following notion and theorem.

Definition 164 (Modified Modulus of Continuity) The modified modu-
lus of continuity of a function x ∈ D(T,Ξ) at time t ∈ T and scale h > 0
is given by

w(x, t, h) ≡ inf
(Ik)

max
k

sup
r,s∈Ik

ρ(x(s), x(r)) (15.1)

where the infimum is over partitions of [0, t) into half-open intervals whose length
is at least h (except possibly for the last one). Because x is cadlag, for fixed x
and t, w(x, t, h) → 0 as h→ 0.

Theorem 165 (Weak Convergence in D(R+,Ξ)) Let Ξ be a complete, sep-
arable metric space. Then a sequence of random functions X1, X2, . . . ∈ D(R+,Ξ)
converges in distribution to X ∈ D if and only if

i The set Tc = {t ∈ T : X(t) = X(t−)} has a countable dense subset T0,
and the finite-dimensional distributions of the Xn converge on those of X
on T0.

ii For every t,

lim
h→0

lim sup
n→∞

E [w(Xn, t, h) ∧ 1] = 0 (15.2)

Proof: See Kallenberg, Theorem 16.10, pp. 313–314. �

Theorem 166 (Sufficient Condition for Weak Convergence) The follow-
ing three conditions are all equivalent, and all imply condition (ii) in Theorem
165.

1. For any sequence of a.s.-finite FXn-optional times τn and positive con-
stants hn → 0,

ρ(Xn(τn), Xn(τn + hn))
P→ 0 (15.3)
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2. For all t > 0, for all

lim
h→0

lim sup
n→∞

sup
σ,τ

E [ρ(Xn(σ), Xn(τ)) ∧ 1] = 0 (15.4)

where σ and τ are FXn-optional times σ, τ ≤ t, with σ ≤ τ ≤ τ + h.

3. For all t > 0,

lim
δ→0

lim sup
n→∞

sup
τ≤t

sup
0≤h≤δ

E [ρ(Xn(τ), Xn(τ + h)) ∧ 1] = 0 (15.5)

where the supremum in τ runs over all FXn-optional times ≤ t.

Proof: See Kallenberg, Theorem 16.11, pp. 314–315. �

15.2 Convergence of Feller Processes

We need some technical notions about generators.

Definition 167 (Closed and Closable Generators, Closures) A linear op-
erator O on a Banach space B is closed if its graph —

{
f, g ∈ B2 : f ∈ Dom(O), g = Of

}
— is a closed set. An operator is closable if the closure of its graph is a function
(and not just a relation). The closure of a closable operator is that function.

Notice, by the way, that because O is linear, it is closable iff fn → 0 and
Afn → g implies g = 0.

Definition 168 (Core of an Operator) Let O be a closed linear operator on
a Banach space B. A linear subspace D ⊆ Dom(O) is a core of O if the closure
of O restricted to D is, again O.

The idea of a core is that we can get away with knowing how the operator
works on a linear subspace, which is often much easier to deal with, rather than
controlling how it acts on its whole domain.

Proposition 169 The generator of every Feller semigroup is closed.

Proof: We need to show that the graph of G contains all of its limit points, that
is, if fn ∈ Dom(G) converges (in L∞) on f , and Gfn → g, then f ∈ Dom(G)
and Gf = g. First we show that f ∈ Dom(G).

lim
n→∞

(I −G)fn = lim
n
fn − lim

n
Gfn (15.6)

= f − g (15.7)
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But (I −G)−1 = R1. Since this is a bounded linear operator, we can exchange
applying the inverse and taking the limit, i.e.,

R1 lim
n

(I −G)fn = R1(f − g) (15.8)

lim
n
R1(I −G)fn = R1(f − g) (15.9)

lim
n
fn = R1(f − g) (15.10)

f = R1(f − g) (15.11)

Since the range of the resolvents is contained in the domain of the generator,
f ∈ Dom(G). We can therefore say that f − g = (I −G)f , which implies that
Gf = g. Hence, the graph of G contains all its limit points, and G is closed. �

Theorem 170 Let Xn be a sequence of Feller processes with semigroups Kn,t

and generators Gn, and X be another Feller process with semigroup Kt and a
generator G containing a core D. Then the following are equivalent.

1. If f ∈ D, there exists a sequence of fn ∈ Dom(Gn) such that ‖fn − f‖∞ →
0 and ‖Anfn −Af‖∞ → 0.

2. Kn,t → Kt for every t > 0

3. ‖Kn,tf −Ktf‖∞ → 0 for each f ∈ C0, uniformly for bounded positive t

4. If Xn(0) d→ X(0) in Ξ, then Xn
d→ X in D.

Proof: See Kallenberg, Theorem 19.25, p. 385. �
Remark. The important versions of the property above are the second —

convergence of the semigroups — and the fourth — converge in distribution of
the processes. The other two are there to simplify the proof.

15.3 Approximation of Ordinary Differential Equa-
tions by Markov Processes

The following result, due to Kurtz (1970, 1971), is essentially an application of
Theorem 170.

First, recall that continuous-time, discrete-state Markov processes work es-
sentially like a combination of a Poisson process (giving the time of transitions)
with a Markov chain (giving the state moved to on transitions). This can be
generalized to continuous-time, continuous-state processes, of what are called
“pure jump” type.

Definition 171 (Pure Jump Markov Process) A continuous-parameter Markov
process is a pure jump process when its sample paths are piece-wise constant.
For each state, there is an exponential distribution of times spent in that state,
whose parameter is denoted λ(x), and a transition probability kernel or exit
distribution µ(x,B).
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Observe that pure-jump Markov processes always have cadlag sample paths.
Also observe that the average amount of time the process spends in state x, once
it jumps there, is 1/λ(x). So the time-average “velocity”, i.e., rate of change,
starting from x,

λ(x)
∫

Ξ

(y − x)µ(x, dy)

Theorem 172 Let Xn be a sequence of pure-jump Markov processes with state
spaces Ξn, holding time parameters λn and transition probabilities µn. Suppose
that, for all n Ξn is a Borel-measurable subset of Rk for some k. Let Ξ be
another measurable subset of Rk, on which there exists a function F (x) such
that |F (x)−F (y)| ≤M |x−y| for some constant M . Suppose all of the following
conditions holds.

1. The time-averaged rate of change is always finite:

sup
n

sup
x∈Ξn∩Ξ

λn(x)
∫

Ξn

|y − x|µn(x, dy) < ∞ (15.12)

2. There exists a positive sequence εn → 0 such that

lim
n→∞

sup
x∈Ξn∩Ξ

λn(x)
∫
|y−x|>ε

|y − x|µn(x, dy) = 0 (15.13)

3. The worst-case difference between F (x) and the time-averaged rates of
change goes to zero:

lim
n→∞

sup
x∈Ξn∩Ξ

∣∣∣∣F (x)− λn(x)
∫

(y − x)µn(x, dy)
∣∣∣∣ = 0 (15.14)

Let X(s, x0) be the solution to the initial-value problem where the differential is
given by F , i.e., for each 0 ≤ s ≤ t,

∂

∂s
X(s, x0) = F (X(s, x0)) (15.15)

X(0, x0) = x0 (15.16)

and suppose there exists an η > 0 such that, for all n,

Ξn ∩
{
y ∈ Rk : inf

0≤s≤t
|y −X(s, x0)| ≤ η

}
⊆ Ξ (15.17)

Then limXn(0) = x0 implies that, for every δ > 0,

lim
n→∞

P
(

sup
0≤s≤t

|Xn(s)−X(s, x0)| > δ

)
= 0 (15.18)
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The first conditions on the Xn basically make sure that they are Feller
processes. The subsequent ones make sure that the mean time-averaged rate of
change of the jump processes converges on the instantaneous rate of change of
the differential equation, and that, if we’re sufficiently close to the solution of
the differential equation in Rk, we’re not in some weird way outside the relevant
domains of definition. Even though Theorem 170 is about weak convergence,
converging in distribution on a non-random object is the same as converging in
probability, which is how we get uniform-in-time convergence in probability for
a conclusion.

There are, broadly speaking, two kinds of uses for this result. One kind is
practical, and has to do with justifying convenient approximations. If n is large,
we can get away with using an ODE instead of the noisy stochastic scheme, or
alternately we can use stochastic simulation to approximate the solutions of ugly
ODEs. The other kind is theoretical, about showing that the large-population
limit behaves deterministically, even when the individual behavior is stochastic
and strongly dependent over time.



Chapter 16

Convergence of Random
Walks

This lecture examines the convergence of random walks to the
Wiener process. This is very important both physically and statis-
tically, and illustrates the utility of the theory of Feller processes.

Section 16.1 finds the semi-group of the Wiener process, shows
it satisfies the Feller properties, and finds its generator.

Section 16.2 turns random walks into cadlag processes, and gives
a fairly easy proof that they converge on the Wiener process.

16.1 The Wiener Process is Feller

Recall that the Wiener process W (t) is defined by starting at the origin, by
independent increments over non-overlapping intervals, by the Gaussian distri-
bution of increments, and by continuity of sample paths (Examples 38 and 78).
The process is homogeneous, and the transition kernels are (Section 11.1)

µt(w1, B) =
∫
B

dw2
1√
2πt

e−
(w2−w1)2

2t (16.1)

dµt(w1, w2)
dλ

=
1√
2πt

e−
(w2−w1)2

2t (16.2)

where the second line gives the density of the transition kernel with respect to
Lebesgue measure.

Since the kernels are known, we can write down the corresponding evolution
operators:

Ktf(w1) =
∫
dw2f(w2)

1√
2πt

e−
(w2−w1)2

2t (16.3)

We saw in Section 11.1 that the kernels have the semi-group property, so the
evolution operators do too.

86
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Let’s check that {Kt} , t ≥ 0 is a Feller semi-group. The first Feller property
is easier to check in its probabilistic form, that, for all t, y → x implies Wy(t)

d→
Wx(t). The distribution ofWx(t) is just N (x, t), and it is indeed true that y → x
implies N (y, t) → N (x, t). The second Feller property can be checked in its
semi-group form: as t→ 0, µt(w1, B) approaches δ(w−w1), so limt→0Ktf(x) =
f(x). Thus, the Wiener process is a Feller process. This implies that it has
cadlag sample paths (Theorem 158), but we already knew that, since we know
it’s continuous. What we did not know was that the Wiener process is not just
Markov but strong Markov, which follows from Theorem 159.

It’s easier to find the generator of {Kt} , t ≥ 0, it will help to re-write it in
an equivalent form, as

Ktf(w) = E
[
f(w + Z

√
t)
]

(16.4)

where Z is an independent N (0, 1) random variable. (You should convince
yourself that this is equivalent.) Now let’s pick an f ∈ C0 which is also twice
continuously differentiable, i.e., f ∈ C0∩C2. Look at Ktf(w)−f(w), and apply
Taylor’s theorem, expanding around w:

Ktf(w)− f(w) = E
[
f(w + Z

√
t)
]
− f(w) (16.5)

= E
[
f(w + Z

√
t)− f(w)

]
(16.6)

= E
[
Z
√
tf ′(w) +

1
2
tZ2f ′′(w) +R(Z

√
t)
]

(16.7)

=
√
tf ′(w)E [Z] + t

f ′′(w)
2

E
[
Z2
]
+ E

[
R(Z

√
t)
]
(16.8)

lim
t↓0

Ktf(w)− f(w)
t

=
1
2
f ′′(w) + lim

t↓0

E
[
R(Z

√
t)
]

t
(16.9)

So, we need to investigate the behavior of the remainder term R(Z
√
t). We

know from Taylor’s theorem that

R(Z
√
t) =

tZ2

2

∫ 1

0

du f ′′(w + uZ
√
t)− f ′′(w) (16.10)

(16.11)

Since f ∈ C0∩C2, we know that f ′′ ∈ C0. Therefore, f ′′ is uniformly continuous,
and has a modulus of continuity,

m(f ′′, h) = sup
x,y: |x−y|≤h

|f ′′(x)− f ′′(y)| (16.12)

which goes to 0 as h ↓ 0. Thus∣∣∣R(Z
√
t)
∣∣∣ ≤ tZ2

2
m(f ′′, Z

√
t) (16.13)

lim
t→0

∣∣R(Z
√
t)
∣∣

t
≤ lim

t→0

Z2m(f ′′, Z
√
t)

2
(16.14)

= 0 (16.15)
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Plugging back in to Equation 16.9,

Gf(w) =
1
2
f ′′(w) + lim

t↓0

E
[
R(Z

√
t)
]

t
(16.16)

=
1
2
f ′′(w) (16.17)

That is, G = 1
2
d2

dw2 , one half of the Laplacian. We have shown this only for
C0 ∩ C2, but this is clearly a linear subspace of C0, and, since C2 is dense in
C, it is dense in C0, i.e., this is a core for the generator. Hence the generator is
really the extension of 1

2
d2

dw2 to the whole of C0, but this is too cumbersome to
repeat all the time, so we just say it’s the Laplacian.

16.2 Convergence of Random Walks

Let X1, X2, . . . be a sequence of IID variables with mean 0 and variance 1. The
random walk process Sn is then just

∑n
i=1Xi. It is a discrete-time Markov

process, and consequently also a strong Markov process. Imagine each step of
the walk takes some time h, and imagine this time interval becoming smaller
and smaller. Then, between any two times t1 and t2, the number of steps of the
random walk will be about t2−t1

h , which will go to infinity. The displacement of
the random walk between t1 and t2 will then be a sum of an increasingly large
number of IID random variables, and by the central limit theorem will approach
a Gaussian distribution. Moreover, if we look at the interval of time from t2 to
t3, we will see another Gaussian, but all of the random-walk steps going into it
will be independent of those going into our first interval. So, we expect that the
random walk will in some sense come to look like the Wiener process, no matter
what the exact distribution of the X1. Let’s consider this in more detail.

Define Yn(t) = n−1/2
∑[nt]
i=0Xi = n−1/2S[nt], where X0 = 0 and [nt] is the

integer part of the real number nt. You should convince yourself that this is a
Markov process, with cadlag sample paths.

We want to consider the limiting distribution of Yn as n → ∞. First of
all, we should convince ourselves that a limit distribution exists. But this is
not too hard. For any fixed t, Yn(t) approaches a Gaussian distribution by the
central limit theorem. For any fixed finite collection of times t1 ≤ t2 . . . ≤ tk,
Yn(t1), Yn(t2), . . . Yn(tk) approaches a limiting distribution if Yn(t1), Yn(t2) −
Yn(t1), . . . Yn(tk)−Yn(tk−1) does, but that again will be true by the (multivari-
ate) central limit theorem. Since the limiting finite-dimensional distributions
exist, some limiting distribution exists (via Theorem 23). It remains to identify
it.

Lemma 173 Yn
fd→W .
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Proof: For all n, Yn(0) = 0 = W (0). For any t2 > t1,

L (Yn(t2)− Yn(t1)) = L

 1√
n

[nt2]∑
i=[nt1]

Xi

 (16.18)

d→ N (0, t2 − t1) (16.19)
= L (W (t2)−W (t1)) (16.20)

Finally, for any three times t1 < t2 < t3, Yn(t3) − Yn(t2) and Yn(t2) − Yn(t1)
are independent for sufficiently large n, because they become sums of disjoint
collections of independent random variables. Thus, the limiting distribution of
Yn starts at the origin and has independent Gaussian increments. Since these
properties determine the finite-dimensional distributions of the Wiener process,
Yn

fd→W . �

Theorem 174 Yn
d→W .

Proof: By Theorem 165, it is enough to show that Yn
fd→W , and that any of the

properties in Theorem 166 hold. The lemma took care of the finite-dimensional
convergence, so we can turn to the second part. A sufficient condition is property
(1) inn the latter theorem, that |Yn(τn+hn)−Yn(τn)|

P→ 0 for all finite optional
times τn and any sequence of positive constants hn → 0.

|Yn(τn + hn)− Yn(τn)| = n−1/2
∣∣S[nτn+nhn] − S[nτn]

∣∣ (16.21)
d= n−1/2

∣∣S[nhn] − S0

∣∣ (16.22)

= n−1/2
∣∣S[nhn]

∣∣ (16.23)

= n−1/2

∣∣∣∣∣∣
[nhn]∑
i=0

Xi

∣∣∣∣∣∣ (16.24)

To see that this converges in probability to zero, we will appeal to Chebyshev’s
inequality: if Zi have common mean 0 and variance σ2, then, for every positive
ε,

P

(∣∣∣∣∣
m∑
i=1

Zi

∣∣∣∣∣ > ε

)
≤ mσ2

ε2
(16.25)

Here we have Zi = Xi/
√
n, so σ2 = 1/n, and m = [nhn]. Thus

P
(
n−1/2

∣∣S[nhn]

∣∣ > ε
)

≤ [nhn]
nε2

(16.26)

As 0 ≤ [nhn]/n ≤ hn, and hn → 0, the bounding probability must go to zero
for every fixed ε. Hence n−1/2

∣∣S[nhn]

∣∣ P→ 0. �
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Corollary 175 (The Invariance Principle) Let X1, X2, . . . be IID random
variables with mean µ and variance σ2. Then

Yn(t) ≡
1√
n

[nt]∑
i=0

Xi − µ

σ

d→ W (t) (16.27)

Proof: (Xi − µ)/σ has mean 0 and variance 1, so Theorem 174 applies. �
This result is called “the invariance principle”, because it says that the

limiting distribution of the sequences of sums depends only on the mean and
variance of the individual terms, and is consequently invariant under changes
which leave those alone. Both this result and the previous one are known as the
“functional central limit theorem”, because convergence in distribution is the
same as convergence of all bounded continuous functionals of the sample path.
Another name is “Donsker’s Theorem”, which is sometimes associated however
with the following corollary of Theorem 174.

Corollary 176 (Donsker’s Theorem) Let Yn(t) and W (t) be as before, but
restrict the index set T to the unit interval [0, 1]. Let f be any function from
D([0, 1]) to R which is measurable and a.s. continuous at W . Then f(Yn)

d→
f(W ).

Proof: Exercise. �
This version is especially important for statistical purposes, as we’ll see a

bit later.

16.3 Exercises

Exercise 16.1 Go through all the details of Example 138.

a Show that FXt ⊆ FWt for all t, and that FX ⊂ FW .

b Show that τ = inftX(t) = (0, 0) is a FX-optional time, and that it is finite
with probability 1.

c Show that X is Markov with respect to both its natural filtration and the
natural filtration of the driving Wiener process.

d Show that X is not strongly Markov at τ .

e Which, if any, of the Feller properties does X have?

Exercise 16.2 Consider a d-dimensional Wiener process, i.e., an Rd-valued
process where each coordinate is an independent Wiener process. Find the gen-
erator.

Exercise 16.3 Prove Donsker’s Theorem (Corollary 176).



CHAPTER 16. CONVERGENCE OF RANDOM WALKS 91

Exercise 16.4 (Diffusion equation) As mentioned in class, the partial dif-
ferential equation

1
2
∂2f(x, t)
∂x2

=
∂f(x, t)
∂t

is called the diffusion equation. From our discussion of initial value problems
in Chapter 12 (Corollary 126 and related material), it is clear that the function
f(x, t) solves the diffusion equation with initial condition f(x, 0) if and only if
f(x, t) = Ktf(x, 0), where Kt is the evolution operator of the Wiener process.

a Take f(x, 0) = (2π10−4)−1/2
e−

x2

2·10−4 . f(x, t) can be found analytically;
do so.

b Estimate f(x, 10) over the interval [−5, 5] stochastically. Use the fact that
Ktf(x) = E [f(W (t))|W (0) = x], and that random walks converge on the
Wiener process. (Be careful that you scale your random walks the right
way!) Give an indication of the error in this estimate.

c Can you find an analytical form for f(x, t) if f(x, 0) = 1[−0.5,0.5](x)?

d Find f(x, 10), with the new initial conditions, by numerical integration on
the domain [−10, 10], and compare it to a stochastic estimate.



Chapter 17

Diffusions and the Wiener
Process

Section 17.1 introduces the ideas which will occupy us for the
next few lectures, the continuous Markov processes known as diffu-
sions, and their description in terms of stochastic calculus.

Section 17.2 collects some useful properties of the most important
diffusion, the Wiener process.

Section 17.3 shows, first heuristically and then more rigorously,
that almost all sample paths of the Wiener process don’t have deriva-
tives.

17.1 Diffusions and Stochastic Calculus

So far, we have looked at Markov processes in general, and then paid particular
attention to Feller processes, because the Feller properties are very natural con-
tinuity assumptions to make about stochastic models and have very important
consequences, especially the strong Markov property and cadlag sample paths.
The natural next step is to go to Markov processes with continuous sample
paths. The most important case, overwhelmingly dominating the literature, is
that of diffusions.

Definition 177 (Diffusion) A stochastic process X adapted to a filtration F
is a diffusion when it is a strong Markov process with respect to F , homogeneous
in time, and has continuous sample paths.1

Diffusions matter to us for several reasons. First, they are very natural
models of many important systems — the motion of physical particles (the

1Having said that, I should confess that some authors don’t insist that diffusions be ho-
mogeneous, and some even don’t insist that they be strong Markov processes. But this is the
general sense in which the term is used.
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source of the term “diffusion”), fluid flows, noise in communication systems,
financial time series, etc. Probabilistic and statistical studies of time-series data
thus need to understand diffusions. Second, many discrete Markov models have
large-scale limits which are diffusion processes: these are important in physics
and chemistry, population genetics, queueing and network theory, certain as-
pects of learning theory2, etc. These limits are often more tractable than more
exact finite-size models. (We saw a hint of this in Section 15.3.) Third, many
statistical-inferential problems can be described in terms of diffusions, most
prominently ones which concern goodness of fit, the convergence of empirical
distributions to true probabilities, and nonparametric estimation problems of
many kinds.

The easiest way to get at diffusions is to through the theory of stochas-
tic differential equations; the most important diffusions can be thought of as,
roughly speaking, the result of adding a noise term to the right-hand side of a
differential equation. A more exact statement is that, just as an autonomous
ordinary differential equation

dx

dt
= f(x), x(t0) = x0 (17.1)

has the solution

x(t) =
∫ t

t0

f(x)ds+ x0 (17.2)

a stochastic differential equation

dX

dt
= f(X) + g(X)

dY

dt
, X(t0) = x0 a.s. (17.3)

where X and Y are stochastic processes, is solved by

X(t) =
∫
f(X)ds+

∫
g(X)dY + x0 (17.4)

where
∫
g(X, t)dY is a stochastic integral. It turns out that, properly con-

structed, this sort of integral, and so this sort of stochastic differential equation,
makes sense even when dY/dt does not make sense as any sort of ordinary
derivative, so that the more usual way of writing an SDE is

dX = f(X)dt+ g(X)dY, X(t0) = x0 a.s. (17.5)

even though this seems to invoke infinitessimals, which don’t exist.3

2Specifically, discrete-time reinforcement learning converges to the continuous-time repli-
cator equation of evolutionary theory.

3Some people, like Ethier and Kurtz (1986), prefer to talk about stochastic integral equa-
tions, rather than stochastic differential equations, because things like 17.5 are really short-
hands for “find an X such that Eq. 17.4 holds”, and objects like dX don’t really make much
sense on their own. There’s a certain logic to this, but custom is overwhelmingly against
them.
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The fully general theory of stochastic calculus considers integration with re-
spect to a very broad range of stochastic processes, but the original case, which
is still the most important, is integration with respect to the Wiener process,
which corresponds to driving a system with white noise. In addition to its
many applications in all the areas which use diffusions, the theory of integra-
tion against the Wiener process occupies a central place in modern probability
theory; I simply would not be doing my job if this course did not cover it.
We therefore begin our study of diffusions and stochastic calculus by reviewing
some of the properties of the Wiener process — which is also the most important
diffusion process.

17.2 Once More with the Wiener Process and
Its Properties

To review, the standard Wiener processW (t) is defined by (i)W (0) = 0, (ii) cen-
tered Gaussian increments with linearly-growing variance, L (W (t2)−W (t1)) =
N (0, t2 − t1), (iii) independent increments and (iv) continuity of sample paths.
We have seen that it is a homogeneous Markov process (Section 11.1), and in
fact (Section 16.1) a Feller process (and therefore a strong Markov process),
whose generator is 1

2∇
2. By Definition 177, W is a diffusion.

This section proves a few more useful properties.

Proposition 178 The Wiener process is a martingale with respect to its natural
filtration.

Proof: This follows directly from the Gaussian increment property:

E
[
W (t+ h)|FXt

]
= E [W (t+ h)|W (t)] (17.6)
= E [W (t+ h)−W (t) +W (t)|W (t)] (17.7)
= E [W (t+ h)−W (t)|W (t)] +W (t) (17.8)
= 0 +W (t) = W (t) (17.9)

where the first line uses the Markov property ofW , and the last line the Gaussian
increments property. �

Definition 179 If W (t, ω) is adapted to a filtration F and is an F-filtration,
it is an F Wiener process or F Brownian motion.

It seems natural to speak of the Wiener process as a Gaussian process. This
motivates the following definition.

Definition 180 (Gaussian Process) A real-valued stochastic process is Gaus-
sian when all its finite-dimensional distributions are multivariate Gaussian dis-
tributions.

Proposition 181 The Wiener process is a Gaussian process.
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Proof: Pick any k times t1 < t2 < . . . < tk. Then the increments W (t1) −
W (0), W (t2) −W (t1), W (t3) −W (t2), . . . W (tk) −W (tk−1) are independent
Gaussian random variables. If X and Y are independent Gaussians, then
X,X + Y is a multivariate Gausssian, so (recursively) W (t1)−W (0),W (t2)−
W (0), . . .W (tk)−W (0) has a multivariate Gaussian distribution. Since W (0) =
0, the Gaussian distribution property follows. Since t1, . . . tk were arbitrary, as
was k, all the finite-dimensional distributions are Gaussian. �

Just as the distribution of a Gaussian random variable is determined by
its mean and covariance, the distribution of a Gaussian process is determined
by its mean over time, E [X(t)], and its covariance function, cov (X(s), X(t)).
(You might find it instructive to prove this without looking at Lemma 13.1 in
Kallenberg.) Clearly, E [W (t)] = 0, and, taking s ≤ t without loss of generality,

cov (W (s),W (t)) = E [W (s)W (t)]−E [W (s)] E [W (t)] (17.10)
= E [(W (t)−W (s) +W (s))W (s)] (17.11)
= E [(W (t)−W (s))W (s)] + E [W (s)W (s)] (17.12)
= E [W (t)−W (s)] E [W (s)] + s (17.13)
= s (17.14)

17.3 Wiener Measure; Most Continuous Curves
Are Not Differentiable

We can regard the Wiener process as establishing a measure on the space C(R+)
of continuous real-valued functions; this is one of the considerations which led
Wiener to it (Wiener, 1958)4. This will be important when we want to do
statistical inference for stochastic processes. All Bayesian methods, and most
frequentist ones, will require us to have a likelihood for the model θ given data
x, fθ(x), but likelihoods are really Radon-Nikodym derivatives, fθ(x) = dνθ

dµ (x)
with respect to some reference measure µ. When our sample space is Rd, we
generally use Lebesgue measure as our reference measure, since its support is
the whole space, it treats all points uniformly, and it’s reasonably normalizable.
Wiener measure will turn out to play a similar role when our sample space is
C.

A mathematically important question, which will also turn out to matter
to us very greatly when we try to set up stochastic differential equations, is
whether, under this Wiener measure, most curves are differentiable. If, say,
almost all curves were differentiable, then it would be easy to define dW/dt.
Unfortunately, this is not the case; almost all curves are nowhere differentiable.

There is an easy heuristic argument to this conclusion. W (t) is a Gaussian,

4The early chapters of this book form a wonderfully clear introduction to Wiener measure,
starting from prescriptions on the measures of finite-dimensional cylinders and building from
there, deriving the incremental properties we’ve started with as consequences.
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whose variance is t. If we look at the ratio in a derivative

W (t+ h)−W (t)
(t+ h)− t

the numerator has variance h and the denominator is the constant h, so the
ratio has variance 1/h, which goes to infinity as h → 0. In other words, as we
look at the curve of W (t) on smaller and smaller scales, it becomes more and
more erratic, and the slope finally blows up into a completely unpredictable
quantity. This is basically the shape of the more rigorous argument as well.

Theorem 182 With probability 1, W (t) is nowhere-differentiable.

Proof: Assume, by way of contradiction, that W (t) is differentiable at t0.
Then

lim
t→t0

W (t, ω)−W (t0, ω)
t− t0

(17.15)

must exist, for some set of ω of positive measure. Call its supposed value
W ′(t0, ω). That is, for every ε > 0, we must have some δ such that t0− δ ≤ t ≤
t0 + δ implies ∣∣∣∣W (t, ω)−W (t0, ω)

t− t0
−W ′(t0, ω)

∣∣∣∣ ≤ ε (17.16)

Without loss of generality, take t > t0. Then W (t, ω)−W (t0, ω) is independent
of W (t0, ω) and has a Gaussian distribution with mean zero and variance t− t0.
Therefore the differential ratio is N (0, 1

t−t0 ). The quantity inside the absolute
value sign in Eq. 17.16 is thus Gaussian with distribution N (−W ′(t0), 1

t−t0 ).
The probability that it exceeds any ε is therefore always positive, and in fact
can be made arbitrarily large by taking t sufficiently close to t0. Hence, with
probability 1, there is no point of differentiability. �

Continuous curves which are nowhere differentiable are odd-looking beasts,
but we’ve just established that such “pathological” cases are in fact typical, and
non-pathological ones vanishingly rare in C. What’s worse, in the functional
central limit theorem (174), we obtained W as the limit of piecewise constant,
and so piecewise differentiable, random functions. We could even have lin-
early interpolated between the points of the random walk, and those random
functions would also have converged in distribution on W . The continuous,
almost-everywhere-differentiable curves form a subset of C, and now we have
a sequence of measures which give them probability 1, converging on Wiener
measure, which gives them probability 0. This sounds like trouble, especially if
we want to use Wiener measure as a reference measure in likelihoods, because it
sounds like lots of interesting measures, which do produce differentiable curves,
will not be absolutely continuous...

The trick here is to consider carefully our σ-algebra. Wiener measure is a
probability measure on RR+

,BR+ ∩C(R+). The differentiability of a function
in the vicinity of a point depends on its value at uncountably many coordinates.
Hence (Exercise 1.1) it is not a member of the σ-field.



Chapter 18

Stochastic Integrals with
the Wiener Process

Section 18.1 addresses an issue which came up in the last lecture,
namely the martingale characterization of the Wiener process.

Section 18.2 gives a heuristic introduction to stochastic integrals,
via Euler’s method for approximating ordinary integrals.

Section 18.3 gives a rigorous construction for the integral of a
function with respect to a Wiener process.

18.1 Martingale Characterization of the Wiener
Process

Last time in lecture, I mentioned (without remembering much of the details)
that there is a way of characterizing the Wiener process in terms of some mar-
tingale properties. Here it is.

Theorem 183 If M(t) is a continuous martingale, and M2(t) − t is also a
martingale, then M(t) is a Wiener process.

There are some very clean proofs of this theorem1 — but they require us to
use stochastic calculus! Doob (1953, pp. 384ff) gives a proof which does not,
however. The details of his proof are messy, but the basic idea is to get the
central limit theorem to apply, using the martingale property of M2(t) − t to
get the variance to grow linearly with time and to get independent increments,
and then seeing that between any two times t1 and t2, we can fit arbitrarily
many little increments so we can use the CLT.

We will return to this result as an illustration of the stochastic calculus.
1See especially Ethier and Kurtz (1986, Theorem 5.2.12, p. 290).
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18.2 A Heuristic Introduction to Stochastic In-
tegrals

Euler’s method is perhaps the most basic method for numerically approximating
integrals. If we want to evaluate I(x) ≡

∫ b
a
x(t)dt, then we pick n intervals of

time, with boundaries a = t0 < t1 < . . . tn = b, and set

In(x) =
n∑
i=1

x (ti−1) (ti − ti−1)

Then In(x) → I(x), if x is well-behaved and the length of the largest interval
→ 0. If we want to evaluate

∫ t=b
t=a

x(t)dw, where w is another function of t, the
natural thing to do is to get the derivative of w, w′, replace the integrand by
x(t)w′(t), and perform the integral with respect to t. The approximating sums
are then

n∑
i=1

x (ti−1)w′ (ti−1) (ti − ti−1) (18.1)

Alternately, we could, if w(t) is nice enough, approximate the integral by

n∑
i=1

x (ti−1) (w (ti)− w (ti−1)) (18.2)

(You may be more familiar with using Euler’s method to solve ODEs, dx/dt =
f(x). Then one generally picks a ∆t, and iterates

x(t+ ∆t) = x(t) + f(x)∆t (18.3)

from the initial condition x(t0) = x0, and uses linear interpolation to get a
continuous, almost-everywhere-differentiable curve. Remarkably enough, this
converges on the actual solution as ∆t shrinks (Arnol’d, 1973).)

Let’s try to carry all this over to random functions of time X(t) and W (t).
The integral

∫
X(t)dt is generally not a problem — we just find a version of X

with measurable sample paths (Section 8.2).
∫
X(t)dW is also comprehensible

if dW/dt exists (almost surely). Unfortunately, we’ve seen that this is not the
case for the Wiener process, which (as you can tell from the W ) is what we’d
really like to use here. So we can’t approximate the integral with a sum like Eq.
18.1. But there’s nothing preventing us from using one like Eq. 18.2, since that
only demands increments of W . So what we would like to say is that∫ t=b

t=a

X(t)dW ≡ lim
n→∞

n∑
i=1

X (ti−1) (W (ti)−W (ti−1)) (18.4)

This is a crude-but-workable approach to numerically evaluating stochastic in-
tegrals, and apparently how the first stochastic integrals were defined, back in
the 1920s. Notice that it is going to make the integral a random variable, i.e.,
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a measurable function of ω. Notice also that I haven’t said anything yet which
should lead you to believe that the limit on the right-hand side exists, in any
sense, or that it is independent of the choice of partitions a = t0 < t1 < . . . tn b.
The next section will attempt to rectify this.

(When it comes to the SDE dX = f(X)dt + g(X)dW , the counterpart of
Eq. 18.3 is

X(t+ ∆t) = X(t) + f(X(t))∆t+ g(X(t))∆W (18.5)

where ∆W = W (t+∆t)−W (t), and again we use linear interpolation in between
the points, starting from X(t0) = x0.)

18.3 Integrals with Respect to the Wiener Pro-
cess

The drill by now should be familiar: first we define integrals of step functions,
then we approximate more general classes of functions by these elementary
functions. We need some preliminary technicalities.

Definition 184 (Progressive Process) A continuous-parameter stochastic pro-
cess X adapted to a filtration G is progressively measurable or progressive when
X(s, ω), 0 ≤ s ≤ t, is always measurable with respect to Bt×Gt, where Bt is the
Borel σ-field on [0, t].

If X has continuous sample paths, for instance, then it is progressive.

Definition 185 (Non-anticipating filtrations, processes) Let W be a stan-
dard Wiener process, {Ft} the right-continuous completion of the natural filtra-
tion of W , and G any σ-field independent of {Ft}. Then the non-anticipating
filtrations are the ones of the form σ(Ft ∩ G), 0 ≤ t <∞. A stochastic process
X is non-anticipating if it is adapted to some non-anticipating filtration.

The idea of the definition is that if X is non-anticipating, we allow it to
depend on the history of W , and possibly some extra, independent random
stuff, but none of that extra information is of any use in predicting the future
development of W , since it’s independent.

Definition 186 (Elementary non-anticipating process) A progressive, non-
anticipating process X is elementary if there exist an increasing sequence of
times ti, starting at zero and tending to infinity, such that X(t) = X(tn) if
t ∈ [tn, tn+1), i.e., if X is a step-function of time.

Definition 187 (Square-integrable in the mean) A random process X is
square-integrable from a to b if E

[∫ b
a
X2(t)dt

]
is finite.

Notice that if X is bounded on [a, b], in the sense that |X(t)| ≤M with proba-
bility 1 for all a ≤ t ≤ b, then X is square-integrable from a to b.



CHAPTER 18. STOCHASTIC INTEGRALS 100

Definition 188 (Itô integral of an elementary process) If X is an ele-
mentary, progressive, non-anticipative process, square-integrable from a to b,
then its Itô integral from a to b is∫ b

a

X(t)dW ≡
∑
i≥0

X(ti) (W (ti+1)−W (ti)) (18.6)

where the ti are as in Definition 186, truncated below by a and above by b.

Notice that this is basically a Riemann-Stieltjes integral. It’s a random
variable, but we don’t have to worry about the existence of a limit. Now we set
about approximating more general sorts of processes by elementary processes.

Lemma 189 Suppose X is progressive, non-anticipative, bounded on [a, b], and
has continuous sample paths. Then there exist bounded elementary processes Xn,
Itô-integrable on [a, b], such that

lim
n→∞

E

[∫ b

a

(X −Xn)
2
dt

]
= 0 (18.7)

Proof: Set

Xn(t) ≡
∞∑
i=0

X(ti)1[i/2n,(i+1)/2n)(t) (18.8)

This is clearly elementary, bounded and square-integrable on [a, b]. Moreover,
for fixed ω,

∫ b
a

(X(t, ω)−Xn(t, ω))2dt→ 0, since X(t, ω) is continuous. So the
expectation of the time-integral goes to zero by bounded convergence. �

Lemma 190 Suppose X is progressive, non-anticipative, and bounded on [a, b].
Then there exist progressive, non-anticipative processes Xn which are bounded
and continuous on [a, b] such that

lim
n→∞

E

[∫ b

a

(X −Xn)
2
dt

]
= 0 (18.9)

Proof: LetM be the bound on the absolute value ofX. For each n, pick a prob-
ability density fn(t) on R whose support is confined to the interval (−1/n, 0).
Set

Xn(t) ≡
∫ t

0

fn(s− t)X(s)ds (18.10)

Xn(t) is then a sort of moving average ofX, over the interval (t−1/n, t). Clearly,
it’s continuous, bounded, progressively measurable, and non-anticipative. More-
over, for each ω,

lim
n→∞

∫ b

a

(Xn(t, ω)−X(t, ω))2dt = 0 (18.11)

because of the way we’ve set up fn and Xn. By bounded convergence, Eq. 18.9
follows. �
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Lemma 191 Suppose X is progressive, non-anticipative, and square-integrable
on [a, b]. Then there exist a sequence of random processes Xn which are pro-
gressive, non-anticipative and bounded on [a, b], such that

lim
n→∞

E

[∫ b

a

(X −Xn)
2
dt

]
= 0 (18.12)

Proof: Set Xn(t) = (−n∨X(t))∧ n. This has the desired properties, and the
result follows from dominated (not bounded!) convergence. �

Lemma 192 Suppose X is progressive, non-anticipative, and square-integrable
on [a, b]. Then there exist a sequence of bounded elementary processes Xn such
that

lim
n→∞

E

[∫ b

a

(X −Xn)
2
dt

]
= 0 (18.13)

Proof: Combine the preceding three lemmas. �
This lemma gets its force from the following result.

Lemma 193 Suppose X is as in Definition 188, and in addition bounded on
[a, b]. Then

E

(∫ b

a

X(t)dW

)2
 = E

[∫ b

a

X2(t)dt

]
(18.14)

Proof: Set ∆Wi = W (ti+1) − W (ti). Notice that ∆Wj is independent of
X(ti)X(tj)∆Wi if i < j, because of the non-anticipation properties of X. On

the other hand, E
[
(∆Wi)

2
]

= ti+1− ti, by the linear variance of the increments
of W . So

E [X(ti)X(tj)∆Wj∆Wi] = E
[
X2(ti)

]
(ti+1 − ti)δij (18.15)

Substituting Eq. 18.6 into the left-hand side of Eq. 18.14,

E

(∫ b

a

X(t)dW

)2
 = E

∑
i,j

X(ti)X(tj)∆Wj∆Wi

 (18.16)

=
∑
i,j

E [X(ti)X(tj)∆Wj∆Wi] (18.17)

=
∑
i

E
[
X2(ti)

]
(ti+1 − ti) (18.18)

= E

[∑
i

X2(ti)(ti+1 − ti)

]
(18.19)

= E

[∫ b

a

X2(t)dt

]
(18.20)
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where the last step uses the fact that X2 must also be elementary. �

Theorem 194 Let X and Xn be as in Lemma 192. Then the sequence In(X) ≡∫ b

a

Xn(t)dW (18.21)

has a limit in L2. Moreover, this limit is the same for any such approximating
sequence Xn.

Proof: For each Xn, In(X(ω)) is an L2 function of ω, by the fact that Xn is
square-integrable and Lemma 193. Now, the Xn are converging on X, in the
sense that

E

[∫ b

a

(X(t)−Xn(t))
2
dt

]
→ 0

i.e., in an L2 sense, but on the interval [a, b] of the real line, and not on Ω.
Nonetheless, because this is a convergent sequence, it must also be a Cauchy
sequence, so, for every ε > 0, there exists an n such that

E

[∫ b

a

(Xn+k(t)−Xn(t))
2
dt

]
< ε

for every positive k. Since Xn and Xn+k are both elementary processes, their
difference is also elementary, and we can apply Lemma 193 to it. That is, for
every ε > 0, there is an n such that

E

(∫ b

a

(Xn+k(t)−Xn(t))dW

)2
 < ε

for all k. But this is to say that In(X) is a Cauchy sequence in L2(Ω), therefore
it has a limit, which is also in L2(Ω). If Yn is another sequence of approximations
of X by elementary processes, it is also a Cauchy sequence, and so must have
the same limit. �

Definition 195 Let X be progressive, non-anticipative and square-integrable
on [a, b]. Then its Itô integral is∫ b

a

X(t)dW ≡ lim
n

∫ b

a

Xn(t)dW (18.22)

taking the limit in L2, with Xn as in Lemma 192. We will say that X is Itô-
integrable on [a, b].

Corollary 196 (The Itô isometry) Eq. 18.14 holds for all Itô-integrable X.

Proof: Obvious from the approximation by elementary processes and Lemma
193.
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18.4 Exercises

Exercise 18.1 (Basic Properties of the Itô Integral) Prove the following,
first for elementary Itô-integrable processes, and then in general.

a ∫ c

a

X(t)dW =
∫ b

a

X(t)dW +
∫ c

b

X(t)dW

almost surely.

b If c is any real constant, then, almost surely,∫ b

a

(cX(t) + Y (t))dW = c

∫ b

a

XdW +
∫ b

a

Y (t)dW

Exercise 18.2 (Martingale Properties of the Itô Integral) Suppose X is
Itô-integrable on [a, b]. Show that

Ix(t) ≡
∫ t

a

X(s)dW

a ≤ t ≤ b, is a martingale. What is E[Ix(t)]?

Exercise 18.3 (Continuity of the Itô Integral) Show that Ix(t) has con-
tinuous sample paths.



Chapter 19

Stochastic Differential
Equations

Section 19.1 gives two easy examples of Itô integrals. The second
one shows that there’s something funny about change of variables,
or if you like about the chain rule.

Section 19.2 explains how to do change of variables in a stochastic
integral, also known as “Itô’s formula”.

Section 19.3 defines stochastic differential equations.
Section 19.4 sets up a more realistic model of Brownian motion,

leading to an SDE called the Langevin equation, and solves it to get
Ornstein-Uhlenbeck processes.

19.1 Some Easy Stochastic Integrals, with a Moral

19.1.1
∫

dW

Let’s start with the easiest possible stochastic integral:∫ b

a

dW (19.1)

i.e., the Itô integral of the function which is always 1, 1R+(t). If this is any
kind of integral at all, it should be W — more exactly, because this is a definite
integral, we want

∫ b
a
dW = W (b) −W (a). Mercifully, this works. Pick any set

of time-points ti we like, and treat 1 as an elementary function with those times
as its break-points. Then, using our definition of the Itô integral for elementary
functions, ∫ b

a

dW =
∑
ti

W (ti+1)−W (ti) (19.2)

= W (b)−W (a) (19.3)

104
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as required. (This would be a good time to convince yourself that adding extra
break-points to an elementary function doesn’t change its integral.)

19.1.2
∫

WdW

Tradition dictates that the next example be
∫
WdW . First, we should con-

vince ourselves that W (t) is Itô-integrable: it’s clearly measurable and non-
anticipative, but is it square-integrable? Yes; by Fubini’s theorem,

E
[∫ t

0

W 2(s)ds
]

=
∫ t

0

E
[
W 2(s)

]
ds (19.4)

=
∫ t

0

sds (19.5)

which is clearly finite on finite intervals [0, t]. So, this integral should exist.
Now, if the ordinary rules for change of variables held — equivalent, if the
chain-rule worked the usual way — we could say that WdW = 1

2d(W
2), so∫

WdW = 1
2

∫
dW 2, and we’d expect

∫ t
0
WdW = 1

2W
2(t). But, alas, this can’t

be right. To see why, take the expectation: it’d be 1
2 t. But we know that it has

to be zero, and it has to be a martingale in t, and this is neither. A bone-head
would try to fix this by subtracting off the non-martingale part, i.e., a bone-
head would guess that

∫ t
0
WdW = 1

2W
2(t) − t/2. Annoyingly, in this case the

bone-head is correct. The demonstration is fundamentally straightforward, if
somewhat long-winded.

To begin, we need to approximate W by elementary functions. For each n,
let ti = i t2n , 0 ≤ i ≤ 2n− 1. Set φn(t) =

∑2n−1
i=0 W (ti)1[ti,ti+1). Let’s check that
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this converges to W (t) as n→∞:

E
[∫ t

0

(φn(s)−W (s))2ds
]

= E

[
2n−1∑
i=0

∫ ti+1

ti

(B(ti)−B(s))2ds

]
(19.6)

=
2n−1∑
i=0

E
[∫ ti+1

ti

(B(ti)−B(s))2ds
]

(19.7)

=
2n−1∑
i=0

∫ ti+1

ti

E
[
(B(ti)−B(s))2

]
ds (19.8)

=
2n−1∑
i=0

∫ ti+1

ti

(s− ti)ds (19.9)

=
2n−1∑
i=0

∫ 2−n

0

sds (19.10)

=
2n−1∑
i=0

[
t2

2

]2−n

0

(19.11)

=
2n−1∑
i=0

2−2n−1 (19.12)

= 2−n−1 (19.13)

which → 0 as n→∞. Hence∫ t

0

W (s)dW = lim
n

∫ t

0

φn(s)dW (19.14)

= lim
n

2n−1∑
i=0

W (ti)(W (ti+1)−W (ti)) (19.15)

= lim
n

2n−1∑
i=0

W (ti)∆W (ti) (19.16)

where ∆W (ti) ≡ W (ti+1) −W (ti), because I’m getting tired of writing both
subscripts. Define ∆W 2(ti) similarly. Since W (0) = 0 = W 2(0), we have that

W (t) =
∑
i

∆W (ti) (19.17)

W 2(t) =
∑
i

∆W 2(ti) (19.18)

Now let’s re-write ∆W 2 in such a way that we get a W∆W term, which is what
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we want to evaluate our integral.

∆W 2(ti) = W 2(ti+1)−W 2(ti) (19.19)

= (∆W (ti) +W (ti))
2 −W 2(ti) (19.20)

= (∆W (ti))
2 + 2W (ti)∆W (ti) +W 2(ti)−W 2(ti) (19.21)

= (∆W (ti))
2 + 2W (ti)∆W (ti) (19.22)

This looks promising, because it’s got W∆W in it. Plugging in to Eq. 19.18,

W 2(t) =
∑
i

(∆W (ti))
2 + 2W (ti)∆W (ti) (19.23)

∑
i

W (ti)∆W (ti) =
1
2
W 2(t)− 1

2

∑
i

(∆W (ti))
2 (19.24)

Now, it is possible to show (Exercise 19.1) that

lim
n

2n−1∑
i=0

(∆W (ti))
2 = t (19.25)

in L2, so we have that∫ t

0

W (s)dW = lim
n

2n−1∑
i=0

W (ti)∆W (ti) (19.26)

=
1
2
W 2(t)− lim

n

2n−1∑
i=0

(∆W (ti))
2 (19.27)

=
1
2
W 2(t)− t

2
(19.28)

as required.
Clearly, something weird is going on here, and it would be good to get to the

bottom of this. At the very least, we’d like to be able to use change of variables,
so that we can find functions of stochastic integrals.

19.2 Itô’s Formula

Integrating
∫
WdW has taught us two things: first, we want to avoid evaluating

Itô integrals directly from the definition; and, second, there’s something funny
about change of variables in Itô integrals. A central result of stochastic calculus,
known as Itô’s formula, gets us around both difficulties, by showing how to write
functions of stochastic integrals as, themselves, stochastic integrals.

Definition 197 (Itô Process) If A is a non-anticipating measurable process,
B is Itô-integrable, and X0 is an L2 random variable independent of W , then
X(t) = X0 +

∫ t
0
A(s)ds +

∫ t
0
B(s)dW is an Itô process. This is equivalently

written dX = Adt+BdW .
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Lemma 198 Every Itô process is non-anticipating.

Proof: Clearly, the non-anticipating processes are closed under linear opera-
tions, so it’s enough to show that the three components of any Itô process are
non-anticipating. But a process which is always equal to X0 |= W (t) is clearly
non-anticipating. Similarly, since A(t) is non-anticipating,

∫
A(s)ds is too: its

natural filtration is smaller than that of A, so it cannot provide more infor-
mation about W (t), and A is, by assumption, non-anticipating. Finally, Itô
integrals are always non-anticipating, so

∫
B(s)dW is non-anticipating. �

Theorem 199 (Itô’s Formula (One-Dimension)) Suppose X is an Itô pro-
cess with dX = Adt+BdW . Let f(t, x) : R+×R 7→ R be a function with contin-
uous partial time derivative ∂f

∂t , and continuous second partial space derivative,
∂2f
∂x2 . Then F (t) = f(t,X(t)) is an Itô process, and

dF =
∂f

∂t
(t,X(t))dt+

∂f

∂x
(t,X(t))dX +

1
2
B2(t)

∂2f

dx2
(t,X(t))dt (19.29)

That is,

F (t)− F (0) = (19.30)∫ t

0

[
∂f

∂t
(s,X(s)) +A(s)

∂f

∂x
(s,X(s)) +

1
2
B2(s)

∂2f

∂x2
(s,X(s))

]
dt+

∫ t

0

B(s)
∂f

∂x
(s,X(s))dW

Proof: I will suppose first of all that f , and its partial derivatives appearing in
Eq. 19.29, are all bounded. (You can show that the general case of C2 functions
can be uniformly approximated by functions with bounded derivatives.) I will
further suppose that A and B are elementary processes, since in the last chapter
we saw how to use them to approximate general Itô-integrable functions. (If you
are worried about the interaction of all these approximations and simplifications,
I commend your caution, and suggest you step through the proof in the general
case.)

For each n, let ti = i t2n , as in the last section. Define ∆ti ≡ ti+1 − ti,
∆X(ti) = X(ti+1)−X(ti), etc. Thus

F (t) = f(t,X(t)) = f(0, X(0)) +
2n−1∑
i=0

∆f(ti, X(ti)) (19.31)
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Now we’ll approximate the increments of F by a Taylor expansion:

F (t) = f(0, X(0)) +
2n−1∑
i=0

∂f

∂t
∆ti (19.32)

+
2n−1∑
i=0

∂f

∂x
∆X(ti)

+
1
2

2n−1∑
i=0

∂2f

∂t2
(∆ti)

2

+
2n−1∑
i=0

∂2f

∂t∂x
∆ti∆X(ti)

+
1
2

2n−1∑
i=0

∂2f

∂x2
(∆X(ti))

2

+
2n−1∑
i=0

Ri

Because the derivatives are bounded, all the remainder terms Ri are o((∆ti)
2 +

(∆X(ti))
2). We will come back to showing that the remainders are harmless,

but for now let’s concentrate on the leading-order components of the Taylor
expansion.

First, as n→∞,

2n−1∑
i=0

∂f

∂t
∆ti →

∫ t

0

∂f

∂t
ds (19.33)

2n−1∑
i=0

∂f

∂x
∆X(ti) →

∫ t

0

∂f

∂x
dX (19.34)

≡
∫ t

0

∂f

∂x
A(s)dt+

∫ t

0

∂f

∂x
B(s)dW (19.35)

[You can use the definition in the last line to build up a theory of stochastic
integrals with respect to arbitrary Itô processes, not just Wiener processes.]

2n−1∑
i=0

∂2f

∂t2
(∆ti)

2 → 0
∫ t

0

∂2f

∂t2
ds = 0 (19.36)
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Next, since A and B are (by assumption) elementary,

2n−1∑
i=0

∂2f

∂x2
(∆X(ti))

2 =
2n−1∑
i=0

∂2f

∂x2
A2(ti) (∆ti)

2
(19.37)

+2
2n−1∑
i=0

∂2f

∂x2
A(ti)B(ti)∆ti∆W (ti)

+
2n−1∑
i=0

∂2f

∂x2
B2(ti)(∆W (ti))

2

The first term on the right-hand side, in (∆t)2, goes to zero as n increases.
Since A is square-integrable and ∂2f

∂x2 is bounded,
∑ ∂2f

∂x2A
2(ti)∆ti converges to

a finite value as ∆t→ 0, so multiplying by another factor ∆t, as n→∞, gives
zero. (This is the same argument as the one for Eq. 19.36.) Similarly for the
second term, in ∆t∆X:

lim
n

2n−1∑
i=0

∂2f

∂x2
A(ti)B(ti)∆ti∆W (ti) = lim

n

t

2n

∫ t

0

∂2f

∂x2
A(s)B(s)dW (19.38)

because A and B are elementary and the partial derivative is bounded. Now
apply the Itô isometry:

E

[(
t

2n

∫ t

0

∂2f

∂x2
A(s)B(s)dW

)2
]

=
t2

22n
E

[∫ t

0

(
∂2f

∂x2

)2

A2(s)B2(s)ds

]

The time-integral on the right-hand side is finite, since A and B are square-
integrable and the partial derivative is bounded, and so, as n grows, both sides
go to zero. But this means that, in L2,

2n−1∑
i=0

∂2f

∂x2
A(ti)B(ti)∆ti∆W (ti) → 0 (19.39)

The third term, in (∆X)2, does not vanish, but rather converges in L2 to a time
integral:

2n−1∑
i=0

∂2f

∂x2
B2(ti)(∆W (ti))

2 →
∫ t

0

∂2f

∂x2
B2(s)ds (19.40)

You will prove this in part b of Exercise 19.1.
The mixed partial derivative term has no counterpart in Itô’s formula, so it

needs to go away.

2n−1∑
i=0

∂2f

∂t∂x
∆ti∆X(ti) =

2n−1∑
i=0

∂2f

∂t∂x

[
A(ti)(∆ti)

2 +B(ti)∆ti∆W (ti)
]

(19.41)
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2n−1∑
i=0

∂2f

∂t∂x
A(ti)(∆ti)

2 → 0 (19.42)

2n−1∑
i=0

∂2f

∂t∂x
B(ti)∆ti∆W (ti) → 0 (19.43)

where the argument for Eq. 19.43 is the same as that for Eq. 19.36, while that
for Eq. 19.43 follows the pattern of Eq. 19.39.

Let us, as promised, dispose of the remainder term. Clearly,

(∆X)2 = A2(∆t)2 + 2AB∆t∆W +B2(∆W )2 (19.44)

= A2(∆t)2 + 2AB∆t∆W +B2∆t (19.45)

so, from the foregoing, it is clear that this goes to zero as ∆t → 0. Hence the
remainder term will vanish as n increases.

Putting everything together, we have that

F (t)− F (0) =
∫ t

0

[
∂f

∂t
+
∂f

∂x
A+

1
2
B2 ∂

2f

∂x2

]
dt+

∫ t

0

∂f

∂x
BdW (19.46)

exactly as required. This completes the proof, under the stated restrictions on
f , A and B; approximation arguments extend the result to the general case. �

Remark 1. Our manipulations in the course of the proof are often summa-
rized in the following multiplication rules for differentials: dtdt = 0, dWdt = 0,
dtdW = 0, and, most important of all,

dWdW = dt

This last is of course related to the linear growth of the variance of the increments
of the Wiener process.

Remark 2. Re-arranging Itô’s formula a little yields

dF =
∂f

∂t
dt+

∂f

∂x
dX +

1
2
∂2f

∂x2
dt (19.47)

The first two terms are what we expect from the ordinary rules of calculus; it’s
the third term which is new and strange. Notice that it disappears if ∂2f

∂x2 = 0.
When we come to stochastic differential equations, this will correspond to state-
independent noise.

Remark 3. One implication of Itô’s formula is that Itô processes are closed
under the application of C2 mappings.

Example 200 The integral
∫
WdW is now trivial. Let X(t) = W (t) (by setting

A = 0, B = 1 in the definition of an Itô process), and f(t, x) = x2/2. Applying
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Itô’s formula,

dF =
∂f

∂t
dt+

∂f

∂x
dW +

1
2
∂2f

∂x2
dt (19.48)

1
2
dW 2 = WdW +

1
2
dt (19.49)

1
2

∫
dW 2 =

∫
WdW +

1
2

∫
dt (19.50)∫ t

0

W (s)dW =
1
2
W 2(t)− t

2
(19.51)

All of this extends naturally to higher dimensions.

Definition 201 (Multidimensional Itô Process) Let A by an n-dimensional
vector of non-anticipating processes, B an n ×m matrix of Itô-integrable pro-
cesses, and W an m-dimensional Wiener process. Then

X(t) = X(0) +
∫ t

0

A(s)ds+
∫ t

0

B(s)dW (19.52)

dX = A(t)dt+B(t)dW (19.53)

is an n-dimensional Itô process.

Theorem 202 (Itô’s Formula (Multidimensional)) Let X(t) be an n-dimensional
Itô process, and let f(t, x) : R+ × Rn 7→ Rm have a continuous partial time
derivative and continuous second partial space derivatives. Then F (t) = f(t,X(t))
is an m-dimensional Itô process, whose kth component Fk is given by

dFk =
∂gk
∂t

dt+
∂gk
∂xi

dXi +
1
2

∂2gk
∂Xi∂Xj

dXidXj (19.54)

summing over repeated indices, with the understanding that dWidWj = δijdt,
dWidt = dtdWi = dtdt = 0.

Proof: Entirely parallel to the one-dimensional case, only with even more
algebra. �

It is also possible to define Wiener processes and stochastic integrals on
arbitrary curved manifolds, but this would take us way, way too far afield.

19.2.1 Stratonovich Integrals

It is possible to make the extra term in Eq. 19.47 go away, and have stochastic
differentials which work just like the ordinary ones. This corresponds to making
stochastic integrals limits of sums of the form∑

i

X

(
ti+1 + ti

2

)
∆W (ti)
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rather than the Itô sums we are using,∑
i

X(ti)∆W (ti)

That is, we could evade the Itô formula if we evaluated our test function in
the middle of intervals, rather than at their beginnning. This leads to what are
called Stratonovich integrals. However, while Stratonovich integrals give simpler
change-of-variable formulas, they have many other inconveniences: they are not
martingales, for instance, and the nice connections between the form of an SDE
and its generator, which we will see and use in the next chapter, go away.
Fortunately, every Stratonovich SDE can be converted into an Itô SDE, and
vice versa, by adding or subtracting the appropriate noise term.

19.2.2 Martingale Representation

One property of the Itô integral is that it is always a square-integrable martin-
gale. Remarkably enough, the converse is also true. In the interest of time, I
omit the proof of the following theorem; there is one using only tools we’ve seen
so far in Øksendal (1995, ch. 4).

Theorem 203 Let M(t) be a martingale, with E
[
M2(t)

]
< ∞ for all t ≥ 0.

Then there exists a unique process M ′(t), Itô-integrable for all finite positive t,
such that

M(t) = E [M(0)] +
∫ t

0

M ′(t)dW a.s. (19.55)

19.3 Stochastic Differential Equations

Definition 204 (Stochastic Differential Equation, Solutions) Let a(x) :
Rn 7→ Rn and b(x) : Rn 7→ Rnm be measurable functions (vector and matrix val-
ued, respectively), W an m-dimensional Wiener process, and X0 an L2 random
variable in Rn, independent of W . Then an Rn-valued stochastic process X on
R+ is a solution to the autonomous stochastic differential equation

dX = a(X)dt+ b(X)dW, X(0) = X0 (19.56)

when, with probability 1, it is equal to the corresponding Itô process,

X(t) = X0 +
∫ t

0

a(X(s))ds+
∫ s

0

b(X(s))dW a.s. (19.57)

The a term is called the drift, and the b term the diffusion.
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Remark 1: A given process X can fail to be a solution either because it
happens not to agree with Eq. 19.57, or, perhaps more seriously, because the
integrals on the right-hand side don’t even exist. This can, in particular, hap-
pen if b(X(t)) is anticipating. For a fixed choice of Wiener process, there are
circumstances where otherwise reasonable SDEs have no solution, for basically
this reason — the Wiener process is constructed in such a way that the class of
Itô processes is impoverished. This leads to the idea of a weak solution to Eq.
19.56, which is a pair X,W such that W is a Wiener process, with respect to
the appropriate filtration, and X then is given by Eq. 19.57. I will avoid weak
solutions in what follows.

Remark 2: In a non-autonomous SDE, the coefficients would be explicit
functions of time, a(t,X)dt + b(t,X)dW . The usual trick for dealing with
non-autonomous n-dimensional ODEs is turn them into autonomous n + 1-
dimensional ODEs, making xn+1 = t by decreeing that xn+1(t0) = t0, x′n+1 = 1
(Arnol’d, 1973). This works for SDEs, too: add time as an extra variable with
constant drift 1 and constant diffusion 0. Without loss of generality, therefore,
I’ll only consider autonomous SDEs.

Let’s now prove the existence of unique solutions to SDEs. First, recall how
we do this for ordinary differential equations. There are several approaches,
most of which carry over to SDEs, but one of the most elegant is the “method
of successive approximations”, or “Picard’s method” (Arnol’d, 1973, SS30–31)).
To construct a solution to dx/dt = f(x), x(0) = x0, this approach uses functions
xn(t), with xn+1(t) = x0+

∫ t
0
f(xn(s)ds, starting with x0(t) = x0. That is, there

is an operator P such that xn+1 = Pxn, and x solves the ODE iff it is a fixed
point of the operator. Step 1 is to show that the sequence xn is Cauchy on finite
intervals [0, T ]. Step 2 uses the fact that the space of continuous functions is
complete, with the topology of uniform convergence of compact sets — which,
for R+, is the same as uniform convergence on finite intervals. So, xn has a
limit. Step 3 is to show that the limit point must be a fixed point of P , that
is, a solution. Uniqueness is proved by showing that there cannot be more than
one fixed point.

Before plunging in to the proof, we need some lemmas: an algebraic triviality,
a maximal inequality for martingales, a consequent maximal inequality for Itô
processes, and an inequality from real analysis about integral equations.

Lemma 205 For any real numbers a and b, (a+ b)2 ≤ 2a2 + 2b2.

Proof: No matter what a and b are, a2, b2, and (a− b)2 are non-negative, so

(a− b)2 ≥ 0 (19.58)
a2 + b2 − 2ab ≥ 0 (19.59)

a2 + b2 ≥ 2ab (19.60)

2a2 + 2b2 ≥ a2 + 2ab+ b2 = (a+ b)2 (19.61)

�
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Definition 206 (Maximum Process) Given a stochastic process X(t), we
define its maximum process X∗(t) as sup0≤s≤t |X(s)|.

Remark: Example 78 was of course designed with malice aforethought.

Definition 207 Let QM(T ), T > 0, be the space of all non-anticipating pro-
cesses, square-integrable on [0, T ], with norm ‖X‖QM(T ) ≡ ‖X∗(T )‖2.

(Technically, this is only a norm on equivalence classes of processes, where
the equivalence relation is “is a version of”. You may make that amendment
mentally as you read what follows.)

Lemma 208 QM(T ) is a complete normed space for each T .

Proof: Identical to the usual proof that Lp spaces are complete.

Lemma 209 (Doob’s Martingale Inequalities) If M(t) is a continuous mar-
tingale, then, for all p ≥ 1, t ≥ 0 and ε > 0,

P (M∗(t) ≥ ε) ≤ E [|M(t)|p]
εp

(19.62)

‖M∗(t)‖p ≤ q‖M(t)‖p (19.63)

where q−1 + p−1 = 1. In particular, for p = q = 2,

E
[
(M∗(t))2

]
≤ 4E

[
M2(t)

]

Proof: See Propositions 7.15 and 7.16 in Kallenberg (pp. 128 and 129). �
These can be thought of as versions of the Markov inequality, only for mar-

tingales. They accordingly get used all the time.

Lemma 210 Let X(t) be an Itô process, X(t) = X0 +
∫ t
0
A(s)ds+

∫ t
0
B(s)dW .

Then there exists a constant C, depending only on T , such that, for all t ∈ [0, T ],

‖X‖2QM(t) ≤ C

(
E
[
X2

0

]
+ E

[∫ t

0

A2(s) +B2(s)ds
])

(19.64)

Proof: Clearly,

X∗(t) ≤ |X0|+
∫ t

0

|A(s)|ds+ sup
0≤s≤t

∣∣∣∣∫ s

0

B(s)dW
∣∣∣∣ (19.65)

(X∗(t))2 ≤ 2X2
0 + 2

(∫ t

0

|A(s)|ds
)2

+ 2
(

sup
0≤s≤t

∣∣∣∣∫ s

0

B(s′)dW
∣∣∣∣)2

(19.66)
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by Lemma 205. By Jensen’s inequality1,(∫ t

0

|A(s)|ds
)2

≤ t

∫ t

0

A2(s)ds (19.67)

Writing I(t) for
∫ t
0
B(s)dW , and noticing that it is a martingale, we have, from

Doob’s inequality (Lemma 209), E
[
(I∗(t))2

]
≤ 4E

[
I2(t)

]
. But, from Itô’s

isometry (Corollary 196), E
[
I2(t)

]
= E

[∫ t
0
B2(s)ds

]
. Putting all the parts

together, then,

E
[
(X∗(t))2

]
≤ 2E

[
X2

0

]
+ 2E

[
t

∫ t

0

A2(s)ds+
∫ t

0

B2(s)ds
]

(19.68)

and the conclusion follows, since t ≤ T . �
Remark: The lemma also holds for multidimensional Itô processes, and for

powers greater than two (though then the Doob inequality needs to be replaced
by a different one: see Rogers and Williams (2000, Ch. V, Lemma 11.5, p. 129)).

Definition 211 Given an SDE dX = a(X)dt+ b(X)dW with initial condition
X0, the corresponding integral operator PX0,a,b is defined for all Itô processes Y
as

PX0,a,bY (t) = X0 +
∫ t

0

a(Y (s))ds+
∫ t

0

b(Y (s))dW (19.69)

Lemma 212 Y is a solution of dX = a(X)dt + b(X)dW , X(0) = X0, if and
only if PX0,a,bY = Y a.s.

Proof: Obvious from the definitions. �

Lemma 213 If a and b are uniformly Lipschitz continuous, with constants Ka

and KB, then, for some positive D depending only on T , Ka and Kb,

‖PX0,a,bX − PX0,a,bY ‖
2
QM(t) ≤ D

∫ t

0

‖X − Y ‖QM(s)ds (19.70)

Proof: Since the SDE is understood to be fixed, abbreviate PX0,a,b by P .
Let X and Y be any two Itô processes. We want to find the QM(t) norm of

1Remember that Lebesgue measure isn’t a probability measure on [0, t], but 1
t
ds is a

probability measure, so we can apply Jensen’s inequality to that. This is where the t on the
right-hand side will come from.
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PX − PY .

|PX(t)− PY (t)| (19.71)

=
∣∣∣∣∫ t

0

a(X(s))− a(Y (s))dt+
∫ t

0

b(X(s))− b(Y (s))dW
∣∣∣∣

≤
∫ t

0

|a(X(s))− a(Y (s))| ds+
∫ t

0

|b(X(s))− b(Y (s))| dW (19.72)

≤
∫ t

0

Ka |X(s)− Y (s)| ds+
∫ t

0

Kb |X(s)− Y (s)| dW (19.73)

‖PX − PY ‖2QM(t) (19.74)

≤ C(K2
a +K2

b )E
[∫ t

0

|X(s)− Y (s)|2ds
]

≤ C(K2
a +K2

b )t
∫ t

0

‖X − Y ‖2QM(s)ds (19.75)

which, as t ≤ T , completes the proof. �

Lemma 214 (Gronwall’s Inequality) If f is continuous function on [0, T ]
such that f(t) ≤ c1 + c2

∫ t
0
f(s)ds, then f(t) ≤ c1e

c2t.

Proof: See Kallenberg, Lemma 21.4, p. 415. �

Theorem 215 (Existence and Uniquness of Solutions to SDEs in One Dimension)
Let X0, a, b and W be as in Definition 204, and let a and b be uniformly Lip-
schitz continuous. Then there exists a square-integrable, non-anticipating X(t)
which solves dX = a(X)dt+b(X)dW with initial condition X0, and this solution
is unique (almost surely).

Proof: I’ll first prove existence, along with square-integrability, and then
uniqueness. That X is non-anticipating follows from the fact that it is an Itô
process (Lemma 198). For concision, abbreviate PX0,a,b by P .

As with ODEs, iteratively construct approximate solutions. Fix a T > 0,
and, for t ∈ [0, T ], set

X0(t) = X0 (19.76)
Xn+1(t) = PXn(t) (19.77)

The first step is showing that Xn is Cauchy in QM(T ). Define φn(t) ≡
‖Xn+1(t)−Xn(t)‖2QM(t). Notice that φn(t) = ‖PXn(t)− PXn−1(t)‖2QM(t),
and that, for each n, φn(t) is non-decreasing in t (because of the supremum
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embedded in its definition). So, using Lemma 213,

φn(t) ≤ D

∫ t

0

‖Xn −Xn−1‖2QM(s)ds (19.78)

≤ D

∫ t

0

φn−1(s)ds (19.79)

≤ D

∫ t

0

φn−1(t)ds (19.80)

= Dtφn−1(0) (19.81)

≤ Dntn

n!
φ0(t) (19.82)

≤ Dntn

n!
φ0(T ) (19.83)

Since, for any constant c, cn/n! → 0, to get the successive approximations to be
Cauchy, we just need to show that φ0(T ) is finite, using Lemma 210.

φ0(T ) = ‖PX0,a,b,X0 −X0‖2QM(T ) (19.84)

=
∥∥∥∥∫ t

0

a(X0)ds+
∫ t

0

b(X0)dW
∥∥∥∥2

QM(T )

(19.85)

≤ CE

[∫ T

0

a2(X0) + b2(X0)ds

]
(19.86)

≤ CTE
[
a2(X0) + b2(X0)

]
(19.87)

Because a and b are Lipschitz, this will be finite ifX0 has a finite second moment,
which, by assumption, it does. So Xn is a Cauchy sequence in QM(T ), which
is a complete space, so Xn has a limit in QM(T ), call it X.

The next step is to show that X is a fixed point of the operator P . This is
true because PX is also a limit of the sequence Xn.

‖PX −Xn+1‖2QM(T ) = ‖PX − PXn‖2QM(T ) (19.88)

≤ DT‖X −Xn‖2QM(T ) (19.89)

which → 0 as n→∞. So PX is the limit of Xn+1, which means it is the limit
of Xn, and, since X is also a limit of Xn and limits are unique, PX = X. Thus,
by Lemma 212, X is a solution.

To prove uniqueness, suppose that there were another solution, Y . By
Lemma 212, PY = Y as well. So, with Lemma 213,

‖X − Y ‖2QM(t) = ‖PX − PY ‖2QM(t) (19.90)

≤ D

∫ t

0

‖X − Y ‖2QM(s)ds (19.91)

So, from Gronwall’s inequality (Lemma 214), we have that ‖X − Y ‖QM(t) ≤ 0
for all t, implying that X(t) = Y (t) a.s. �
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Remark: For an alternative approach, based on Euler’s method (rather than
Picard’s), see Fristedt and Gray (1997, §33.4). It has a certain appeal, but it
also involves some uglier calculations. For a side-by-side comparison of the two
methods, see Lasota and Mackey (1994).

Theorem 216 Theorem 215 also holds for multi-dimensional stochastic differ-
ential equations, provided a and b are uniformly Lipschitz in the appropriate
Euclidean norms.

Proof: Entirely parallel to the one-dimensional case, only with more algebra.
�

The conditions on the coefficients can be reduced to something like “locally
Lipschitz up to a stopping time”, but it does not seem profitable to pursue this
here. See Rogers and Williams (2000, Ch. V, Sec. 12).

19.4 Brownian Motion, the Langevin Equation,
and Ornstein-Uhlenbeck Processes

The Wiener process is not a realistic model of Brownian motion, because it
implies that Brownian particles do not have well-defined velocities, which is
absurd. Setting up a (somewhat) more realistic model will eliminate this ab-
surdity, and illustrate how SDEs can be used as models. I will first need to
summarize classical mechanics in one paragraph.

Classical mechanics starts with Newton’s laws of motion. The zeroth law,
implicit in everything, is that the laws of nature are differential equations in
position variables with respect to time. The first law says that they are not
first-order differential equations. The second law says that they are second-order
differential equations. The usual trick for higher-order differential equations is
to introduce supplementary variables, so that we have a higher-dimensional
system of first-order differential equations. The supplementary variable here is
momentum. Thus, for particle i, with mass mi,

d~xi
dt

=
~pi
mi

(19.92)

d~pi
dt

=
F (x,p, t)

mi
(19.93)

constitute the laws of motion. All the physical content comes from specifying
the force function F (x,p, t). We will consider only autonomous systems, so we
do not need to deal with forces which are explicit functions of time. Newton’s
third law says that total momentum is conserved, when all bodies are taken into
account.

Consider a large particle of (without loss of generality) mass 1, such as a
pollen grain, sitting in a still fluid at thermal equilibrium. What forces act on
it? One is drag. At a molecular level, this is due to the particle colliding with
the molecules (mass m) of the fluid, whose average momentum is zero. This
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typically results in momentum being transferred from the pollen to the fluid
molecules, and the amount of momentum lost by the pollen is proportional to
what it had, i.e., one term in d~p/dt is −γ~p. In addition, however, there will be
fluctuations, which will be due to the fact that the fluid molecules are not all at
rest. In fact, because the fluid is at equilibrium, the momenta of the molecules
will follow a Maxwell-Boltzmann distribution,

f(~pmolec) = (2πmkBT )−3/2
e
− 1

2
p2
molec

mkBT

where which is a zero-mean Gaussian with variancemkBT . Tracing this through,
we expect that, over short time intervals in which the pollen grain nonetheless
collides with a large number of molecules, there will be a random impulse (i.e.,
random change in momentum) which is Gaussian, but uncorrelated over shorter
sub-intervals (by the functional CLT). That is, we would like to write

d~p = −γ~pdt+DIdW (19.94)

where D is the diffusion constant, I is the 3 × 3 identity matrix, and W of
course is the standard three-dimensional Wiener process. This is known as the
Langevin equation in the physics literature, as this model was introduced by
Langevin in 1907 as a correction to Einstein’s 1905 model of Brownian motion.
(Of course, Langevin didn’t use Wiener processes and Itô integrals, which came
much later, but the spirit was the same.) If you like time-series models, you
might recognize this as a continuous-time version of an mean-reverting AR(1)
model, which explains why it also shows up as an interest rate model in financial
theory.

We can consider each component of the Langevin equation separately, be-
cause they decouple, and solve them easily with Itô’s formula:

d(eγtp) = DeγtdW (19.95)

eγtp(t) = p0 +D

∫ t

0

eγsdW (19.96)

p(t) = p0e
−γt +D

∫ t

0

e−γ(t−s)dW (19.97)

We will see in the next chapter a general method of proving that solutions of
equations like 19.94 are Markov processes; for now, you can either take that on
faith, or try to prove it yourself.

Assuming p0 is itself Gaussian, with mean 0 and variance σ2, then (using
Exercise 19.2), ~p always has mean zero, and the covariance is

cov (~p(t), ~p(s)) = σ2e−γ(s+t) +
D2

2γ

(
e−γ|s−t| − e−γ(s+t)

)
(19.98)

If σ2 = D2/2γ, then the covariance is a function of |s − t| alone, and the pro-
cess is weakly stationary. Such a solution of Eq. 19.94 is known as a stationary
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Ornstein-Uhlenbeck process. (Ornstein and Uhlenbeck provided the Wiener pro-
cesses and Itô integrals.)

Weak stationarity, and the fact that the Ornstein-Uhlenbeck process is Marko-
vian, allow us to say that the distribution N (0, D2/2γ) is invariant. Now, if
the Brownian particle began in equilibrium, we expect its energy to have a
Maxwell-Boltzmann distribution, which means that its momentum has a Gaus-
sian distribution, and the variance is (as with the fluid molecules) kBT . Thus,
kBT = D2/2γ, orD2 = 2γkbT . This is an example of what the physics literature
calls a fluctuation-dissipation relation, since one side of the equation involves
the magnitude of fluctuations (the diffusion coefficient D) and the other the re-
sponse to fluctuations (the frictional damping coefficient γ). Such relationships
turn out to hold quite generally at or near equilibrium, and are often summa-
rized by the saying that “systems respond to forcing just like fluctuations”. (Cf.
19.97.)

Oh, and that story I told you before about Brownian particles following
Wiener processes? It’s something of a lie told to children, or at least to proba-
bility theorists, but see Exercise 19.5.

For more on the physical picture of Brownian motion, fluctuation-dissipation
relations, and connections to more general thermodynamic processes in and out
of equilibrium, see Keizer (1987).2

19.5 Exercises

Exercise 19.1 Use the notation of Section 19.1 here.

a Show that
∑
i (∆W (ti))

2 converges on t (in L2) as n grows. Hint: Show
that the terms in the sum are IID, and that their variance shrinks suffi-
ciently fast as n grows. (You will need the fourth moment of a Gaussian
distribution.)

b If X(t) is measurable and non-anticipating, show that

lim
n

2n−1∑
i=0

X(ti)(∆W (ti))
2 =

∫ t

0

X(s)ds

in L2.

Exercise 19.2 For any fixed, non-random cadlag function f on R+, let If (t) =∫ t
0
f(s)dW .

a Show that E [If (t)] = 0 for all t.

b Show cov (If (t), If (s)) =
∫ t∧s
0

f2(u)du.

2Be warned that he perversely writes the probability of event A conditional on event B as
P (B|A), not P (A|B).
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c Show that If (t) is a Gaussian process.

Exercise 19.3 Consider

dX =
1
2
Xdt+

√
1 +X2dW (19.99)

a Show that there is a unique solution for every initial value X(0) = x0.

b It happens (you do not have to show this) that, for fixed x0, the the solution
has the form X(t) = φ(W (t)), where φ is a C2 function. Use Itô’s formula
to find the first two derivatives of φ, and then solve the resulting second-
order ODE to get φ.

c Verify that, with the φ you found in the previous part, φ(W (t)) solves Eq.
19.99 with initial condition X(0) = x0.

Exercise 19.4 Let X be an Itô process given by dX = Adt+ BdW . Use Itô’s
formula to prove that

f(X(t))− f(X(0))−
∫ t

0

[
A
∂f

∂x
+

1
2
B2 ∂

2f

∂x2

]
dt

where f is an C2 function, is a martingale.

Exercise 19.5 (Brownian Motion and the Ornstein-Uhlenbeck Process)
Consider a Brownian particle whose momentum follows a stationary Ornstein-
Uhlenbeck process, in one spatial dimension (for simplicity). Assume that its
initial position x(0) is fixed at the origin, and then x(t) =

∫ t
0
p(t)dt. Show that

as D → ∞ and D/γ → 1, the distribution of x(t) converges to a standard
Wiener process. Explain why this limit is a physically reasonable one.



Chapter 20

More on Stochastic
Differential Equations

Section 20.1 shows that the solutions of SDEs are diffusions, and
how to find their generators. Our previous work on Feller processes
and martingale problems pays off here. Some other basic properties
of solutions are sketched, too.

Section 20.2 explains the “forward” and “backward” equations
associated with a diffusion (or other Feller process). We get our
first taste of finding invariant distributions by looking for stationary
solutions of the forward equation.

Section 20.3 makes sense of the idea of white noise. This topic
will be continued in the next lecture, forming one of the bridges to
ergodic theory.

For the rest of this lecture, whenever I say “an SDE”, I mean “an SDE
satisfying the requirements of the existence and uniqueness theorem”, either
Theorem 215 (in one dimension) or Theorem 216 (in multiple dimensions). And
when I say “a solution”, I mean “a strong solution”. If you are really curious
about what has to be changed to accommodate weak solutions, see Rogers and
Williams (2000, ch. V, sec. 16–18).

20.1 Solutions of SDEs are Diffusions

Solutions of SDEs are diffusions: i.e., continuous, homogeneous strong Markov
processes.

Theorem 217 The solution of an SDE is non-anticipating, and has a version
with continuous sample paths. If X(0) = x is fixed, then X(t) is FWt -adapted.

123
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Proof: Every solution is an Itô process, so it is non-anticipating by Lemma
198. The adaptation for non-random initial conditions follows similarly. (Infor-
mally: there’s nothing else for it to depend on.) In the proof of the existence
of solutions, each of the successive approximations is continuous, and we bound
the maximum deviation over time, so the solution must be continuous too. �

Theorem 218 Let Xx be the process solving a one-dimensional SDE with non-
random initial condition X(0) = x. Then Xx forms a homogeneous strong
Markov family.

Proof: By Exercise 19.4, for every C2 function f ,

f(X(t))−f(X(0))−
∫ t

0

[
a(X(s))

∂f

∂x
(X(s)) +

1
2
b2(X(s))

∂2f

∂x2
(X(s))

]
ds (20.1)

is a martingale. Hence, for every x0, there is a unique, continuous solution to
the martingale problem with operator G = a(x) ∂∂x + 1

2b
2(x) ∂

2

∂x2 and function
class D = C2. Since the process is continuous, it is also cadlag. Therefore,
by Theorem 137, X is a homogeneous strong Markov family, whose generator
equals G on C2. �

Similarly, for a multi-dimensional SDE, where a is a vector and b is a matrix,
the generator extends1 ai(x)∂i+ 1

2 (bbT )ij(x)∂2
ij . Notice that the coefficients are

outside the differential operators.

Corollary 219 Solutions of SDEs are diffusions.

Proof: Obvious from Theorem 218, continuity, and Definition 177. �
Remark: To see what it is like to try to prove this without using our more

general approach, read pp. 103–114 in Øksendal (1995).

Theorem 220 Solutions of SDEs are Feller processes.

Proof: We need to show that (i) for every t > 0, Xy(t)
d→ Xx(t) as y → x, and

(ii) Xx(t)
P→ x as t → 0. But, since solutions are a.s. continuous, Xx(t) → x

with probability 1, automatically implying convergence in probability, so (ii) is
automatic.

1Here, and elsewhere, I am going to freely use the Einstein conventions for vector calculus:
repeated indices in a term indicate that you should sum over those indices, ∂i abbreviates

∂
∂xi

, ∂2
ij means ∂2

∂xi∂xj
, etc. Also, ∂t ≡ ∂

∂t
.
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To get (i), prove convergence in mean square (i.e. in L2), which implies
convergence in distribution.

E
[
|Xx(t)−Xy(t)|2

]
(20.2)

= E

[∣∣∣∣x− y +
∫ t

0

a(Xx(s))− a(Xy(s))ds+
∫ t

0

b(Xx(s))− b(Xy(s))dW
∣∣∣∣2
]

≤ |x− y|2 + E

[∣∣∣∣∫ t

0

a(Xx(s))− a(Xy(s))ds
∣∣∣∣2
]

(20.3)

+E

[∣∣∣∣∫ t

0

b(Xx(s))− b(Xy(s))dW
∣∣∣∣2
]

= |x− y|2 + E

[∣∣∣∣∫ t

0

a(Xx(s))− a(Xy(s))ds
∣∣∣∣2
]

(20.4)

+
∫ t

0

E
[
|b(Xx(s))− b(Xy(s))|2

]
ds

≤ |x− y|2 +K

∫ t

0

E
[
|Xx(s)−Xy(s)|2

]
ds (20.5)

for some K ≥ 0, using the Lipschitz properties of a and b. So, by Gronwall’s
Inequality (Lemma 214),

E
[
|Xx(t)−Xy(t)|2

]
≤ |x− y|2eKt (20.6)

This clearly goes to zero as y → x, so Xy(t) → Xx(t) in L2, which implies
convergence in distribution. �

Corollary 221 For a given SDE, convergence in distribution of the initial con-
dition implies convergence in distribution of the trajectories: if Y d→ X0, then
XY

d→ XX0 .

Proof: For every initial condition, the generator of the semi-group is the same
(Theorem 218, proof). Since the process is Feller for every initial condition
(Theorem 220), and a Feller semi-group is determined by its generator (Theorem
153), the process has the same evolution operator for every initial condition.
Hence, condition (ii) of Theorem 170 holds. This implies condition (iv) of that
theorem, which is the stated convergence. �

20.2 Forward and Backward Equations

You will often seen probabilists, and applied stochastics people, write about
“forward” and “backward” equations for Markov processes, sometimes with
the eponym “Kolmogorov” attached. We have already seen a version of the
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“backward” equation for Markov processes, with semi-group Kt and generator
G, in Theorem 125:

∂tKtf(x) = GKtf(x) (20.7)

Let’s unpack this a little, which will help see where the “backwards” comes from.
First, remember that the operators Kt are really just conditional expectation:

∂tE [f(Xt)|X0 = x] = GE [f(Xt)|X0 = x] (20.8)

Next, turn the expectations into integrals with respect to the transition proba-
bility kernels:

∂t

∫
µt(x, dy)f(y) = G

∫
µt(x, dy)f(y) (20.9)

Finally, assume that there is some reference measure λ� µt(x, ·), for all t ∈ T
and x ∈ Ξ. Denote the correspond transition densities by κt(x, y).

∂t

∫
dλκt(x, y)f(y) = G

∫
dλκt(x, y)f(y) (20.10)∫

dλf(y)∂tκt(x, y) =
∫
dλf(y)Gκt(x, y) (20.11)∫

dλf(y) [∂tκt(x, y)−Gκt(x, y)] = 0 (20.12)

Since this holds for arbitrary nice test functions f ,

∂tκt(x, y) = Gκt(x, y) (20.13)

The operator G alters the way a function depends on x, the initial state. That is,
this equation is about how the transition density κ depends on the starting point,
“backwards” in time. Generally, we’re in a position to know κ0(x, y) = δ(x−y);
what we want, rather, is κt(x, y) for some positive value of t. To get this, we
need the “forward” equation.

We obtain this from Lemma 122, which asserts that GKt = KtG.

∂t

∫
dλκt(x, y)f(y) = KtGf(x) (20.14)

=
∫
dλκt(x, y)Gf(y) (20.15)

Notice that here, G is altering the dependence on the y coordinate, i.e. the state
at time t, not the initial state at time 0. Writing the adjoint2 operator as G†,

∂t

∫
dλκt(x, y)f(y) =

∫
dλG†κt(x, y)f(y) (20.16)

∂tκt(x, y) = G†κt(x, y) (20.17)
2Recall that, in a vector space with an inner product, such as L2, the adjoint of an operator

A is another operator, defined through 〈f, Ag〉 = 〈A†f, g〉. Further recall that L2 is an inner-
product space, where 〈f, g〉 = E [f(X)g(X)].
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N.B., G† is acting on the y-dependence of the transition density, i.e., it says
how the probability density is going to change going forward from t.

In the physics literature, this is called the Fokker-Planck equation, because
Fokker and Planck (independently, so far as I know) discovered it, at least in
the special case of Langevin-type equations, in 1913, about 20 years before
Kolmogorov’s work on Markov processes. Notice that, writing νt for the distri-
bution of Xt, νt = ν0µt. Assuming νt has density ρt w.r.t. λ, one can get, by
integrating the forward equation over space,

∂tρt(x) = G†ρt(x) (20.18)

and this, too, is sometimes called the “Fokker-Planck equation”.
We saw, in the last section, that a diffusion process solving an equation with

drift terms ai(x) and diffusion terms bij(x) has the generator

Gf(x) = ai(x)∂if(x) +
1
2
(bbT )ij(x)∂

2
ijf(x) (20.19)

You can show — it’s an exercise in vector calculus, integration by parts, etc. —
that the adjoint to G is the differential operator

G†f(x) = −∂iai(x)f(x) +
1
2
∂2
ij(bb

T )ij(x)f(x) (20.20)

Notice that the space-dependence of the SDE’s coefficients now appears inside
the derivatives. Of course, if a and b are independent of x, then they simply
pull outside the derivatives, giving us, in that special case,

G†f(x) = −ai∂if(x) +
1
2
(bbT )ij∂

2
ijf(x) (20.21)

Let’s interpret this physically, imagining a large population of independent
tracer particles wandering around the state space Ξ, following independent
copies of the diffusion process. The second derivative term is easy: diffusion
tends to smooth out the probability density, taking probability mass away from
maxima (where f ′′ < 0) and adding it to minima. (Remember that bbT is posi-
tive semi-definite.) If ai is positive, then particles tend to move in the positive
direction along the ith axis. If ∂iρ is also positive, this means that, on average,
the point x sends more particles up along the axis than wander down, against
the gradient, so the density at x will tend to decline.

Example 222 (Wiener process, heat equation) Notice that (for diffusions
produced by SDEs) G† = G when a = 0 and b is constant over the state space.
This is the case with Wiener processes, where G = G† = 1

2∇
2. Thus, the heat

equation holds both for the evolution of observable functions of the Wiener pro-
cess, and for the evolution of the Wiener process’s density. You should convince
yourself that there is no non-negative integrable ρ such that Gρ(x) = 0.
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Example 223 (Ornstein-Uhlenbeck process) For the one-dimensional Ornstein-
Uhlenbeck process, the generator may be read off from the Langevin equation,

Gf(p) = −γp∂pf(p) +
1
2
D2∂2

ppf(p)

and the Fokker-Planck equation becomes

∂tρ(p) = γ∂p(pρ(p)) +D2 1
2
∂2
ppf(p)

It’s easily checked that ρ(p) = N (0, D2/2γ) gives ∂tρ = 0. That is, the long-run
invariant distribution can be found as a stationary solution of the Fokker-Planck
equation. See also Exercise 20.1.

20.3 White Noise

Scientists and engineers are often uncomfortable with the SDEs in the way
probabilists write them, because they want to divide through by dt and have
the result mean something. The trouble, of course, is that dW/dt does not,
in any ordinary sense, exist. They, however, are often happier ignoring this
inconvenient fact, and talking about “white noise” as what dW/dt ought to be.
This is not totally crazy. Rather, one can define ξ ≡ dW/dt as a generalized
derivative, one whose value at any given time is a random real linear functional,
rather than a random real number. Consequently, it only really makes sense in
integral expressions (like the solutions of SDEs!), but it can, in many ways, be
formally manipulated like an ordinary function.

One way to begin to make sense of this is to start with a standard Wiener
process W (t), and a C1 non-random function u(t), and to use integration by
parts:

d

dt
(uW ) = u

dW

dt
+
du

dt
W (20.22)

= u(t)ξ(t) + u̇(t)W (t) (20.23)∫ t

0

d

dt
(uW )ds =

∫ t

0

u̇(s)W (s) + u(s)ξ(s)ds (20.24)

u(t)W (t)− u(0)W (0) =
∫ t

0

u̇(s)W (s)ds+
∫ t

0

u(s)ξ(s)ds (20.25)∫ t

0

u(s)ξ(s)ds ≡ u(t)W (t)−
∫ t

0

u̇(s)W (s)ds (20.26)

We can take the last line to define ξ, and time-integrals within which it appears.
Notice that the terms on the RHS are well-defined without the Itô calculus: one
is just a product of two measurable random variables, and the other is the time-
integral of a continuous random function. With this definition, we can establish
some properties of ξ.
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Proposition 224 ξ(t) is a linear functional:∫ t

0

(a1u1(s) + a2u2(s))ξ(s)ds = a1

∫ t

0

u1(s)ξ(s)ds+a2

∫ t

0

u2(s)ξ(s)ds (20.27)

Proof:∫ t

0

(a1u1(s) + a2u2(s))ξ(s)ds (20.28)

= (a1u1(t) + a2u2(t))W (t)−
∫ t

0

(a1u̇1(s) + a2u̇2(s))W (s)ds

= a1

∫ t

0

u1(s)ξ(s)ds+ a2

∫ t

0

u2(s)ξ(s)ds (20.29)

�

Proposition 225 For all t, E [ξ(t)] = 0

Proof: ∫ t

0

u(s)E [ξ(s)] ds = E
[∫ t

0

u(s)ξ(s)ds
]

(20.30)

= E
[
u(t)W (t)−

∫ t

0

u̇(s)W (s)ds
]

(20.31)

= E [u(t)W (t)]−
∫ t

0

u̇(s)E [W (t)] ds (20.32)

= 0− 0 = 0 (20.33)

Proposition 226 For all u ∈ C1,
∫ t
0
u(s)ξ(s)ds =

∫ t
0
u(s)dW .

Proof: Apply Itô’s formula to the function f(t,W ) = u(t)W (t):

d(uW ) = W (t)u̇(t)dt+ u(t)dW (20.34)

u(t)W (t) =
∫ t

0

u̇(s)W (s)ds+
∫ t

0

u(t)dW (20.35)∫ t

0

u(t)dW = u(t)W (t)−
∫ t

0

u̇(s)W (s)ds (20.36)

=
∫ t

0

u(s)ξ(s)ds (20.37)

�
This can be used to extend the definition of white-noise integrals to any

Itô-integrable process.

Proposition 227 ξ has delta-function covariance: cov (ξ(t1), ξ(t2)) = δ(t1 −
t2).
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Proof: Since E [ξ(t)] = 0, we just need to show that E [ξ(t1)ξ(t2)] = δ(t1− t2).
Remember (Eq. 17.14 on p. 95) that E [W (t1)W (t2)] = t1 ∧ t2.∫ t

0

∫ t

0

u(t1)u(t2)E [ξ(t1)ξ(t2)] dt1dt2 (20.38)

= E
[∫ t

0

u(t1)ξ(t1)dt1
∫ t

0

u(t2)ξ(t2)dt2

]
(20.39)

= E

[(∫ t

0

u(t1)ξ(t1)dt1

)2
]

(20.40)

=
∫ t

0

E
[
u2(t1)

]
dt1 =

∫ t

0

u2(t1)dt1 (20.41)

using the preceding proposition, the Itô isometry, and the fact that u is non-
random. But ∫ t

0

∫ t

0

u(t1)u(t2)δ(t1 − t2)dt1dt2 =
∫ t

0

u2(t1)dt1 (20.42)

so δ(t1 − t2) = E [ξ(t1)ξ(t2)] = cov (ξ(t1), ξ(t2)). �

Proposition 228 ξ is weakly stationary.

Proof: Its mean is independent of time, and its covariance depends only on
|t1 − t2|, so it satisfies Definition 50. �

Proposition 229 ξ is Gaussian, and hence strongly stationary.

Proof: To show that it is Gaussian, use Exercise 19.2. Strong stationarity
follows from weak stationarity (Proposition 228) and the fact that it is Gaussian.
�

20.4 Exercises

Exercise 20.1 A conservative force is one derived from an external potential,
i.e., there is a function φ(x) giving energy, and F (x) = −dφ/dx. The equations
of motion for a body subject to a conservative force, drag, and noise read

dx =
p

m
dt (20.43)

dp = −γpdt+ F (x)dt+ σdW (20.44)

a Find the corresponding forward (Fokker-Planck) equation.

b Find a stationary density for this equation, at least up to normalization
constants. Hint: use separation of variables, i.e., ρ(x, p) = u(x)v(p).
You should be able to find the normalizing constant for the momentum
density v(p), but not for the position density u(x). (Its general form should
however be familiar from theoretical statistics: what is it?)
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c Show that your stationary solution reduces to that of the Ornstein-Uhlenbeck
process, if F (x) = 0.



Chapter 21

Spectral Analysis and L2
Ergodicity

Section 21.1 introduces the spectral representation of weakly sta-
tionary processes, and the central Wiener-Khinchin theorem con-
necting autocovariance to the power spectrum. Subsection 21.1.1
explains why white noise is “white”.

Section 21.2 gives our first classical ergodic result, the “mean
square” (L2) ergodic theorem for weakly stationary processes. Sub-
section 21.2.1 gives an easy proof of a sufficient condition, just using
the autocovariance. Subsection 21.2.2 gives a necessary and suffi-
cient condition, using the spectral representation.

Any reasonable real-valued function x(t) of time, t ∈ R, has a Fourier trans-
form, that is, we can write

x̃(ν) =
1
2π

∫ ∞

−∞
dteiνtx(t)

which can usually be inverted to recover the original function,

x(t) =
∫ ∞

−∞
dνe−iνtx̃(ν)

This one example of an “analysis”, in the original sense of resolving into parts,
of a function into a collection of orthogonal basis functions. (You can find the
details in any book on Fourier analysis, as well as the varying conventions on
where the 2π goes, the constraints on x̃ which arise from the fact that x is real,
etc.)

There are various reasons to prefer the trigonometric basis functions eiνt

over other possible choices. One is that they are invariant under translation
in time, which just changes phases1. This suggests that the Fourier basis will

1If t 7→ t + τ , then x̃(ν) 7→ eiντ x̃(ν).

132
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be particularly useful when dealing with time-invariant systems. For stochas-
tic processes, however, time-invariance is stationarity. This suggests that there
should be some useful way of doing Fourier analysis on stationary random func-
tions. In fact, it turns out that stationary and even weakly-stationary processes
can be productively Fourier-transformed. This is potentially a huge topic, es-
pecially when it’s expanded to include representing random functions in terms
of (countable) series of orthogonal functions. The spectral theory of random
functions connects Fourier analysis, disintegration of measures, Hilbert spaces
and ergodicity. This lecture will do no more than scratch the surface, cover-
ing, in succession, the basics of the spectral representation of weakly-stationary
random functions and the fundamental Wiener-Khinchin theorem linking co-
variance functions to power spectra, why white noise is called “white”, and the
mean-square ergodic theorem.

Good sources, if you want to go further, are the books of Bartlett (1955,
ch. 6) (from whom I’ve stolen shamelessly), the historically important and in-
spiring Wiener (1949, 1961), and of course Doob (1953). Loève (1955, ch. X) is
highly edifying, particular his discussion of Karhunen-Loève transforms, and the
associated construction of the Wiener process as a Fourier series with random
phases.

21.1 Spectral Representation of Weakly Station-
ary Procesess

This section will only handle spectral representations of real-valued one-parameter
processes in continuous time. Generalizations to vector-valued and multi-parameter
processes are straightforward; handling discrete time is actually in some ways
more irritating, because of limitations on allowable frequencies of Fourier com-
ponents (to the range from −π to π).

Definition 230 (Autocovariance Function) Suppose that, for all t ∈ T , X
is real and E

[
X2(t)

]
is finite. Then Γ(t1, t2) ≡ E [X(t1)X(t2)] is the auto-

covariance function of the process. If the process is weakly stationary, so that
Γ(t, t + τ) = Γ(0, τ) for all t, τ , write Γ(τ). If X(t) ∈ C, then Γ(t1, t2) ≡
E
[
X†(t1)X(t2)

]
, where † is complex conjugation.

Proposition 231 If X is real and weakly stationary, then Γ(τ) = Γ(−τ); if X
is complex and weakly stationary, then Γ(τ) = Γ†(−τ).

Proof: Direct substitution into the definitions. �
Remarks on terminology. It is common, when only dealing with one stochas-

tic process, to drop the qualifying “auto” and just speak of the covariance func-
tion; I probably will myself. It is also common (especially in the time series
literature) to switch to the (auto)correlation function, i.e., to normalize by the
standard deviations. Finally, be warned that the statistical physics literature
(e.g. Forster, 1975) uses “correlation function” to mean E [X(t1)X(t2)], i.e., the
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uncentered mixed second moment. This is a matter of tradition, not (despite
appearances) ignorance.

Definition 232 (Second-Order Process) A real-valued process X is second
order when E

[
X2(t)

]
<∞ for all t.

Definition 233 (Spectral Representation, Power Spectrum) A real-valued
process X on T has a complex-valued spectral process X̃, if it has a spectral
representation:

X(t) ≡
∫ ∞

−∞
e−iνtdX̃ν (21.1)

The power spectrum V (ν) ≡ E
[∣∣∣X̃(ν)

∣∣∣2].
Remark. The name “power spectrum” arises because this is proportional to

the amount of power (energy per unit time) carried by oscillations of frequency
≤ ν, at least in a linear system.

Notice that if a process has a spectral representation, then, roughly speaking,
for a fixed ω the amplitudes of the different Fourier components in X(t, ω) are
fixed, and shifting forward in time just involves changing their phases. (Making
this simple is why we have to allow X̃ to have complex values.)

Proposition 234 When it exists, X̃(ν) has right and left limits at every point
ν, and limits as ν → ±∞.

Proof: See Loève (1955, §34.4). You can prove this yourself, however, using
the material on characteristic functions in 36-752. �

Definition 235 The jump of the spectral process at ν, ∆X̃(ν) ≡ X̃(ν + 0) −
X̃(ν − 0).

Remark 1: As usual, X̃(ν+0) ≡ limh↓0 X̃(ν + h), and X̃(ν−0) ≡ limh↓0 X̃(ν − h).
The jump at ν is the difference between the right and left-hand limits at ν.

Remark 2: Some people call the set of points at which the jump is non-
zero the “spectrum”. This usage comes from functional analysis, but seems
needlessly confusing in the present context.

Proposition 236 Every weakly-stationary process has a spectral representa-
tion.

Proof: See Loève (1955, §34.4), or Bartlett (1955, §6.2). �
The spectral representation is another stochastic integral, and it can be made

sense of in the same way that we made sense of integrals with respect to the
Wiener process, by starting with elementary functions and building up from
there. Crucial in this development is the following property.
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Definition 237 (Orthogonal Increments) A one-parameter random func-
tion (real or complex) has orthogonal increments if, for t1 ≤ t2 ≤ t3 ≤ t4 ∈ T ,
the covariance of the increment from t1 to t2 and the increment from t3 to t4 is
always zero:

E
[(
X̃(ν4)− X̃(ν3)

)(
X̃(ν2)− X̃(ν1)

)†]
= 0 (21.2)

Proposition 238 The spectral process of a second-order process has orthogonal
increments if and only if the process is weakly stationary.

Sketch Proof: Assume, without loss of generality, that E [X(t)] = 0, so
E
[
X̃(ν)

]
= 0. “If”: We can write, using the fact that X(t) = X†(t) for real-

valued processes,

Γ(τ) = Γ(t, t+ τ) (21.3)
= E

[
X†(t)X(t+ τ)

]
(21.4)

= E
[∫ ∞

−∞

∫ ∞

−∞
eiν1te−iν2t+τdX̃†

ν1dX̃ν2

]
(21.5)

=
∫ ∞

−∞

∫ ∞

−∞
ei(ν1−ν2)te−iν2τE

[
dX̃†

ν1dX̃ν2

]
(21.6)

Since t is arbitrary, every term on the right must be independent of t, which im-
plies the orthogonality of the increments of X̃. “Only if”: if the increments are
orthogonal, then clearly the steps of the argument can be reversed to conclude
that Γ(t1, t2) depends only on t2 − t1. �

Definition 239 (Spectral Function, Spectral Density) The spectral func-
tion of a weakly stationary process is the function S(ν) appearing in the spectral
representation of its autocovariance:

Γ(τ) =
∫ ∞

−∞
e−iντdSν (21.7)

Remark. Some people prefer to talk about the spectral function as the
Fourier transform of the autocorrelation function, rather than of the autoco-
variance. This has the advantage that the spectral function turns out to be
a normalized cumulative distribution function (see Theorem 240 immediately
below), but is otherwise inconsequential.

Theorem 240 The spectral function exists for every weakly stationary process,
if Γ(τ) is continuous. Moreover, S(ν) ≥ 0, S is non-decreasing, S(−∞) = 0,
S(∞) = Γ(0), and limh↓0S(ν + h) and limh↓0 S(ν − h) exist for every ν.

Proof: Usually, by an otherwise-obscure result in Fourier analysis called Bochner’s
theorem. A more direct proof is due to Loève. Assume, without loss of gener-
ality, that E [X(t)] = 0.
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Start by defining

HT (ν) ≡ 1√
T

∫ T/2

−T/2
eiνtX(t)dt (21.8)

and define fT (ν) through H:

2πfT (ν) ≡ E
[
HT (ν)H†

T (ν)
]

(21.9)

= E

[
1
T

∫ T/2

−T/2

∫ T/2

−T/2
eiνt1X(t1)e−iνt2X†(t2)dt1dt2

]
(21.10)

=
1
T

∫ T/2

−T/2

∫ T/2

−T/2
eiν(t1−t2)E [X(t1)X(t2)] dt1dt2 (21.11)

=
1
T

∫ T/2

−T/2

∫ T/2

−T/2
eiν(t1−t2)Γ(t1 − t2)dt1dt2 (21.12)

=
∫ T

−T

(
1− |τ |

T

)
Γ(τ)eiντdτ (21.13)

Recall that Γ(τ) defines a non-negative quadratic form, meaning that∑
s,t

a†satΓ(t− s) ≥ 0

for any sets of times and any complex numbers at. This will in particular work if
the complex numbers lie on the unit circle and can be written eiνt. This means
that integrals ∫ ∫

eiν(t1−t2)Γ(t1 − t2)dt1dt2 ≥ 0 (21.14)

so fT (ν) ≥ 0.
Define φT (τ) as the integrand in Eq. 21.13, so that

fT (ν) =
1
2π

∫ ∞

−∞
φT (τ)eiντdτ (21.15)

which is recognizable as a proper Fourier transform. Now pick some N > 0 and
massage the equation so it starts to look like an inverse transform.

fT (ν)e−iνt =
1
2π

∫ ∞

−∞
φT (τ)eiντe−iνtdτ (21.16)(

1− |ν|
N

)
fT (ν)e−iνt =

1
2π

∫ ∞

−∞
φT (τ)eiντe−iνt

(
1− |ν|

N

)
dτ (21.17)
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Integrating over frequencies,∫ N

−N

(
1− |ν|

N

)
fT (ν)e−iνtdν (21.18)

=
∫ N

−N

1
2π

∫ ∞

−∞
φT (τ)eiντe−iνt

(
1− |ν|

N

)
dτdν

=
1
2π

∫ ∞

−∞
φT (τ)

(
sinN(τ − t)/2
N(τ − t)/2

)2

Ndτ (21.19)

(
1− |ν|

N

)
fT (ν) ≥ 0, so the left-hand side of the final equation is like a charac-

teristic function of a distribution, up to, perhaps, an over-all normalizing factor,
which will be φT (0) = Γ(0) > 0. Since Γ(τ) is continuous, φT (τ) is too, and so,
as N → ∞, the right-hand side converges uniformly on φT (t), but a uniform
limit of characteristic functions is still a characteristic function. Thus φT (t), too,
can be obtained from a characteristic function. Finally, since Γ(t) is the uniform
limit of φT (t) on every bounded interval, Γ(t) has a characteristic-function rep-
resentation of the stated form. This allows us to further conclude that S(ν) is
real-valued, non-decreasing, S(−∞) = 0 and S(∞) = Γ(0), and has both right
and left limits everywhere. �

There is a converse, with a cute constructive proof.

Theorem 241 Let S(ν) be any function with the properties described at the end
of Theorem 240. Then there is a weakly stationary process whose autocovariance
is of the form given in Eq. 21.7.

Proof: Define σ2 = Γ(0), F (ν) = S(ν)/σ2. Now F (ν) is a properly normal-
ized cumulative distribution function. Let N be a random variable distributed
according to F , and Φ ∼ U(0, 2π) be independent of A. Set X(t) ≡ σei(Φ−Nt).
Then E [X(t)] = σE

[
eiΦ
]
E
[
e−iNt

]
= 0. Moreover,

E
[
X†(t1)X(t2)

]
= σ2E

[
e−i(Φ−Nt1)ei(Φ−Nt2)

]
(21.20)

= σ2E
[
e−iN(t1−t2)

]
(21.21)

= σ2

∫ ∞

−∞
e−iν(t1−t2)dFnu (21.22)

= Γ(t1 − t2) (21.23)

�

Definition 242 The jump of the spectral function at ν, ∆S(ν), is S(ν + 0)−
S(ν − 0).

Proposition 243 ∆S(ν) ≥ 0.

Proof: Obvious from the fact that S(ν) is non-decreasing. �
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Theorem 244 (Wiener-Khinchin Theorem) If X is a weakly stationary
process, then its power spectrum is equal to its spectral function.

V (ν) ≡ E
[∣∣∣X̃(ν)

∣∣∣2] = S(ν) (21.24)

Proof: Assume, without loss of generality, that E [X(t)] = 0. Substitute the
spectral representation of X into the autocovariance, using Fubini’s theorem to
turn a product of integrals into a double integral.

Γ(τ) = E [X(t)X(t+ τ)] (21.25)
= E

[
X†(t)X(t+ τ)

]
(21.26)

= E
[∫ ∞

−∞

∫ ∞

−∞
e−i(t+τ)ν1eitν2dX̃ν1dX̃ν2

]
(21.27)

= E
[∫ ∞

−∞

∫ ∞

−∞
e−it(ν1−ν2)e−iτν2dX̃ν1dX̃ν2

]
(21.28)

=
∫ ∞

−∞

∫ ∞

−∞
e−it(ν1−ν2)e−iτν2E

[
dX̃ν1dX̃ν2

]
(21.29)

using the fact that integration and expectation commute to (formally) bring the
expectation inside the integral. Since X̃ has orthogonal increments, E

[
dX̃†

ν1dX̃ν2

]
=

0 unless ν1 = ν2. This turns the double integral into a single integral, and kills
the e−it(ν1−ν2) factor, which had to go away because t was arbitrary.

Γ(τ) =
∫ ∞

−∞
e−iτνE

[
d(X̃†

νX̃ν)
]

(21.30)

=
∫ ∞

−∞
e−iτνdVν (21.31)

using the definition of the power spectrum. Since Γ(τ) =
∫∞
−∞ e−iτνdVnu, it

follows that Sν and Vν differ by a constant, namely the value of V (−∞), which
can be chosen to be zero without affecting the spectral representation of X. �

21.1.1 How the White Noise Lost Its Color

Why is white noise, as defined in Section 20.3, called “white”? The answer is
easy, given the Wiener-Khinchin relation in Theorem 244.

Recall from Proposition 227 that the autocovariance function of white noise
is δ(t1 − t2). Recall from general analysis that one representation of the delta
function is the following Fourier integral:

δ(t) =
1
2π

∫ ∞

−∞
dνeiνt
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(This can be “derived” from inserting the definition of the Fourier transform
into the inverse Fourier transform, among other, more respectable routes.) Ap-
pealing then to the theorem, S(ν) = 1

2π for all ν. That is, there is equal power at
all frequencies, just as white light is composed of light of all colors (frequencies),
mixed with equal intensity.

Relying on this analogy, there is an elaborate taxonomy red, pink, black,
brown, and other variously-colored noises, depending on the shape of their power
spectra. The value of this terminology has honestly never been very clear to
me, but the curious reader is referred to the (very fun) book of Schroeder (1991)
and references therein.

21.2 The Mean-Square Ergodic Theorem

Ergodic theorems relate functionals calculated along individual sample paths
(say, the time average, T−1

∫ T
0
dtX(t), or the maximum attained value) to func-

tionals calculated over the whole distribution (say, the expectation, E [X(t)], or
the expected maximum). The basic idea is that the two should be close, and they
should get closer the longer the trajectory we use, because in some sense any
one sample path, carried far enough, is representative of the whole distribution.
Since there are many different kinds of functionals, and many different modes of
stochastic convergence, there are many different kinds of ergodic theorem. The
classical ergodic theorems say that time averages converge on expectations2, ei-
ther in Lp or a.s. (both implying convergence in distribution or in probability).
The traditional centerpiece of ergodic theorem is Birkhoff’s “individual” ergodic
theorem, asserting a.s. convergence. We will see its proof, but it will need a lot
of preparatory work, and it requires strict stationarity. By contrast, the L2, or
“mean square”, ergodic theorem, attributed to von Neumann3 is already in our
grasp, and holds for weakly stationary processes.

We will actually prove it twice, once with a fairly transparent sufficient condi-
tion, and then again with a more complicated necessary-and-sufficient condition.
The more complicated proof will wait until next lecture.

21.2.1 Mean-Square Ergodicity Based on the Autocovari-
ance

First, the easy version, which gives an estimate of the rate of convergence.
(What I say here is ripped off from the illuminating discussion in (Frisch, 1995,
sec. 4.4, especially pp. 49–50).)

Definition 245 (Time Averages) When X is a one-sided, continuous-parameter
random process, we say that its time average between times T1 and T2 is X(T1, T2) ≡

2Proverbially: “time averages converge on space averages”, the space in question being
the state space Ξ; or “converge on phase averages”, since physicists call certain kinds of state
space “phase space”.

3See von Plato (1994, ch. 3) for a fascinating history of the development of ergodic theory
through the 1930s, and its place in the history of mathematical probability.
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(T2 − T1)
−1 ∫ T2

T1
dtX(t). When we only mention one time argument, by default

the time average is from 0 to T , X(T ) ≡ X(0, T ).

(Only considering time averages starting from zero involves no loss of generality
for weakly stationary processes: why?)

Theorem 246 Let X(t) be a weakly stationary process, E [X(t)] = 0. If
∫∞
0
dτ |Γ(τ)| <

∞, then X(T ) L2→ 0 as T →∞.

Proof: Use Fubini’s theorem to to the square of the integral into a double
integral, and then bring the expectation inside it:

E

( 1
T

∫ T

0

dtX(t)

)2
 = E

[
1
T 2

∫ T

0

∫ T

0

dt1dt2X(t1)X(t2)

]
(21.32)

=
1
T 2

∫ T

0

∫ T

0

dt1dt2E [X(t1)X(t2)] (21.33)

=
1
T 2

∫ T

0

∫ T

0

dt1dt2Γ(t1 − t2) (21.34)

=
2
T 2

∫ T

0

dt1

∫ t1

0

dτΓ(τ) (21.35)

≤ 2
T 2

∫ T

0

dt1

∫ ∞

0

dτ |Γ(τ)| (21.36)

=
2
T

∫ ∞

0

dτ |Γ(τ)| (21.37)

As T →∞, this → 0. �
Remark. From the proof, we can see that the rate of convergence of the

mean-square of
∥∥X(T )

∥∥
2

2
is (at least) O(1/T ). This would give a root-mean-

square (rms) convergence rate of O(1/
√
T ), which is what the naive statistician

who ignored inter-temporal dependence would expect from the central limit
theorem. (This ergodic theorem says nothing about the form of the distribution
of X(T ) for large T . We will see that, under some circumstances, it is Gaussian,
but that needs stronger assumptions [forms of “mixing”] than we have imposed.)
The naive statistician would expect that the mean-square time average would go
like Γ(0)/T , since Γ(0) = E

[
X2(t)

]
= Var [X(t)]. The proportionality constant

is instead
∫∞
0
dτ |Γ(τ)|. This is equal to the naive guess for white noise, and for

other collections of IID variables, but not in the general case. This leads to the
following

Definition 247 (Integral Time Scale) The integral time scale of a weakly-
stationary random process, E [X(t)] = 0, is

τint ≡
∫∞
0
dτ |Γ(τ)|
Γ(0)

(21.38)
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Notice that τint does, indeed, have units of time.

Corollary 248 Under the conditions of Theorem 246,

Var
[
X(T )

]
≤ 2Var [X(0)]

τint

T
(21.39)

Proof: Since X(t) is centered, E
[
X(T )

]
= 0, and

∥∥X(T )
∥∥

2

2
= Var

[
X(T )

]
.

Everything else follows from re-arranging the bound in the proof of Theorem
246, Definition 247, and the fact that Γ(0) = Var [X(0)]. �

As a consequence of the corollary, if T � τint, then the variance of the time
average is negigible compared to the variance at any one time.

21.2.2 Mean-Square Ergodicity Based on the Spectrum

Let’s warm up with some lemmas of a technical nature. The first relates the
jumps of the spectral process X̃(ν) to the jumps of the spectral function S(ν).

Lemma 249 For a weakly stationary process, E
[∣∣∣∆X̃(ν)

∣∣∣2] = ∆S(ν).

Proof: This follows directly from the Wiener-Khinchin relation (Theorem 244).
�

Lemma 250 The jump of the spectral function at ν is given by

∆S(ν) = lim
T→∞

1
T

∫ T

0

Γ(τ)eiντdτ (21.40)

Proof: This is a basic inversion result for characteristic functions. It should
become plausible by thinking of this as getting the Fourier transform of Γ as T
grows. �

Lemma 251 If X is weakly stationary, then for any real f , eiftX(T ) converges
in L2 to ∆X̃(f).

Proof: Start by looking at the squared modulus of the time average for finite
time. ∣∣∣∣∣ 1T

∫ T

0

eiftX(t)dt

∣∣∣∣∣
2

(21.41)

=
1
T 2

∫ T

0

∫ T

0

e−if(t1−t2)X†(t1)X(t2)dt1dt2

=
1
T 2

∫ T

0

∫ T

0

e−if(t1−t2)
∫ ∞

−∞
eiν1t1dX̃ν1

∫ ∞

−∞
e−iν2t2dX̃ν2 (21.42)

=
1
T 2

∫ T

0

∫ ∞

−∞
dt1dX̃ν1e

it1(f−ν1)
∫ T

0

∫ ∞

−∞
dt2dX̃ν2e

−it2(f−ν2) (21.43)
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As T → ∞, these integrals pick out ∆X̃(f) and ∆X̃†(f). So, eiftX(T ) L2→
∆X̃(f). �

Notice that the limit provided by the lemma is a random quantity. What’s
really desired, in most applications, is convergence to a deterministic limit,
which here would mean convergence (in L2) to zero.

Theorem 252 (Mean-Square Ergodic Theorem) If X is weakly station-
ary, and E [X(t)] = 0, then X(t) converges in L2 to 0 iff

limT−1

∫ T

0

dτΓ(τ) = 0 (21.44)

Proof: Taking f = 0 in Lemma 251, X(T ) L2→ ∆X̃(0), the jump in the spectral
function at zero. Let’s show that the (i) expectation of this jump is zero, and
that (ii) its variance is given by the integral expression on the LHS of Eq.
21.44. For (i), because X(T ) L2→ Y , we know that E

[
X(T )

]
→ E [Y ]. But

E
[
X(T )

]
= E [X](T ) = 0. So E

[
∆X̃(0)

]
= 0. For (ii), Lemma 249, plus the

fact that E
[
∆X̃(0)

]
= 0, shows that the variance is equal to the jump in the

spectrum at 0. But, by Lemma 250 with ν = 0, that jump is exactly the LHS
of Eq. 21.44. �

Remark 1: Notice that if the integral time is finite, then the integral condi-
tion on the autocovariance is automatically satisfied, but not vice versa, so the
hypotheses here are strictly weaker than in Theorem 246.

Remark 2: One interpretation of the theorem is that the time-average is
converging on the zero-frequency component of the spectral process. If there is
a jump at 0, then this has finite variance; if not, not.

Remark 3: Lemma 251 establishes the L2 convergence of time-averages of
the form

1
T

∫ T

0

eiftX(t)dt

for any real f . Specifically, from Lemma 249, the mean-square of this variable is
converging on the jump in the spectrum at f . While the ergodic theorem itself
only needs the f = 0 case, this result is useful in connection with estimating
spectra from time series (Doob, 1953, ch. X, §7).

21.3 Exercises

Exercise 21.1 It is often convenient to have a mean-square ergodic theorem for
discrete-time sequences rather than continuous-time processes. If the dt in the
definition of X is re-interpreted as counting measure on N, rather than Lebesgue
measure on R+, does the proof of Theorem 246 remain valid? (If yes, say why;
if no, explain where the argument fails.)
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Exercise 21.2 State and prove a version of Theorem 246 which does not as-
sume that E [X(t)] = 0.

Exercise 21.3 Suppose X is a weakly stationary process, and f is a measurable
function such that ‖f(X0)‖2 <∞. Is f(X) a weakly stationary process? (If yes,
prove it; if not, give a counter-example.)

Exercise 21.4 Suppose the Ornstein-Uhlenbeck process is has its invariant dis-
tribution as its initial distribution, and is therefore weakly stationary. Does
Theorem 246 apply?



Chapter 22

Large Deviations for
Small-Noise Stochastic
Differential Equations

This lecture is at once the end of our main consideration of dif-
fusions and stochastic calculus, and a first taste of large deviations
theory. Here we study the divergence between the trajectories pro-
duced by an ordinary differential equation, and the trajectories of
the same system perturbed by a small amount of white noise.

Section 22.1 establishes that, in the small noise limit, the SDE’s
trajectories converge in probability on the ODE’s trajectory. This
uses Feller-process convergence.

Section 22.2 upper bounds the rate at which the probability of
large deviations goes to zero as the noise vanishes. The methods are
elementary, but illustrate deeper themes to which we will recur once
we have the tools of ergodic and information theory.

In this chapter, we will use the results we have already obtained about
SDEs to give a rough estimate of a basic problem, frequently arising in practice1

namely taking a system governed by an ordinary differential equation and seeing
how much effect injecting a small amount of white noise has. More exactly,
we will put an upper bound on the probability that the perturbed trajectory
goes very far from the unperturbed trajectory, and see the rate at which this
probability goes to zero as the amplitude ε of the noise shrinks; this will be

1For applications in statistical physics and chemistry, see Keizer (1987). For applications
in signal processing and systems theory, see Kushner (1984). For applications in nonparamet-
ric regression and estimation, and also radio engineering (!) see Ibragimov and Has’minskii
(1979/1981). The last book is especially recommended for those who care about the connec-
tions between stochastic process theory and statistical inference, but unfortunately expound-
ing the results, or even just the problems, would require a too-long detour through asymptotic
statistical theory.

144
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O(e−Cε
2
). This will be our first illustration of a large deviations calculation. It

will be crude, but it will also introduce some themes to which we will return
(inshallah!) at greater length towards the end of the course. Then we will see
that the major improvement of the more refined tools is to give a lower bound
to match the upper bound we will calculate now, and see that we at least got
the logarithmic rate right.

I should say before going any further that this example is shamelessly ripped
off from Freidlin and Wentzell (1998, ch. 3, sec. 1, pp. 70–71), which is the
book on the subject of large deviations for continuous-time processes.

22.1 Convergence in Probability of SDEs to ODEs

To begin with, consider an unperturbed ordinary differential equation:

d

dt
x(t) = a(x(t)) (22.1)

x(0) = x0 ∈ Rd (22.2)

Assume that a is uniformly Lipschitz-continuous (as in the existence and unique-
ness theorem for ODEs, and more to the point for SDEs). Then, for the given,
non-random initial condition, there exists a unique continuous function x which
solves the ODE.

Now, for ε > 0, consider the SDE

dXε = a(Xε)dt+ εdW (22.3)

where W is a standard d-dimensional Wiener process, with non-random ini-
tial condition Xε(0) = x0. Theorem 216 clearly applies, and consequently so
does Theorem 220, meaning Xε is a Feller diffusion with generator Gεf(x) =
ai(x)∂if ′(x) + ε2

2 ∇
2f(x).

Write X0 for the deterministic solution of the ODE.
Our first assertion is that Xε

d→ X0 as ε → 0. Notice that X0 is a Feller
process2, whose generator is G0 = ai(x)∂i. We can apply Theorem 170 on
convergence of Feller processes. Take the class of functions with bounded second
derivatives. This is clearly a core for G0, and for every Gε. For every function
f in this class,

‖Gεf −G0f‖∞ =
∥∥∥∥ai∂if(x) +

ε2

2
∇2f(x)− ai∂if(x)

∥∥∥∥
∞

(22.4)

=
ε2

2

∥∥∇2f(x)
∥∥
∞ (22.5)

which goes to zero as ε→ 0. But this is condition (i) of the convergence theorem,
which is equivalent to condition (iv), that convergence in distribution of the

2You can amuse yourself by showing this. Remember that Xy(t)
d→ Xx(t) is equivalent to

E [f(Xt)|X0 = y] → E [f(Xt)|X0 = x] for all bounded continuous f , and the solution of an
ODE depends continuously on its initial condition.
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initial condition implies convergence in distribution of the whole trajectory.
Since the initial condition is the same non-random point x0 for all ε, we have
Xε

d→ X0 as ε → 0. In fact, since X0 is non-random, we have that Xε
P→ X0.

That last assertion really needs some consideration of metrics on the space of
continuous random functions to make sense (see Appendix A2 of Kallenberg),
but once that’s done, the upshot is

Theorem 253 Let ∆ε(t) = |Xε(t)−X0(t)|. For every T > 0, δ > 0,

lim
ε→0

P
(

sup
0≤t≤T

∆ε(t) > δ

)
= 0 (22.6)

Or, using the maximum-process notation, for every T > 0,

∆(T )∗ P→ 0 (22.7)

Proof: See above. �
This is a version of the weak law of large numbers, and nice enough in its

own way. One crucial limitation, however, is that it tells us nothing about the
rate of convergence. That is, it leaves us clueless about how big the noise can
be, while still leaving us in the small-noise limit. If the rate of convergence were,
say, O(ε1/100), then this would not be very useful. (In fact, if the convergence
were that slow, we should be really suspicious of numerical solutions of the
unperturbed ODE.)

22.2 Rate of Convergence; Probability of Large
Deviations

Large deviations theory is essentially a study of rates of convergence in prob-
abilistic limit theorems. Here, we will estimate the rate of convergence: our
methods will be crude, but it will turn out that even more refined estimates
won’t change the rate, at least not by more than log factors.

Let’s go back to the difference between the perturbed and unperturbed tra-
jectories, going through our now-familiar procedure.

Xε(t)−X0(t) =
∫ t

0

[a(Xε(s))− a(X0(s))] ds+ εW (t) (22.8)

∆ε(t) ≤
∫ t

0

|a(Xε(s))− a(X0(s))| ds+ ε|W (t)| (22.9)

≤ Ka

∫ t

0

∆ε(s)ds+ ε|W (t)| (22.10)

∆∗
ε (T ) ≤ εW ∗(T ) +Ka

∫ t

0

∆∗
ε (s)ds (22.11)

Applying Gronwall’s Inequality (Lemma 214),

∆∗
ε (T ) ≤ εW ∗(T )eKaT (22.12)
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The only random component on the RHS is the supremum of the Wiener process,
so we’re in business, at least once we take on two standard results, one about
the Wiener process itself, the other just about multivariate Gaussians.

Lemma 254 For a standard Wiener process, P (W ∗(t) > a) = 2P (|W (t)| > a).

Proof: Proposition 13.13 (pp. 256–257) in Kallenberg. �

Lemma 255 If Z is a d-dimensional standard Gaussian (i.e., mean 0 and co-
variance matrix I), then

P (|Z| > z) ≤ 2zd−2e−z
2/2

2d/2Γ(d/2)
(22.13)

for sufficiently large z.

Proof: Each component of Z, Zi ∼ N (0, 1). So |Z| =
√∑d

i=1 Z
2
i has the

density function (see, e.g., (Cramér, 1945, sec. 18.1, p. 236))

f(z) =
2

2d/2σdΓ(d/2)
zd−1e−

z2

2σ2

This is the d-dimensional Maxwell-Boltzmann distribution, sometimes called the
χ-distribution, because |Z|2 is χ2-distributed with d degrees of freedom. Notice
that P (|Z| ≥ z) = P

(
|Z|2 ≥ z2

)
, so we will be able to solve this problem in

terms of the χ2 distribution. Specifically, P
(
|Z|2 ≥ z2

)
= Γ(d/2, z2/2)/Γ(d/2),

where Γ(r, a) is the upper incomplete gamma function. For said function, for
every r, Γ(r, a) ≤ ar−1e−a for sufficiently large a (Abramowitz and Stegun,
1964, Eq. 6.5.32, p. 263). Hence (for sufficiently large z)

P (|Z| ≥ z) = P
(
|Z|2 ≥ z2

)
(22.14)

=
Γ(d/2, z2/2)

Γ(d/2)
(22.15)

≤
(
z2
)d/2−121−d/2e−z

2/2

Γ(d/2)
(22.16)

=
2zd−2e−z

2/2

2d/2Γ(d/2)
(22.17)

�

Theorem 256 In the limit as ε→ 0, for every δ > 0, T > 0,

log P (∆∗
ε (T ) > δ) ≤ O(ε−2) (22.18)
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Proof: Start by directly estimating the probability of the deviation, using
preceding lemmas.

P (∆∗
ε (T ) > δ) ≤ P

(
|W |∗(T ) >

δe−KaT

ε

)
(22.19)

= 2P
(
|W (T )| > δe−KaT

ε

)
(22.20)

≤ 4
2d/2Γ(d/2)

(
δ2e−2KaT

ε2

)d/2−1

e−
δ2e−2KaT

2ε2 (22.21)

if ε is sufficiently small, so that ε−1 is sufficiently large to apply Lemma 255.
Now take the log and multiply through by ε2:

ε2 log P (∆∗
ε (T ) > δ) (22.22)

≤ ε2 log
4

2d/2Γ(d/2)
+ ε2

(
d

2
− 1
)[

log δ2e−2KaT − 2 log ε
]
− δ2e−2KaT

lim
ε↓0

ε2 log P (∆∗
ε (T ) > δ) ≤ −δ2e−2KaT (22.23)

since ε2 log ε→ 0, and the conclusion follows. �
Notice several points.

1. Here ε gauges the size of the noise, and we take a small noise limit. In many
forms of large deviations theory, we are concerned with large-sample (N →
∞) or long-time (T → ∞) limits. In every case, we will identify some
asymptotic parameter, and obtain limits on the asymptotic probabilities.
There are deviations inequalities which hold non-asymptotically, but they
have a different flavor, and require different machinery. (Some people are
made uncomfortable by an ε2 rate, and prefer to write the SDE dX =
a(X)dt+

√
εdW so as to avoid it. I don’t get this.)

2. The magnitude of the deviation δ does not change as the noise becomes
small. This is basically what makes this a large deviations result. There
is also a theory of moderate deviations, which with any luck we’ll be able
to at least touch on.

3. We only have an upper bound. This is enough to let us know that the
probability of large deviations becomes exponentially small. But we might
be wrong about the rate — it could be even faster than we’ve estimated.
In this case, however, it’ll turn out that we’ve got at least the order of
magnitude correct.

4. We also don’t have a lower bound on the probability, which is something
that would be very useful in doing reliability analyses. It will turn out
that, under many circumstances, one can obtain a lower bound on the
probability of large deviations, which has the same asymptotic dependence
on ε as the upper bound.
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5. Suppose we’re right about the rate (which, it will turn out, we are), and
it holds both from above and below. It would be nice to be able to say
something like

P (∆∗
ε (T ) > δ) → C1(δ, T )e−C2(δ,T )ε−2

(22.24)

rather than
ε2 log P (∆∗

ε (T ) > δ) → −C2(δ, T ) (22.25)

The difficulty with making an assertion like 22.24 is that the large devia-
tion probability actually converges on any function which goes to asymp-
totically to zero! So, to extract the actual rate of dependence, we need to
get a result like 22.25.

More generally, one consequence of Theorem 256 is that SDE trajectories
which are far from the trajectory of the ODE have exponentially small proba-
bilities. The vast majority of the probability will be concentrated around the
unperturbed trajectory. Reasonable sample-path functionals can therefore be
well-approximated by averaging their value over some small (δ) neighborhood of
the unperturbed trajectory. This should sound very similar to Laplace’s method
for the evaluate of asymptotic integrals in Euclidean space, and in fact one of
the key parts of large deviations theory is an extension of Laplace’s method to
infinite-dimensional function spaces.

In addition to this mathematical content, there is also a close connection
to the principle of least action in physics. In classical mechanics, the system
follows the trajectory of least action, the “action” of a trajectory being the
integral of the kinetic minus potential energy along that path. In quantum
mechanics, this is no longer an axiom but a consequence of the dynamics: the
action-minimizing trajectory is the most probable one, and large deviations from
it have exponentially small probability. Similarly, the theory of large deviations
can be used to establish quite general stochastic principles of least action for
Markovian systems.3

3For a fuller discussion, see Eyink (1996),Freidlin and Wentzell (1998, ch. 3).



Chapter 23

Ergodicity

Section 23.1 gives a general orientation to ergodic theory, which
we will study in discrete time.

Section 23.2 introduces dynamical systems and their invariants,
the setting in which we will prove our ergodic theorems.

Section 23.3 considers time averages, defines what we mean for
a function to have an ergodic property (its time average converges),
and derives some consequences.

Section 23.4 defines asymptotic mean stationarity, and shows
that, with AMS dynamics, the limiting time average is equivalent to
conditioning on the invariant sets.

23.1 General Remarks

To begin our study of ergodic theory, let us consider a famous1 line from Gne-
denko and Kolmogorov (1954, p. 1):

In fact, all epistemological value of the theory of probability is
based on this: that large-scale random phenomena in their collective
action create strict, nonrandom regularity.

Now, this is how Gnedenko and Kolmogorov introduced their classic study of the
limit laws for independent random variables, but most of the random phenomena
we encounter around us are not independent. Ergodic theory is a study of
how large-scale dependent random phenomena nonetheless create nonrandom
regularity. The classical limit laws for IID variables X1, X2, . . . assert that,
under the right conditions, sample averages converge on expectations,

Xn ≡
1
n

n∑
i=1

Xi → E [Xi]

1Among mathematical scientists, anyway.

150
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where the sense of convergence can be “almost sure” (strong law of large num-
bers), “Lp” (pth mean), “in probability” (weak law), etc., depending on the
hypotheses we put on the Xi. One meaning of this convergence is that suffi-
ciently large random samples are representative of the entire population — that
Xn makes a good estimate of E [X].

The ergodic theorems, likewise, assert that for dependent sequencesX1, X2, . . .,
time averages converge on expectations

Xt ≡
1
t

t∑
i=1

Xi → E [X∞]

where X∞ is some limiting random variable, or in the most useful cases a non-
random variable. Once again, the mode of convergence will depend on the kind
of hypotheses we make about the random sequence X. Once again, the inter-
pretation is that a single sample path is representative of the entire distribution
over sample paths, if it goes on long enough.

Chapter 21 proved a mean-square (L2) ergodic theorem for weakly stationary
continuous-parameter processes. The next few chapters, by contrast, will de-
velop ergodic theorems for non-stationary discrete-parameter processes.2 This
is a little unusual, compared to most probability books, so let me say a word or
two about why. (1) Results we get will include stationary processes as special
cases, but stationarity fails for many applications where ergodicity (in a suit-
able sense) holds. So this is more general and more broadly applicable. (2) Our
results will all have continuous-time analogs, but the algebra is a lot cleaner
in discrete time. (3) Some of the most important applications (for people like
you!) are to statistical inference and learning with dependent samples, and to
Markov chain Monte Carlo, and both of those are naturally discrete-parameter
processes. We will, however, stick to continuous state spaces.

23.2 Dynamical Systems and Their Invariants

It is a very remarkable fact — but one with deep historical roots (von Plato,
1994, ch. 3) — that the way to get regular limits for stochastic processes is
to first turn them into irregular deterministic dynamical systems, and then let
averaging smooth away the irregularity. This section will begin by laying out
dynamical systems, and their invariant sets and functions, which will be the
foundation for what follows.

Definition 257 (Dynamical System) A dynamical system consists of a mea-
surable space Ξ, a σ-field X on Ξ, a probability measure µ defined on X , and a
mapping T : Ξ 7→ Ξ which is X/X -measurable.

Remark: Measure-preserving transformations (Definition 53) are special cases
of dynamical systems. Since (Theorem 52) every strongly stationary process can

2In doing so, I’m ripping off Gray (1988), especially chapters 6 and 7.
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be represented by a measure-preserving transformation, namely the shift (Def-
inition 48), the theory of ergodicity for dynamical systems which we’ll develop
is easily seen to include the usual ergodic theory of strictly-stationary processes
as a special case. Thus, at the cost of going to the infinite-dimensional space of
sample paths, we can always make it the case that the time-evolution is com-
pletely deterministic, and the only stochastic component to the process is its
initial condition.

Lemma 258 (Dynamical Systems are Markov Processes) Let Ξ,X , µ, T
be a dynamical system. Let L (X1) = µ, and define Xt = T t−1X1. Then the
Xt form a Markov process, with evolution operator K defined through Kf(x) =
f(Tx).

Proof: For every x ∈ Ξ and B ∈ X , define κ(x,B) ≡ 1B(Tx). For fixed x, this
is clearly a probability measure (specifically, the δ measure at Tx). For fixed B,
this is a measurable function of x, because T is a measurable mapping. Hence,
κ(x,B) is a probability kernel. So, by Theorem 103, the Xt form a Markov
process. By definition, E [f(X1)|X0 = x] = Kf(x). But the expectation is in
this case just f(Tx). �

Notice that, as a consequence, there is a corresponding operator, call it U ,
which takes signed measures (defined over X ) to signed measures, and specifi-
cally takes probability measures to probability measures.

Definition 259 (Observable) A function f : Ξ 7→ R which is B/X measur-
able is an observable of the dynamical system Ξ,X , µ, T .

Pretty much all of what follows would work if the observables took values in
any real or complex vector space, but that situation can be built up from this
one.

Definition 260 (Invariant Function, Invariant Set, Invariant Measure)
A function is invariant, under the action of a dynamical system, if f(Tx) = f(x)
for all x ∈ Ξ, or equivalently if Kf = f everywhere. An event B ∈ X is invari-
ant if its indicator function is an invariant function. A measure ν is invariant
if it is preserved by T , i.e. if ν(C) = ν(T−1C) for all C ∈ X , equivalently if
Uν = ν.

Lemma 261 The class I of all measurable invariant sets in Ξ is a σ-algebra.

Proof: Clearly, Ξ is invariant. The other properties of a σ-algebra follow
because set-theoretic operations (union, complementation, etc.) commute with
taking inverse images. �

Lemma 262 An observable is invariant if and only if it is I-measurable. Con-
sequently, I is the σ-field generated by the invariant observables.
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Proof: “If”: Pick any Borel set B. Since f = f ◦T , f−1(B) = (f ◦ T )−1(B) =
T−1f−1B. Hence f−1(B) ∈ I. Since the inverse image of every Borel set is in
I, f is I-measurable. “Only if”: Again, pick any Borel set B. By assumption,
f−1(B) ∈ I, so f−1(B) = T−1f−1(B) = (f ◦ T )−1(B), so the inverse image of
under Tf of any Borel set is an invariant set, implying that f◦T is I-measurable.
Since, for every B, f−1(B) = (f ◦ T )−1(B), we must have f ◦ T = f . The
consequence follows. �

Definition 263 (Infinitely Often, i.o.) For any set C ∈ X , the set C in-
finitely often, Ci.o., consists of all those points in Ξ whose trajectories visit C
infinitely often, Ci.o. ≡ lim supt T−tC.

Lemma 264 For every C ∈ X , Ci.o. is invariant.

Proof: Exercise. �

Definition 265 (Invariance Almost Everywhere) A measurable function
is invariant µ-a.e., or almost invariant, when

µ {x ∈ Ξ|∀n, f(x) = Knf(x)} = 1 (23.1)

A measurable set is invariant µ-a.e., when its indicator function is almost in-
variant.

Remark 1: Some of the older literature annoyingly calls these objects totally
invariant.

Remark 2: Invariance implies invariance µ-almost everywhere, for any µ.

Lemma 266 The almost-invariant sets form a σ-field, I ′, and an observable
is almost invariant if and only if it is measurable with respect to this field.

Proof: Entirely parallel to that for the strict invariants. �
Let’s close this section with a simple lemma, which will however be useful

in approximation-by-simple-function arguments in building up expectations.

Lemma 267 A simple function, f(x) =
∑m
k=1 am1Ck

(x), is invariant if and
only if all the sets Ck ∈ I. Similarly, a simple function is almost invariant iff
all the defining sets are almost invariant.

Proof: Exercise. �

23.3 Time Averages and Ergodic Properties

For convenience, let’s re-iterate the definition of a time average. (The notation
differs here a little from that given earlier.)
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Definition 268 (Time Average) The time-average of an observable f is the
real-valued function

f t(x) ≡
1
t

t−1∑
i=0

f(T ix) (23.2)

The operator taking functions to their time-averages will be written Atf :

Atf(x) ≡ f t(x) (23.3)

Lemma 269 For every t, the time-average of an observable is an observable.

Proof: The class of measurable functions is closed under finite iterations of
arithmetic operations. �

Definition 270 (Ergodic Property) An observable f has the ergodic prop-
erty when f t(x) converges as t→∞ for µ-almost-all x. An observable has the
mean ergodic property when f t(x) converges in L1(µ), and similarly for the
other Lp ergodic properties. If for some class of functions D, every f ∈ D has
an ergodic property, then the class D has that ergodic property.

Remark. Notice that what is required for f to have the ergodic property is
that almost every initial point has some limit for its time average,

µ
{
x ∈ Ξ

∣∣∣∃r ∈ R : lim
t→∞

f t(x) = r
}

= 1 (23.4)

Not that there is some common limit for almost every initial point,

∃r ∈ R : µ
{
x ∈ Ξ

∣∣∣ lim
t→∞

f t(x) = r
}

= 1 (23.5)

Similarly, a class of functions has the ergodic property if all of their time averages
converge; they do not have to converge uniformly.

Definition 271 If an observable f has the ergodic property, define f(x) to be
the limit of f t(x) where that exists, and 0 elsewhere. The corresponding operator
will be written A:

Af(x) = f(x) (23.6)

The domain of A consists of all and only the functions with ergodic properties.

Observe that

Af(x) = lim
t→∞

1
t

t∑
n=0

Knf(x) (23.7)

That is, A is the limit of an arithmetic mean of conditional expectations. This
suggests that it should itself have many of the properties of conditional expec-
tations. In fact, under a reasonable condition, we will see that Af = E [f |I],
expectation conditional on the σ-algebra of invariant sets. We’ll check first that
A has the properties we’d want from a conditional expectation.
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Lemma 272 A is a linear operator, and its domain is a linear space.

Proof: If c is any real number, then Atcf(x) = cAtf(x), and so clearly, if the
limit exists, Acf(x) = cAf(x). Similarly, At(f + g)(x) = Atf(x) + Atg(x), so
if f and g both have ergodic properties, then so does f + g, and A(f + g)(x) =
Af(x) +Ag(x). �

Lemma 273 If f ∈ DomA, and, for all n ≥ 0, fTn ≥ 0 a.e., then Af(x) ≥ 0
a.e.

Proof: The event Af(x) < 0 is a sub-event of
⋃
n {f(Tn(x)) < 0}. Since

the union of a countable collection of measure zero events has measure zero,
Af(x) ≥ 0 almost everywhere. �

We can’t just say f ≥ 0 a.e., because the effect of the transformation T
might be to map every point to the bad set of f ; the lemma guards against
that. Of course, if f(x) ≥ 0 for all, and not just almost all, x, then the bad set
is non-existent, and Af ≥ 0 follows automatically.

Lemma 274 The constant function 1 has the ergodic property. Consequently,
so does every other constant function.

Proof: For every n, 1(Tnx) = 1. Hence At1(x) = 1 for all t, and so A1(x) = 1.
Extension to other constants follows by linearity. �

Remember that for any Markov operator K, K1 = 1.

Lemma 275 If f ∈ Dom(A), then, for all n, f ◦ Tn is too, and Af(x) =
Af ◦ Tn(x). Or, AKnf(x) = Af(x).

Proof: Start with n = 1, and show that the discrepancy goes to zero.

AKf(x)−Af(x) = lim
t

1
t

t∑
i=0

(
Ki+1f(x)−Kif(x)

)
(23.8)

= lim
t

1
t

(
Ktf(x)− f(x)

)
(23.9)

Since Af(x) exists a.e., we know that the series t−1
∑t−1
i=0 K

if(x) converges
a.e., implying that (t+ 1)−1

Ktf(x) → 0 a.e.. But t−1 = t+1
t (t+ 1)−1, and for

large t, t+ 1/t < 2. Hence (t+ 1)−1
Ktf(x) ≤ t−1Ktf(x) ≤ 2(t+ 1)−1

Ktf(x),
implying that t−1Ktf(x) itself goes to zero (a.e.). Similarly, t−1f(x) must go
to zero. Thus, overall, we have AKf(x) = Af(x) a.e., and Kf(x) ∈ Dom(A).
�

Lemma 276 If f ∈ Dom(A), then Af is an invariant, and I-measurable.

Proof: Af exists, so (previous lemma) AKf exists and is equal to Af (almost
everywhere). But AKf(x) = Af(Tx), by definition, hence Af is invariant, i.e.,
KAf = AKf = Af . Measurability follows from Lemma 262. �
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Lemma 277 If f ∈ Dom(A), and B is any set in I, then A(1B(x)f(x)) =
1B(x)Af(x).

Proof: For every n, 1B(Tnx)f(Tnx) = 1B(x)f(Tnx), since x ∈ B iff Tnx ∈ B.
So, for all finite t, At(1B(x)f(x)) = 1B(x)Atf(x), and the lemma follows by
taking the limit. �

Lemma 278 All indicator functions of measurable sets have ergodic properties
if and only if all bounded observables have ergodic properties.

Proof: A standard approximation-by-simple-functions argument, as in the
construction of Lebesgue integrals. �

Lemma 279 Let f be bounded and have the ergodic property. Then Af is µ-
integrable, and E [Af(X)] = E [f(X)], where L (X) = µ.

Proof: Since f is bounded, it is integrable. Hence Atf is bounded, too, for
all t, and Atf(X) is an integrable random variable. A sequence of bounded,
integrable random variables is uniformly integrable. Uniform integrability, plus
the convergence Atf(x) → Af(x) for µ-almost-all x, gives us that E [Af(X)]
exists and is equal to lim E [Atf(X)] via Fatou’s lemma. (See e.g., Theorem 117
in the notes to 36-752.)

Now use the invariance of Af , i.e., the fact that Af(X) = Af(TX) µ-a.s.

0 = E [Af(TX)]−E [Af(X)] (23.10)

= lim
1
t

t−1∑
n=0

E [Knf(TX)]− lim
1
t

t−1∑
n=0

E [Knf(X)] (23.11)

= lim
1
t

t−1∑
n=0

E [Knf(TX)]−E [Knf(X)] (23.12)

= lim
1
t

t−1∑
n=0

E
[
Kn+1f(X)

]
−E [Knf(X)] (23.13)

= lim
1
t

(
E
[
Ktf(X)

]
−E [f(X))

]
(23.14)

Hence

E [Af ] = lim
1
t

t−1∑
n=0

E [Knf(X)] = E [f(X)] (23.15)

as was to be shown. �

Lemma 280 If f is as in Lemma 279, then Atf → f in L1(µ).

Proof: From Lemma 279, lim E [Atf(X)] = E [f(X)]. Since the variables
Atf(X) are uniformly integrable (as we saw in the proof of that lemma), it
follows (Proposition 4.12 in Kallenberg, p. 68) that they also converge in L1(µ).
�
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Lemma 281 Let f be as in Lemmas 279 and 280, and B ∈ X be an arbitrary
measurable set. Then

lim
t→∞

1
t

t−1∑
n=0

E [1B(X)Knf(X)] = E [1B(X)f(X)] (23.16)

where L (X) = µ.

Proof: Let’s write out the expectations explicitly as integrals.∣∣∣∣∣
∫
B

f(x)dµ− 1
t

t−1∑
n=0

∫
B

Knf(x)dµ

∣∣∣∣∣ (23.17)

=

∣∣∣∣∣
∫
B

f(x)− 1
t

t−1∑
n=0

Knf(x)dµ

∣∣∣∣∣
=

∣∣∣∣∫
B

f(x)−Atf(x)dµ
∣∣∣∣ (23.18)

≤
∫
B

|f(x)−Atf(x)| dµ (23.19)

≤
∫
|f(x)−Atf(x)| dµ (23.20)

= ‖f −Atf‖L1(µ) (23.21)

But (previous lemma) these functions converge in L1(µ), so the limit of the
norm of their difference is zero. �

Boundedness is not essential.

Corollary 282 Lemmas 279, 280 and 281 hold for any integrable observable
f ∈ Dom(A), bounded or not, provided that Atf is a uniformly integrable se-
quence.

Proof: Examining the proofs shows that the boundedness of f was important
only to establish the uniform integrability of Atf . �

23.4 Asymptotic Mean Stationarity

Next, we come to an important concept which will prove to be necessary and
sufficient for the most important ergodic properties to hold.

Definition 283 (Asymptotically Mean Stationary) A dynamical system is
asymptotically mean stationary when, for every C ∈ X , the limit

m(C) ≡ lim
t→∞

1
t

t−1∑
n=0

µ(T−nC) (23.22)

exists, and the set function m is its stationary mean.
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Remark 1: It might’ve been more logical to call this “asymptotically measure
stationary”, or something, but I didn’t make up the names...

Remark 2: Symbolically, we can write

m = lim
t→∞

1
t

t−1∑
n=0

Unµ

where U is the operator taking measures to measures. This leads us to the next
proposition.

Proposition 284 If a dynamical system is stationary, i.e., T is preserves the
measure µ, then it is asymptotically mean stationary, with stationary mean µ.

Proof: If T preserves µ, then for every measurable set, µ(C) = µ(T−1C).
Hence every term in the sum in Eq. 23.22 is µ(C), and consequently the limit
exists and is equal to µ(C). �

Theorem 285 (Vitali-Hahn Theorem) If mt are a sequence of probability
measures on a common σ-algebra X , and m(C) is a set function such that
limtmt(C) = m(C) for all C ∈ X , then m is a probability measure on X .

Proof: This is a standard result from measure theory. �

Theorem 286 If a dynamical system is asymptotically mean stationary, then
its stationary mean is an invariant probability measure.

Proof: For every t, let mt(C) = 1
t

∑t−1
n=0 µ(T−n(C)). Then mt is a linear

combination of probability measures, hence a probability measure itself. Since,
for every C ∈ X , limmt(C) = m(C), by Definition 283, Proposition 285 says
that m(C) is also a probability measure. It remains to check invariance.

m(C)−m(T−1C) (23.23)

= lim
1
t

t−1∑
n=0

µ(T−n(C))− lim
1
t

t−1∑
n=0

µ(T−n(T−1C))

= lim
1
t

t−1∑
n=0

µ(T−n−1C)− µ(T−nC) (23.24)

= lim
1
t

(
µ(T−tC)− µ(C)

)
(23.25)

Since the probability measure of any set is at most 1, the difference between
two probabilities is at most 1, and so m(C) = m(T−1C), for all C ∈ X . But
this means that m is invariant under T (Definition 53). �

Remark: Returning to the symbolic manipulations, if µ is AMS with sta-
tionary mean m, then Um = m (because m is invariant), and so we can write
µ = m+ (µ−m), knowing that µ−m goes to zero under averaging. Speaking
loosely (this can be made precise, at the cost of a fairly long excursion) m is
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an eigenvector of U (with eigenvalue 1), and µ − m lies in an orthogonal di-
rection, along which U is contracting, so that, under averaging, it goes away,
leaving only m, which is like the projection of the original measure µ on to the
invariant manifold of U .

The relationship between an AMS measure µ and its stationary mean m
is particularly simple on invariant sets: they are equal there. A slightly more
general theorem is actually just as easy to prove, however, so we’ll do that.

Lemma 287 If µ is AMS with limit m, and f is an observable which is invari-
ant µ-a.e., then Eµ [f ] = Em [f ].

Proof: Let C be any almost invariant set. Then, for any t, C and T−tC differ
by, at most, a set of µ-measure 0, so that µ(C) = µ(T−tC). The definition of
the stationary mean (Equation 23.22) then gives µ(C) = m(C), or Eµ [1C ] =
Em [1C ], i.e., the result holds for indicator functions. By Lemma 267, this then
extends to simple functions. The usual arguments then take us to all functions
which are measurable with respect to I ′, the σ-field of almost-invariant sets,
but this (Lemma 266) is the class of all almost-invariant functions. �

Lemma 288 If µ is AMS with stationary mean m, and f is a bounded observ-
able,

lim
t→∞

Eµ [Atf ] = Em [f ] (23.26)

Proof: By Eq. 23.22, this must hold when f is an indicator function. By
the linearity of At and of expectations, it thus holds for simple functions, and
so for general measurable functions, using boundedness to exchange limits and
expectations where necessary. �

Lemma 289 If f is a bounded observable in Dom(A), and µ is AMS with
stationary mean m, then Eµ [Af ] = Em [f ].

Proof: From Lemma 281, Eµ [Af ] = limt→∞ Eµ [Atf ]. From Lemma 288, the
latter is Em [f ]. �

Remark: Since Af is invariant, we’ve got Eµ [Af ] = Em [Af ], from Lemma
287, but that’s not the same.

Corollary 290 Lemmas 288 and 289 continue to hold if f is not bounded, but
Atf is uniformly integrable (µ).

Proof: As in Corollary 282. �

Theorem 291 If µ is AMS, with stationary mean m, and the dynamics have
ergodic properties for all the indicator functions, then, for any measurable set
C,

A1C = m(C|I) (23.27)

with probability 1 under both µ and m.
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Proof: By Lemma 276, A1C is an invariant function. Pick any set B ∈ I,
so that 1B is also invariant. By Lemma 277, A(1B1C) = 1BA1C , which is
invariant (as a product of invariant functions). So Lemma 287 gives

Eµ [1BA1C ] = Em [1BA1C ] (23.28)

while Lemma 289 says

Eµ [A(1B1C)] = Em [1B1C ] (23.29)

Since the left-hand sides are equal, the right-hand sides must be equal as well,
so

m(B ∩ C) = Em [1B1C ] (23.30)
= Em [1BA1C ] (23.31)

Since this holds for all invariant sets B ∈ I, we conclude that A1C must be a
version of the conditional probability m(C|I). �

Corollary 292 Under the assumptions of Theorem 291, for any bounded ob-
servable f ,

Af = Em [f |I] (23.32)

Proof: From Lemma 278, every bounded observable has the ergodic property.
One can then imitate the proof of the theorem to obtain the desired result. �

Corollary 293 Equation 23.32 continues to hold if Atf are uniformly µ-integrable,
or f is m-integrable.

Proof: Exercise. �



Chapter 24

The Almost-Sure Ergodic
Theorem

This chapter proves Birkhoff’s ergodic theorem, on the almost-
sure convergence of time averages to expectations, under the as-
sumption that the dynamics are asymptotically mean stationary.

This is not the usual proof of the ergodic theorem, as you will find in e.g.
Kallenberg. Rather, it uses the AMS machinery developed in the last lecture,
following Gray (1988, sec. 7.2), in turn following Katznelson and Weiss (1982).
The central idea is that of “blocking”: break the infinite sequence up into non-
overlapping blocks, show that each block is well-behaved, and conclude that
the whole sequence is too. This is a very common technique in modern ergodic
theory, especially among information theorists. In pure probability theory, the
usual proof of the ergodic theorem uses a result called the “maximal ergodic
lemma”, which is clever but somewhat obscure, and doesn’t seem to generalize
well to non-stationary processes: see Kallenberg, ch. 10.

We saw, at the end of the last chapter, that if time-averages converge in the
long run, they converge on conditional expectations. Our work here is showing
that they (almost always) converge. We’ll do this by showing that their lim infs
and lim sups are (almost always) equal. This calls for some preliminary results
about the upper and lower limits of time-averages.

Definition 294 For any observable f , define the lower and upper limits of its
time averages as, respectively,

Af(x) ≡ lim inf
t→∞

Atf(x) (24.1)

Af(x) ≡ lim sup
t→∞

Atf(x) (24.2)

Define Lf as the set of x where the limits coincide:

Lf ≡
{
x
∣∣Af(x) = Af(x)

}
(24.3)
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Lemma 295 Af and Af are invariant functions.

Proof: Use our favorite trick, and write Atf(Tx) = t+1
t At+1f(x) − f(x)/t.

Clearly, the lim sup and lim inf of this expression will equal the lim sup and
lim inf of At+1f(x), which is the same as that of Atf(x). �

Lemma 296 The set of Lf is invariant.

Proof: Since Af and Af are both invariant, they are both measurable with
respect to I (Lemma 262), so the set of x such that Af(x) = Af(x) is in I,
therefore it is invariant (Definition 261). �

Lemma 297 An observable f has the ergodic property with respect to an AMS
measure µ if and only if it has it with respect to the stationary limit m.

Proof: By Lemma 296, Lf is an invariant set. But then, by Lemma 287,
m(Lf ) = µ(Lf ). (Take f = 1Lf

in the lemma.) f has the ergodic property with
respect to µ iff µ(Lf ) = 1, so f has the ergodic property with respect to µ iff it
has it with respect to m. �

Theorem 298 (Almost-Sure Ergodic Theorem (Birkhoff)) If a dynam-
ical system is AMS with stationary mean m, then all bounded observables have
the ergodic property, and with probability 1 (under both µ and m),

Af = Em [f |I] (24.4)

for all f ∈ L1(m).

Proof: From Theorem 291 and its corollaries, it is enough to prove that all
L1(m) observables have ergodic properties to get Eq. 24.4. From Lemma 297, it
is enough to show that the observables have ergodic properties in the stationary
system Ξ,X ,m, T . (Accordingly, all expectations in the rest of this proof will
be with respect to m.) Since any observable can be decomposed into its positive
and negative parts, f = f+ − f−, assume, without loss of generality, that f is
positive. Since Af ≥ Af everywhere, it suffices to show that E

[
Af −Af

]
≤ 0.

This in turn will follow from E
[
Af
]
≤ E [f ] ≤ E [Af ]. (Since f is bounded, the

integrals exist.)
We’ll prove that E

[
Af
]
≤ E [f ], by showing that the time average comes

close to its lim sup, but from above (in the mean). Proving that E [Af ] ≥ E [f ]
will be entirely parallel.

Since f is bounded, we may assume that f ≤M everywhere.
For every ε > 0, for every x there exists a finite t such that

Atf(x) ≥ f(x)− ε (24.5)

This is because f is the limit of the least upper bounds. (You can see where
this is going already — the time-average has to be close to its lim sup, but close
from above.)
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Define t(x, ε) to be the smallest t such that f(x) ≤ ε+Atf(x). Then, since
f is invariant, we can add from from time 0 to time t(x, ε)− 1 and get:

t(x,ε)−1∑
n=0

Knf(x) + εt(x, ε) ≥
t(x,ε)−1∑
n=0

Knf(x) (24.6)

Define BN ≡ {x|t(x, ε) ≥ N}, the set of “bad” x, where the sample average fails
to reach a reasonable (ε) distance of the lim sup before time N . Because t(x, ε)
is finite, m(BN ) goes to zero as N →∞. Chose a N such that m(BN ) ≤ ε/M ,
and, for the corresponding bad set, drop the subscript. (We’ll see why this level
is important presently.)

We’ll find it convenient to not deal directly with f , but with a related func-
tion which is better-behaved on the bad set B. Set f̃(x) = M when x ∈ B,
and = f(x) elsewhere. Similarly, define t̃(x, ε) to be 1 if x ∈ B, and t(x, ε)
elsewhere. Notice that t̃(x, ε) ≤ N for all x. Something like Eq. 24.6 still holds
for the nice-ified function f̃ , specifically,

t̃(x,ε)−1∑
n=0

Knf(x) ≤
t̃(x,ε)−1∑
n=0

Knf̃(x) + εt̃(x, ε) (24.7)

If x ∈ B, this reduces to f(x) ≤M + ε, which is certainly true because f(x) ≤
M . If x 6∈ B, it will follow from Eq. 24.6, provided that Tnx 6∈ B, for all
n ≤ t̃(x, ε)− 1. To see that this, in turn, must be true, suppose that Tnx ∈ B
for some such n. Because (we’re assuming) n < t(x, ε), it must be the case that

Anf(x) < f(x)− ε (24.8)

Otherwise, t(x, ε) would not be the first time at which Eq. 24.5 held true. Sim-
ilarly, because Tnx ∈ B, while x 6∈ B, t(Tnx, ε) > N ≥ t(x, ε), and so

At(x,ε)−nf(Tnx) < f(x)− ε (24.9)

Combining the last two displayed equations,

At(x,ε)f(x) < f(x)− ε (24.10)

contradicting the definition of t(x, ε). Consequently, there can be no n < t(x, ε)
such that Tnx ∈ B.

We are now ready to consider the time average ALf over a stretch of time
of some considerable length L. We’ll break the time indices over which we’re
averaging into blocks, each block ending when T tx hits B again. We need to
make sure that L is sufficiently large, and it will turn out that L ≥ N/(ε/M)
suffices, so thatNM/L ≤ ε. The end-points of the blocks are defined recursively,
starting with b0 = 0, bk+1 = bk + t̃(T bkx, ε). (Of course the bk are implicitly
dependent on x and ε and N , but suppress that for now, since these are constant
through the argument.) The number of completed blocks, C, is the large k such
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that L−1 ≥ bk. Notice that L−bC ≤ N , because t̃(x, ε) ≤ N , so if L−bC > N ,
we could squeeze in another block after bC , contradicting its definition.

Now let’s examine the sum of the lim sup over the trajectory of length L.

L−1∑
n=0

Knf(x) =
C∑
k=1

bk∑
n=bk−1

Knf(x) +
L−1∑
n=bC

Knf(x) (24.11)

For each term in the inner sum, we may assert that

t̃(T bkx,ε)−1∑
n=0

Knf(T bkx) ≤
t̃(T bkx,ε)−1∑

n=0

Knf̃(T bkx) + εt̃(T bkx, ε) (24.12)

on the strength of Equation 24.7, so, returning to the over-all sum,

L−1∑
n=0

Knf(x) ≤
C∑
k=1

bk−1∑
n=bk−1

Knf̃(x) + ε(bk − bk−1) +
L−1∑
n=bC

Knf(x)(24.13)

= εbC +
bC−1∑
n=0

Knf̃(x) +
L−1∑
n=bC

Knf(x) (24.14)

≤ εbC +
bC−1∑
n=0

Knf̃(x) +
L−1∑
n=bC

M (24.15)

≤ εbC +M(L− 1− bC) +
bC−1∑
n=0

Knf̃(x) (24.16)

≤ εbC +M(N − 1) +
bC−1∑
n=0

Knf̃(x) (24.17)

≤ εL+M(N − 1) +
L−1∑
n=0

Knf̃(x) (24.18)

where the last step, going from bC to L, uses the fact that both ε and f̃ are
non-negative. Taking expectations of both sides,

E

[
L−1∑
n=0

Knf(X)

]
≤ E

[
εL+M(N − 1) +

L−1∑
n=0

Knf̃(X)

]
(24.19)

L−1∑
n=0

E
[
Knf(X)

]
≤ εL+M(N − 1) +

L−1∑
n=0

E
[
Knf̃(X)

]
(24.20)

LE
[
f(x)

]
≤ εL+M(N − 1) + LE

[
f̃(X)

]
(24.21)
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using the fact that f is invariant on the left-hand side, and that m is stationary
on the other. Now divide both sides by L.

E
[
f(x)

]
≤ ε+

M(N − 1)
L

+ E
[
f̃(X)

]
(24.22)

≤ 2ε+ E
[
f̃(X)

]
(24.23)

since MN/L ≤ ε. Now let’s bound E
[
f̃(X)

]
in terms of E [f ]:

E
[
f̃
]

=
∫
f̃(x)dm (24.24)

=
∫
Bc

f̃(x)dm+
∫
B

f̃(x)dm (24.25)

=
∫
Bc

f(x)dm+
∫
B

Mdm (24.26)

≤ E [f ] +
∫
B

Mdm (24.27)

= E [f ] +Mm(B) (24.28)

≤ E [f ] +M
ε

M
(24.29)

= E [f ] + ε (24.30)

using the definition of f̃ in Eq. 24.26, the non-negativity of f in Eq. 24.27, and
the bound on m(B) in Eq. 24.29. Substituting into Eq. 24.23,

E
[
f
]
≤ E [f ] + 3ε (24.31)

Since ε can be made arbitrarily small, we conclude that

E
[
f
]
≤ E [f ] (24.32)

as was to be shown.
The proof of E

[
f
]
≥ E [f ] proceeds in parallel, only the nice-ified function

f̃ is set equal to 0 on the bad set.
Since E

[
f
]
≥ E [f ] ≥ E

[
f
]
, we have that E

[
f − f

]
≥ 0. Since however it is

always true that f−f ≥ 0, we may conclude that f−f = 0m-almost everywhere.
Thus m(Lf ) = 1, i.e., the time average converges m-almost everywhere. Since
this is an invariant event, it has the same measure under µ and its stationary
limit m, and so the time average converges µ-almost-everywhere as well. By
Corollary 292, Af = Em [f |I], as promised. �

Corollary 299 Under the assumptions of Theorem 298, all L1(m) functions
have ergodic properties, and Eq. 24.4 holds a.e. m and µ.

Proof: We need merely show that the ergodic properties hold, and then the
equation follows. To do so, define fM (x) ≡ f(x)∧M , an upper-limited version
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of the lim sup. Reasoning entirely parallel to the proof of Theorem 298 leads to
the conclusion that E

[
fM
]
≤ E [f ]. Then let M →∞, and apply the monotone

convergence theorem to conclude that E
[
f
]
≤ E [f ]; the rest of the proof goes

through as before. �



Chapter 25

Ergodicity

This lecture explains what it means for a process to be ergodic
or metrically transitive, gives a few characterizes of these proper-
ties (especially for AMS processes), and deduces some consequences.
The most important one is that sample averages have deterministic
limits.

25.1 Ergodicity and Metric Transitivity

Definition 300 A dynamical system Ξ,X , µ, T is ergodic, or an ergodic system
or an ergodic process when µ(C) = 0 or µ(C) = 1 for every T -invariant set C.
µ is called a T -ergodic measure, and T is called a µ-ergodic transformation, or
just an ergodic measure and ergodic transformation, respectively.

Remark: Most authorities require a µ-ergodic transformation to also be
measure-preserving for µ. But (Corollary 54) measure-preserving transforma-
tions are necessarily stationary, and we want to minimize our stationarity as-
sumptions. So what most books call “ergodic”, we have to qualify as “stationary
and ergodic”. (Conversely, when other people talk about processes being “sta-
tionary and ergodic”, they mean “stationary with only one ergodic component”;
but of that, more later.

Definition 301 A dynamical system is metrically transitive, metrically inde-
composable, or irreducible when, for any two sets A,B ∈ X , if µ(A), µ(B) > 0,
there exists an n such that µ(T−nA ∩B) > 0.

Remark: In dynamical systems theory, metric transitivity is contrasted with
topological transitivity: T is topologically transitive on a domain D if for any
two open sets U, V ⊆ D, the images of U and V remain in D, and there is
an n such that TnU ∩ V 6= ∅. (See, e.g., Devaney (1992).) The “metric”
in “metric transitivity” refers not to a distance function, but to the fact that
a measure is involved. Under certain conditions, metric transitivity in fact
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implies topological transitivity: e.g., if D is a subset of a Euclidean space and
µ has a positive density with respect to Lebesgue measure. The converse is not
generally true, however: there are systems which are transitive topologically but
not metrically.

A dynamical system is chaotic if it is topologically transitive, and it contains
dense periodic orbits (Banks et al., 1992). The two facts together imply that a
trajectory can start out arbitrarily close to a periodic orbit, and so remain near
it for some time, only to eventually find itself arbitrarily close to a different
periodic orbit. This is the source of the fabled “sensitive dependence on ini-
tial conditions”, which paradoxically manifests itself in the fact that all typical
trajectories look pretty much the same, at least in the long run. Since metric
transitivity generally implies topological transitivity, there is a close connection
between ergodicity and chaos; in fact, most of the well-studied chaotic systems
are also ergodic (Eckmann and Ruelle, 1985), including the logistic map. How-
ever, it is possible to be ergodic without being chaotic: the one-dimensional
rotations with irrational shifts are, because there periodic orbits do not exist,
and a fortiori are not dense.

Proposition 302 A dynamical system is ergodic if it is metrically transitive.

Proof: By contradiction. Suppose there was an invariant set A whose µ-
measure was neither 0 nor 1; then Ac is also invariant, and has strictly positive
measure. By metric transitivity, for some n, µ(T−nA∩Ac) > 0. But T−nA = A,
and µ(A ∩Ac) = 0. So metrically transitive systems are ergodic. �

There is a partial converse.

Proposition 303 If a dynamical systems is ergodic and stationary, then it is
metrically transitive.

Proof: Take any µ(A), µ(B) > 0. Let Aever ≡
⋃∞
n=0 T

−nA — the union of
A with all its pre-images. This set contains its pre-images, T−1Aever ⊆ Aever,
since if x ∈ T−nA, T−1x ∈ T−n−1A. The sequence of pre-images is thus non-
increasing, and so tends to a limiting set,

⋂∞
n=1

⋃∞
k=n T

−kA = Ai.o., the set of
points which not only visit A eventually, but visit A infinitely often. This is an
invariant set (Lemma 264), so by ergodicity it has either measure 0 or measure
1. By the Poincaré recurrence theorem (Corollaries 66 and 67), since µ(A) > 0,
µ(Ai.o.) = 1. Hence, for any B, µ(Ai.o. ∩ B) = µ(B). But this means that, for
some n, µ(T−nA ∩B) > 0, and the process is metrically transitive. �

Theorem 304 A T transformation is µ-ergodic if and only if all T -invariant
observables are constant µ-almost-everywhere.

Proof: “Only if”: Because invariant observables are I-measurable (Lemma
262), the pre-image under an invariant observable f of any Borel set B is an
invariant set. Since every invariant set has µ-probability 0 or 1, the probability
that f(x) ∈ B is either 0 or 1, hence f is constant with probability 1. “If”: The
indicator function of an invariant set is an invariant function. If all invariant
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functions are constant µ-a.s., then for any A ∈ I, either 1A(x) = 0 or 1A(x) = 1
for µ-almost all x, which is the same as saying that either µ(A) = 0 or µ(A) = 1,
as required. �

Lemma 305 If µ is T -ergodic, and µ is AMS with stationary mean m, then

lim
t→∞

1
t

t−1∑
n=0

µ(B ∩ T−nC) = µ(B)m(C) (25.1)

for any measurable events B,C.

Proof: Exercise 25.1. �

Theorem 306 Suppose X is generated by a field F . Then an AMS measure µ,
with stationary mean m, is ergodic if and only if, for all F ∈ F ,

lim
t→∞

1
t

t−1∑
n=0

µ(F ∩ T−nF ) = µ(F )m(F ) (25.2)

i.e., iff Eq. 25.1 holds, taking B = C = F ∈ F .

Proof: “Only if”: Lemma 305. “If”: Exercise 25.2. �

25.1.1 Examples of Ergodicity

Example 307 (IID Sequences, Strong Law of Large Numbers) Every IID
sequence is ergodic. This is because the Kolmogorov 0-1 law states that every
tail event has either probability 0 or 1, and (Exercise 25.3) every invariant event
is a tail event. The strong law of large numbers is thus a two-line corollary of
the Birkhoff ergodic theorem.

Example 308 (Markov Chains) In the elementary theory of Markov chains,
an ergodic chain is one which is irreducible, aperiodic and positive recurrent.
To see that such a chain corresponds to an ergodic process in the present sense,
look at the shift operator on the sequence space. For consistency of notation, let
S1, S2, . . . be the values of the Markov chain in Σ, and X be the semi-infinite
sequence in sequence space Ξ, with shift operator T , and distribution µ over
sequences. µ is the product of an initial distribution ν ∼ S1 and the Markov-
family kernel. Now, “irreducible” means that one goes from every state to every
other state with positive probability at some lag, i.e., for every s1, s2 ∈ Σ, there
is an n such that P (Sn = s2|S1 = s1) > 0. But, writing [s] for the cylinder set in
Ξ with base s, this means that, for every [s1], [s2], µ(T−n[s2]∩[s1]) > 0, provided
µ([s1]) > 0. The Markov property of the S chain, along with positive recurrence,
can be used to extend this to all finite-dimensional cylinder sets (Exercise 25.4),
and so, by a generating-class argument, to all measurable sets.
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Example 309 (Deterministic Ergodicity: The Logistic Map) We have seen
that the logistic map, Tx = 4x(1− x), has an invariant density (with respect to
Lebesgue measure). It has an infinite collection of invariant sets, but the only
invariant interval is the whole state space [0, 1] — any smaller interval is not
invariant. From this, it is easy to show that all the invariant sets either have
measure 0 or measure 1 — they differ from ∅ or from [0, 1] by only a countable
collection of points. Hence, the invariant measure is ergodic. Notice, too, that
the Lebesgue measure on [0, 1] is ergodic, but not invariant.

Example 310 (Invertible Ergodicity: Rotations) Let Ξ = [0, 1), Tx =
x + φ mod 1, and let µ be the Lebesgue measure on Ξ. (This corresponds to
a rotation, where the angle advances by 2πφ radians per unit time.) Clearly,
T preserve µ. If φ is rational, then, for any x, the sequence of iterates will
visit only finitely many points, and the process is not ergodic, because one can
construct invariant sets whose measure is neither 0 nor 1. (You may construct
such a set by taking any one of the periodic orbits, and surrounding its points
by internals of sufficiently small, yet positive, width.) If, on the other hand, φ
is irrational, then Tnx never repeats, and it is easy to show that the process is
ergodic, because it is metrically transitive. Nonetheless, T is invertible.

This example (suitably generalized to multiple coordinates) is very important
in physics, because many mechanical systems can be represented in terms of
“action-angle” variables, the speed of rotation of the angular variables being set
by the actions, which are conserved, energy-like quantities. See Mackey (1992);
Arnol’d and Avez (1968) for the ergodicity of rotations and its limitations, and
Arnol’d (1978) for action-angle variables. Astonishingly, the result for the one-
dimensional case was proved by Nicholas Oresme in the 14th century (von Plato,
1994).

Example 311 Ergodicity does not ensure a uni-directional evolution of the den-
sity. (Some people (Mackey, 1992) believe this has great bearing on the foun-
dations of thermodynamics.) For a particularly extreme example, which also
illustrates why elementary Markov chain theory insists on aperiodicity, consider
the period-two deterministic chain, where state A goes to stae B with probability
1, and vice versa. Every sample path spends just much time in state A as in
state B, so every time average will converge on Em [f ], where m puts equal prob-
ability on both states. It doesn’t matter what initial distribution we use, because
they are all ergodic (the only invariant sets are the whole space and the empty
set, and every distribution gives them probability 1 and 0, respectively). The
uniform distribution is the unique stationary distribution, but other distribu-
tions do not approch it, since U2nν = ν for every integer n. So, Atf → Em [f ]
a.s., but L (Xn) 6→ m. We will see later that aperiodicity of Markov chains con-
nects to “mixing” properties, which do guarantee stronger forms of distributional
convergence.
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25.1.2 Consequences of Ergodicity

The most basic consequence of ergodicity is that time-averages converge to
deterministic, rather than random, limits.

Theorem 312 Suppose µ is AMS, with stationary mean m, and T -ergodic.
Then, almost surely,

lim
t→∞

Atf(x) = Em [f ] (25.3)

for µ- and m- almost all x, for any L1(m) observable f .

Proof: Because every invariant set has µ-probability 0 or 1, it likewise has m-
probability 0 or 1 (Lemma 287). Hence, Em [f ] is a version of Em [f |I]. Since
Atf is also a version of Em [f |I] (Corollary 299), they are equal almost surely.
�

An important consequence is the following. Suppose St is a strictly sta-
tionary random sequence. Let Φt(S) = f(St+τ1 , St+τ2 , . . . St+τn

) for some fixed
collection of shifts τn. Then Φt is another strictly stationary random sequence.
Every strictly stationary random sequence can be represented by a measure-
preserving transformation (Theorem 52), whereX is the sequence S1, S2, . . ., the
mapping T is just the shift, and the measure µ is the infinite-dimensional mea-
sure of the original stochastic process. Thus Φt = φ(Xt), for some measurable
function φ. If the measure is ergodic, and E [Φ] is finite, then the time-average
of Φ converges almost surely to its expectation. In particular, let Φt = StSt+τ .
Then, assuming the mixed moments are finite, t−1

∑∞
t=1 StSt+τ → E [StSt+τ ]

almost surely, and so the sample covariance converges on the true covariance.
More generally, for a stationary ergodic process, if the n-point correlation func-
tions exist, the sample correlation functions converge a.s. on the true correlation
functions.

25.2 Preliminaries to Ergodic Decompositions

It is always the case, with a dynamical system, that if x lies within some invariant
set A, then all its future iterates stay within A as well. In general, therefore, one
might expect to be able to make some predictions about the future trajectory
by knowing which invariant sets the initial condition lies within. An ergodic
process is one where this is actually not possible. Because all invariants sets
have probability 0 or 1, they are all independent of each other, and indeed of
every other set. Therefore, knowing which invariant sets x falls into is completely
uninformative about its future behavior. In the more general non-ergodic case,
a limited amount of prediction is however possible on this basis, the limitations
being set by the way the state space breaks up into invariant sets of points with
the same long-run average behavior — the ergodic components. Put slightly
differently, the long-run behavior of an AMS system can be represented as a
mixture of stationary, ergodic distributions, and the ergodic components are, in
a sense, a minimal parametrically sufficient statistic for this distribution. (They
are not in generally predictively sufficient.)
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The idea of an ergodic decomposition goes back to von Neumann, but was
considerably refined subsequently, especially by the Soviet school, who seem to
have introduced most of the talk of predictions, and all of the talk of ergodic
components as minimal sufficient statistics. Our treatment will follow Gray
(1988, ch. 7), and Dynkin (1978). The rest of this lecture will handle some
preliminary propositions about combinations of stationary measures.

Proposition 313 Any convex combination of invariant probability measures is
an invariant probability measure.

Proof: Let µ1 and µ2 be two invariant probability measures. It is elementary
that for every 0 ≤ a ≤ 1, ν ≡ aµ1 + (1 − a)µ2 is a probability measure. Now
consider the measure under ν of the pre-image of an arbitrary measurable set
B ∈ X :

ν(T−1B) = aµ1(T−1B) + (1− a)µ2(T−1B) (25.4)
= aµ1(B) + (1− a)µ2(B) (25.5)
= ν(B) (25.6)

so ν is also invariant. �

Proposition 314 If µ1 and µ2 are invariant ergodic measures, then either µ1 =
µ2, or they are singular, meaning that there is a set B on which µ1(B) = 0,
µ2(B) = 1.

Proof: Suppose µ1 6= µ2. Then there is at least one set C where µ1(C) 6=
µ2(C). Because both µi are stationary and ergodic, At1C(x) converges to µi(C)
for µi-almost-all x. So the set{

x| lim
t
At1C(x) = µ2(C)

}
has a µ2 measure of 1, and a µ1 measure of 0 (since, by hypothesis, µ1(C) 6=
µ2(C). �

Proposition 315 Ergodic invariant measures are extremal points of the convex
set of invariant measures, i.e., they cannot be written as combinations of other
invariant measures.

Proof: By contradiction. That is, suppose µ is ergodic and invariant, and
that there were invariant measures ν and λ, and an a ∈ (0, 1), such that µ =
aν + (1 − a)λ. Let C be any invariant set; then µ(C) = 0 or µ(C) = 1.
Suppose µ(C) = 0. Then, because a is strictly positive, it must be the case that
ν(C) = λ(C) = 0. If µ(C) = 1, then Cc is also invariant and has µ-measure 0,
so ν(Cc) = λ(Cc) = 0, i.e., ν(C) = λ(C) = 1. So ν and λ would both have to
be ergodic, with the same support as µ. But then (Proposition 314 preceeding)
λ = ν = µ. �

Remark: The converse is left as an exercise (25.5).
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25.3 Exercises

Exercise 25.1 Prove Lemma 305.

Exercise 25.2 Prove the “if” part of Theorem 306.

Exercise 25.3 Prove that every invariant event is a tail event. Does the con-
verse hold?

Exercise 25.4 Complete the argument in Example 308, proving that ergodic
Markov chains are ergodic processes (in the sense of Definition 300).

Exercise 25.5 Prove the converse to Proposition 315: every extermal point of
the convex set of invariant measures is an ergodic measure.



Chapter 26

Decomposition of
Stationary Processes into
Ergodic Components

This chapter is concerned with the decomposition of asymptotically-
mean-stationary processes into ergodic components.

Section 26.1 shows how to write the stationary distribution as a
mixture of distributions, each of which is stationary and ergodic, and
each of which is supported on a distinct part of the state space. This
is connected to ideas in nonlinear dynamics, each ergodic component
being a different basin of attraction.

Section 26.2 lays out some connections to statistical inference:
ergodic components can be seen as minimal sufficient statistics, and
lead to powerful tests.

26.1 Construction of the Ergodic Decomposi-
tion

In the last lecture, we saw that the stationary distributions of a given dynamical
system form a convex set, with the ergodic distributions as the extremal points.
A standard result in convex analysis is that any point in a convex set can
be represented as a convex combination of the extremal points. Thus, any
stationary distribution can be represented as a mixture of stationary and ergodic
distributions. We would like to be able to determine the weights used in the
mixture, and even more to give them some meaningful stochastic interpretation.

Let’s begin by thinking about the effective distribution we get from taking
time-averages starting from a given point. For every measurable set B, and
every finite t, At1B(x) is a well-defined measurable function. As B ranges over
the σ-field X , holding x and t fixed, we get a set function, and one which,
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moreover, meets the requirements for being a probability measure. Suppose we
go further and pass to the limit.

Definition 316 (Long-Run Distribution) The long-run distribution start-
ing from the point x is the set function λ(x), defined through λ(x,B) = limtAt1B(x),
when the limit exists for all B ∈ X . If λ(x) exists, x is an ergodic point. The
set of all ergodic points is E.

Notice that whether or not λ(x) exists depends only on x (and T and X );
the initial distribution has nothing to do with it. Let’s look at some properties
of the long-run distributions. (The name “ergodic point” is justified by one of
them, Proposition 318.)

Proposition 317 If x ∈ E, then λ(x) is a probability distribution.

Proof: For every t, the set function given by At1B(x) is clearly a probability
measure. Since λ(x) is defined by passage to the limit, the Vitali-Hahn Theorem
(285) says λ(x) must be as well. �

Proposition 318 If x ∈ E, then λ(x) is ergodic.

Proof: For every invariant set I, 1I(Tnx) = 1I(x) for all n. Hence A1I(x)
exists and is either 0 or 1. This means λ(x) assigns every invariant set either
probability 0 or probability 1, so by Definition 300 it is ergodic. �

Proposition 319 If x ∈ E, then λ(x) is an invariant function of x, i.e., λ(x) =
λ(Tx).

Proof: By Lemma 275, A1B(x) = A1B(Tx), when the appropriate limit exists.
Since, by assumption, it does in this case, for every measurable set λ(x,B) =
λ(Tx,B), and the set functions are thus equal. �

Proposition 320 If x ∈ E, then λ(x) is a stationary distribution.

Proof: For all B and x, 1T−1B(x) = 1B(Tx). So λ(x, T−1B) = λ(Tx,B).
Since, by Proposition 319, λ(Tx,B) = λ(x,B), it finally follows that λ(x,B) =
λ(x, T−1B), which proves that λ(x) is an invariant distribution. �

Proposition 321 If x ∈ E and f ∈ L1(λ(x)), then limtAtf(x) exists, and is
equal to Eλ(x) [f ].

Proof: This is true, by the definition of λ(x), for the indicator functions of
all measurable sets. Thus, by linearity of At and of expectation, it is true for
all simple functions. Standard arguments then let us pass to all the functions
integrable with respect to the long-run distribution. �

At this point, you should be tempted to argue as follows. If µ is an AMS
distribution with stationary mean m, then Af(x) = Em [f |I] for almost all x.
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So, it’s reasonable to hope that m is a combination of the λ(x), and yet further
that

Af(x) = Eλ(x) [f ]

for µ-almost-all x. This is basically true, but will take some extra assumptions
to get it to work.

Definition 322 (Ergodic Component) Two ergodic points x, y ∈ E belong
to the same ergodic component when λ(x) = λ(y). We will write the ergodic
components as Ci, and the function mapping x to its ergodic component as φ(x).
φ(x) is not defined if x is not an ergodic point. By a slight abuse of notation,
we will write λ(Ci, B) for the common long-run distribution of all points in Ci.

Obviously, the ergodic components partition the set of ergodic points. (The
partition is not necessarily countable, and in some important cases, such as
that of Hamiltonian dynamical systems in statistical mechanics, it must be
uncountable (Khinchin, 1949).) Intuitively, they form the coarsest partition
which is still fully informative about the long-run distribution. It’s also pretty
clear that the partition is left alone with the dynamics.

Proposition 323 For all ergodic points x, φ(x) = φ(Tx).

Proof: By Lemma 319, λ(x) = λ(Tx), and the result follows. �
Notice that I have been careful not to say that the ergodic components are

invariant sets, because we’ve been using that to mean sets which are both left
along by the dynamics and are measurable, i.e. members of the σ-field X , and
we have not established that any ergodic component is measurable, which in
turn is because we have not established that λ(x) is a measurable function.

Let’s look a little more closely at the difficulty. If B is a measurable set,
then At1B(x) is a measurable function. If the limit exists, then A1B(x) is also
a measurable function, and consequently the set {y : A1B(y) = A1B(x)} is a
measurable set. Then

φ(x) =
⋂
B∈X

{y : A1B(x) = A1B(y)} (26.1)

gives the ergodic component to which x belongs. The difficulty is that the
intersection is over all measurable sets B, and there are generally an uncountable
number of them (even if Ξ is countable!), so we have no guarantee that the
intersection of uncountably many measurable sets is measurable. Consequently,
we can’t say that any of the ergodic components is measurable.

The way out, as so often in mathematics, is to cheat; or, more politely,
to make an assumption which is strong enough to force open an exit, but not
so strong that we can’t support it or verify it1 What we will assume is that

1For instance, we could just assume that uncountable intersections of measurable sets
are measurable, but you will find it instructive to try to work out the consequences of this
assumption, and to examine whether it holds for the Borel σ-field B — say on the unit interval,
to keep things easy.
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there is a countable collection of sets G such that λ(x) = λ(y) if and only if
λ(x,G) = λ(y,G) for every G ∈ G. Then the intersection in Eq. 26.1 need only
run over the countable class G, rather than all of X , which will be enough to
reassure us that φ(x) is a measurable set.

Definition 324 (Countable Extension Space) A measurable space Ω,F is
a countable extension space when there is a countable field G of sets in Ω such
that F = σ(G), i.e., G is the generating field of the σ-field, and any normalized,
non-negative, finitely-additive set function on G has a unique extension to a
probability measure on F .

The reason the countable extension property is important is that it lets us
get away with just checking properties of measures on a countable class (the
generating field G). Here are a few important facts about countable extension
spaces; proofs, along with a much more detailed treatment of the general theory,
are given by Gray (1988, chs. 2 and 3), who however calls them “standard”
spaces.

Proposition 325 Every countable space is a countable extension space.

Proposition 326 Every Borel space is a countable extension space.

Remember that finite-dimensional Euclidean spaces are Borel spaces.

Proposition 327 A countable product of countable extension spaces is a count-
able extension space.

The last proposition is important for us: if Σ is a countable extension space,
it means that Ξ ≡ ΣN is too. So if we have a discrete- or Euclidean- valued
random sequence, we can switch to the sequence space, and still appeal to
generating-class arguments based on countable fields. Without further ado,
then, let’s assume that Ξ, the state space of our dynamical system, is a countable
extension space, with countable generating field G.

Lemma 328 x ∈ E iff limtAt1G(x) converges for every G ∈ G.

Proof: “If”: A direct consequence of Definition 324, since the set function
A1G(x) extends to a unique measure. “Only if”: a direct consequence of Defi-
nition 316, since every member of the generating field is a measurable set. �

Lemma 329 The set of ergodic points is measurable: E ∈ X .

Proof: For each G ∈ G, the set of x where At1G(x) converges is measurable,
because G is a measurable set. The set where those relative frequencies converge
for all G ∈ G is the intersection of countably many measurable sets, hence itself
measurable. This set is, exactly, the set of ergodic points (Lemma 328). �
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Lemma 330 All the ergodic components are measurable sets, and φ(x) is a
measurable function. Thus, all Ci ∈ I.

Proof: For each G, the set {y : λ(y,G) = λ(x,G)} is measurable. So their
intersection over all G ∈ G is also measurable. But, by the countable extension
property, this intersection is precisely the set {y : λ(y) = λ(x)}. So the ergodic
components are measurable sets, and, since φ−1(Ci) = Ci, φ is measurable.
Since we have already seen that T−1Ci = Ci, and now that Ci ∈ X , we may
say that Ci ∈ I. �

Remark: Because Ci is a (measurable) invariant set, λ(x,Ci) = 1 for every
x ∈ Ci. However, it does not follow that there might not be a smaller set, also
with long-run measure 1, i.e., there might be a B ⊂ Ci such that λ(x,B) = 1.
For an extreme example, consider the uniform contraction on R, with Tx = ax
for some 0 ≤ a ≤ 1. Every trajectory converges on the origin. The only ergodic
invariant measure the the Dirac delta function. Every point belongs to a single
ergodic component.

More generally, if a little roughly2, the ergodic components correspond to
the dynamical systems idea of basins of attraction, while the support of the
long-run distributions corresponds to the actual attractors. Basins of attraction
typically contain points which are not actually parts of the attractor.

Theorem 331 (Ergodic Decomposition of AMS Processes) Suppose Ξ,X
is a countable extension space. If µ is an asymptotically mean stationary mea-
sure on Ξ, with stationary mean m, then µ(E) = m(E) = 1, and, for any
f ∈ L1(m), and µ- and m- almost all x,

Af(x) = Eλ(x) [f ] = Em [f |I] (26.2)

so that
m(B) =

∫
λ(x,B)dµ(x) (26.3)

Proof: For every set G ∈ G, At1G(x) converges for µ- and m- almost all
x (Theorem 298). Since there are only countably many G, the set on which
they all converge also has probability 1; this set is E. Since (Proposition 321)
Af(x) = Eλ(x) [f ], and (Theorem 298 again) Af(x) = Em [f |I] a.s., we have
that Eλ(x) [f ] = Em [f |I] a.s.

Now let f = 1B . As we know (Lemma 289), Eµ [A1B(X)] = Em [1B(X)] =
m(B). But, for each x, A1B(x) = λ(x,B), so m(B) = Eµ [λ(X,B)]. �

In words, we have decomposed the stationary mean m into the long-run
distributions of the ergodic components, with weights given by the fraction of
the initial measure µ falling into each component. Because of Propositions 313
and 315, we may be sure that by mixing stationary ergodic measures, we obtain
an ergodic measure, and that our decomposition is unique.

2I don’t want to get into subtleties arising from the dynamicists tendency to define things
topologically, rather than measure-theoretically.
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26.2 Statistical Aspects

26.2.1 Ergodic Components as Minimal Sufficient Statis-
tics

The connection between sufficient statistics and ergodic decompositions is a very
pretty one. First, recall the idea of parametric statistical sufficiency.3

Definition 332 (Sufficiency, Necessity) Let P be a class of probability mea-
sures on a common measurable space Ω,F , indexed by a parameter θ. A σ-field
S ⊆ F is parametrically sufficient for θ, or just sufficient, when Pθ (A|S) =
Pθ′ (A|S) for all θ, θ′. That is, all the distributions in P have the same distri-
bution, conditional on S. A random variable such that S = σ(S) is called a
sufficient statistic. A σ-field is necessary (for the parameter θ) if it is a sub-
σ-field of every sufficient σ-field; a necessary statistic is defined similarly. A
σ-field which is both necessary and sufficient is minimal sufficient.

Remark: The idea of sufficiency originates with Fisher; that of necessity, so
far as I can work out, with Dynkin. This definition (after Dynkin (1978)) is
based on what ordinary theoretical statistics texts call the “Neyman factoriza-
tion criterion” for sufficiency. We will see all these concepts again when we do
information theory.

Lemma 333 S is sufficient for θ if and only if there exists an F-measurable
function λ(ω,A) such that

Pθ (A|S) = λ(ω,A) (26.4)

almost surely, for all θ.

Proof: Nearly obvious. “Only if”: since the conditional probability exists,
there must be some such function (it’s a version of the conditional probabil-
ity), and since all the conditional probabilities are versions of one another, the
function cannot depend on θ. “If”: In this case, we have a single function
which is a version of all the conditional probabilities, so it must be true that
Pθ (A|S) = Pθ′ (A|S). �

Theorem 334 If a process on a countable extension space is asymptotically
mean stationary, then φ is a minimal sufficient statistic for its long-run distri-
bution.

Proof: The set of distributions P is now the set of all long-run distributions
generated by the dynamics, and θ is an index which tracks them all unambigu-
ously. We need to show both sufficiency and necessity. Sufficiency: The σ-field

3There is also a related idea of predictive statistical sufficiency, which we unfortunately
will not be able to get to. Also, note that most textbooks on theoretical statistics state things
in terms of random variables and measurable functions thereof, rather than σ-fields, but this
is the more general case (Blackwell and Girshick, 1954).
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generated by φ is the one generated by the ergodic components, σ({Ci}). (Be-
cause the Ci are mutually exclusive, this is a particularly simple σ-field.) Clearly,
Pθ (A|σ({Ci})) = λ(φ(x), A) for all x and θ, so (Lemma 333), φ is a sufficient
statistic. Necessity: Follows from the fact that a given ergodic component con-
tains all the points with a given long-run distribution. Coarser σ-fields will not,
therefore, preserve conditional probabilities. �

This theorem may not seem particularly exciting, because there isn’t, neces-
sarily, anything whose distribution matches the long-run distribution. However,
it has deeper meaning under two circumstances when λ(x) really is the asymp-
totic distribution of random variables.

1. If Ξ is really a sequence space, so that X = S1, S2, S3, . . ., then λ(x)
really is the asymptotic marginal distribution of the St, conditional on
the starting point.

2. Even if Ξ is not a sequence space, if stronger conditions than ergodicity
known as “mixing”, “asymptotic stability”, etc., hold, there are reason-
able senses in which L (Xt) does converge, and converges on the long-run
distribution.4

In both these cases, knowing the ergodic component thus turns out to be neces-
sary and sufficient for knowing the asymptotic distribution of the observables.
(Cf. Corollary 337 below.)

26.2.2 Testing Ergodic Hypotheses

Finally, let’s close with an application to hypothesis testing, inspired by Badino
(2004).

Theorem 335 Let Ξ,X be a measurable space, and let µ0 and µ1 be two infinite-
dimensional distributions of one-sided, discrete-parameter strictly-stationary Σ-
valued stochastic processes, i.e., µ0 and µ1 are distributions on ΞN,XN, and
they are invariant under the shift operator. If they are also ergodic under the
shift, then there exists a sequence of sets Rt ∈ X t such that µ0(Rt) → 0 while
µ1(Rt) → 1.

Proof: By Proposition 314, there exists a set R ∈ XN such that µ0(R) = 0,
µ1(R) = 1. So we just need to approximate B by sets which are defined on
the first t observations in such a way that µi(Rt) → µi(R). If Rt ↓ R, then
monotone convergence will give us the necessary convergence of probabilities.
Here is a construction with cylinder sets5 that gives us the necessary sequence

4Lemma 305 already gave us a kind of distributional convergence, but it is of a very
weak sort, known as “convergence in Cesàro mean”, which was specially invented to handle
sequences which are not convergent in normal senses! We will see that there is a direct
correspondence between levels of distributional convergence and levels of decay of correlations.

5Introduced in Chapters 2 and 3. It’s possible to give an alternative construction using the
Hilbert space of all square-integrable random variables, and then projecting onto the subspace
of those which are X t measurable.
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of approximations. Let

Rt ≡ R ∪
∞∏

n=t+1

Ξt (26.5)

Clearly, Rt forms a non-increasing sequence, so it converges to a limit, which
equally clearly must be R. Hence µi(Rt) → µi(R) = i. �

Remark: “R” is for “rejection”. Notice that the regions Rt will in general
depend on the actual sequence X1, X2, . . . Xt ≡ Xt

1, and not necessarily be
permutation-invariant. When we come to the asymptotic equipartition theorem
in information theory, we will see a more explicit way of constructing such tests.

Corollary 336 Let H0 be “Xi are IID with distribution p0” and H1 be “Xi are
IID with distribution p1”. Then, as t → ∞, there exists a sequence of tests of
H0 against H1 whose size goes to 0 while their power goes to 1.

Proof: Let µ0 be the product measure induced by p0, and µ1 the product
measure induced p1, and apply the previous theorem. �

Corollary 337 If X is a strictly stationary (one-sided) random sequence whose
shift representation has countably-many ergodic components, then there exists a
sequence of functions φt, each Xt-measurable, such that φt(Xt

1) converges on the
ergodic component with probability 1.

Proof: From Theorem 52, we can write Xt
1 = π1:tU , for a sequence-valued

random variable U , using the projection operators of Chapter 2. For each
ergodic component, by Theorem 335, there exists a sequence of sets Rt,i such
that P (Xt

1 ∈ Rt,i) → 1 if U ∈ Ci, and goes to zero otherwise. Let φ(Xt
1) be the

set of all Ci for which Xt
1 ∈ Rt,i. By Theorem 331, U is in some component with

probability 1, and, since there are only countably many ergodic components,
with probability 1 Xt

1 will eventually leave all but one of the Rt,i. The remaining
one is the ergodic component. �



Chapter 27

Mixing

A stochastic process is mixing if its values at widely-separated
times are asymptotically independent.

Section 27.1 defines mixing, and shows that it implies ergodicity.
Section 27.2 gives some examples of mixing processes, both de-

terministic and non-deterministic.
Section 27.3 looks at the weak convergence of distributions pro-

duced by mixing, and the resulting decay of correlations.
Section 27.4 defines strong mixing, and the “mixing coefficient”

which measures it. It then states, but does not prove, a central limit
theorem for strongly mixing sequences. (The proof would demand
first working through the central limit theorem for martingales.)

For stochastic processes, “mixing” means “asymptotically independent”:
that is, the statistical dependence between X(t1) and X(t2) goes to zero as
|t1− t2| increases. To make this precise, we need to specify how we measure the
dependence between X(t1) and X(t2). The most common and natural choice
(first used by Rosenblatt, 1956) is the total variation distance between their
joint distribution and the product of their marginal distributions, but there are
other ways of measuring such “decay of correlations”1. Under all reasonable
choices, IID processes are, naturally enough, special cases of mixing processes.
This suggests that many of the properties of IID processes, such as laws of
large numbers and central limit theorems, should continue to hold for mixing
processes, at least if the approach to independence is sufficiently rapid. This in
turn means that many statistical methods originally developed for the IID case
will continue to work when the data-generating process is mixing; this is true
both of parametric methods, such as linear regression, ARMA models being
mixing (Doukhan, 1995, sec. 2.4.1), and of nonparametric methods like kernel
prediction (Bosq, 1998). Considerations of time will prevent us from going into

1The term is common, but slightly misleading: lack of correlation, in the ordinary
covariance-normalized-by-standard-deviations sense, implies independence only in special
cases, like Gaussian processes. Nonetheless, see Theorem 350.
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the purely statistical aspects of mixing processes, but the central limit theorem
at the end of this chapter will give some idea of the flavor of results in this area:
much like IID results, only with the true sample size replaced by an effective
sample size, with a smaller discount the faster the rate of decay of correlations.

27.1 Definition and Measurement of Mixing

Definition 338 (Mixing) A dynamical system Ξ,X , µ, T is mixing when, for
any A,B ∈ X ,

lim
t→∞

|µ(A ∩ T−tB)− µ(A)µ(T−tB)| = 0 (27.1)

Lemma 339 If µ is T -invariant, mixing is equivalent to

lim
t→∞

µ(A ∩ T−tB) = µ(A)µ(B) (27.2)

Proof: By stationarity, µ(T−tB) = µ(B), so µ(A)µ(T−tB) = µ(A)µ(B). The
result follows. �

Theorem 340 Mixing implies ergodicity.

Proof: LetA be any invariant set. By mixing, limt µ(T−tA ∩A) = µ(T−tA)µ(A).
But T−tA = A for every t, so we have limµ(A) = µ2(A), or µ(A) = µ2(A). This
can only be true if µ(A) = 0 or
mu(A) = 1, i.e., only if µ is T -ergodic. �

Everything we have established about ergodic processes, then, applies to
mixing processes.

Definition 341 A dynamical system is asymptotically stationary, with station-
ary limit m, when limt µ(T−tA) = m(A) for all A ∈ X .

Lemma 342 An asymptotically stationary system is mixing iff

lim
t→∞

µ(A ∩ T−tB) = µ(A)m(B) (27.3)

for all A,B ∈ X .

Proof: Directly from the fact that in this case m(B) = limt T
−tB. �

Theorem 343 Suppose G is a π-system, and µ is an asymptotically stationary
measure. If

lim
t

∣∣µ(A ∩ T−tB)− µ(A)µ(T−tB)
∣∣ = 0 (27.4)

for all A,B ∈ G, then it holds for all pairs of sets in σ(G). If σ(G) = X , then
the process is mixing.
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Proof(after Durrett, 1991, Lemma 6.4.3): Via the π-λ theorem, of course. Let
ΛA be the class of all B such that the equation holds, for a given A ∈ G. We
need to show that ΛA really is a λ-system.

Ξ ∈ ΛA is obvious. T−tΞ = Ξ so µ(A ∩ Ξ) = µ(A) = µ(A)µ(Ξ).
Closure under complements. Let B1 and B2 be two sets in ΛA, and assume

B1 ⊂ B2. Because set-theoretic operations commute with taking inverse images,
T−t (B2 \B1) = T−tB2 \ T−tB1. Thus

0 ≤ |µ
(
A ∩ T−t (B2 \B1)

)
− µ(A)µ(T−t (B2 \B1))| (27.5)

= |µ(A ∩ T−tB2)− µ(A ∩ T−tB1)− µ(A)µ(T−tB2) + µ(A)µ(T−tB1)|
≤ |µ(A ∩ T−tB2)− µ(A)µ(T−tB2)| (27.6)

+|µ(A ∩ T−tB1)− µ(A)µ(T−tB1)|

Taking limits of both sides, we get that lim |µ (A ∩ T−t (B2 \B1))− µ(A)µ(T−t (B2 \B1))| =
0, so that B2 \B1 ∈ ΛA.

Closure under monotone limits: LetBn be any monotone increasing sequence
in ΛA, with limit B. Thus, µ(Bn) ↑ µ(B), and at the same time m(Bn) ↑ m(B),
where m is the stationary limit of µ. Using Lemma 342, it is enough to show
that

lim
t
µ(A ∩ T−tB) = µ(A)m(B) (27.7)

Since Bn ⊂ B, we can always use the following trick:

µ(A ∩ T−tB) = µ(A ∩ T−tBn) + µ(A ∩ T−t(B \Bn)) (27.8)
lim
t
µ(A ∩ T−tB) = µ(A)m(Bn) + lim

t
µ(A ∩ T−t(B \Bn)) (27.9)

For any ε > 0, µ(A)m(Bn) can be made to come within ε of µ(A)m(B) by
taking n sufficiently large. Let us now turn our attention to the second term.

0 ≤ lim
t
µ(A ∩ T−t(B \Bn)) = lim

t
µ(T−t(B \Bn)) (27.10)

= lim
t
µ(T−tB \ T−tBn) (27.11)

= lim
t
µ(T−tB)− lim

t
µ(T−tBn) (27.12)

= m(B)−m(Bn) (27.13)

which again can be made less than any positive ε by taking n large. So, for
sufficiently large n, limt µ(A ∩ T−tB) is always within 2ε of µ(A)m(B). Since ε
can be made arbitrarily small, we conclude that limt µ(A ∩ T−tB) = µ(A)m(B).
Hence, B ∈ ΛA.

We conclude, from the π− λ theorem, that Eq. 27.4 holds for all A ∈ G and
all B ∈ σ(G). The same argument can be turned around for A, to show that
Eq. 27.4 holds for all pairs A,B ∈ σ(G). If G generates the whole σ-field X ,
then clearly Definition 338 is satisfied and the process is mixing. �
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27.2 Examples of Mixing Processes

Example 344 (IID Sequences) IID sequences are mixing from Theorem 343,
applied to finite-dimensional cylinder sets.

Example 345 (Ergodic Markov Chains) Another application of Theorem
343 shows that ergodic Markov chains are mixing.

Example 346 (Irrational Rotations of the Circle are Not Mixing) Irrational
rotations of the circle, Tx = x + φ mod 1, φ irrational, are ergodic (Example
310), and stationary under the Lebesgue measure. They are not, however, mix-
ing. Recall that T tx is dense in the unit interval, for arbitrary initial x. Because
it is dense, there is a sequence tn such that tnφ mod 1 goes to 1/2. Now let
A = [0, 1/4]. Because T maps intervals to intervals (of equal length), it follows
that T−tnA becomes an interval disjoint from A, i.e., µ(A ∩ T−tnA) = 0. But
mixing would imply that µ(A∩T−tnA) → 1/16 > 0, so the process is not mixing.

Example 347 (Deterministic, Reversible Mixing: The Cat Map) Here
Ξ = [0, 1)2, X are the appropriate Borel sets, µ is Lebesgue measure on the
square, and Tx = (x1 + x2, x1 + 2x2) mod 1. This is known as the cat map. It
is a deterministic, invertible transformation, but it can be shown that it is actu-
ally mixing. (For a proof, which uses Theorem 349, the Fibonacci numbers and
a clever trick with Fourier transforms, see Lasota and Mackey (1994, example
4.4.3, pp. 77–78).) The origins of the name lie with a figure in Arnol’d and
Avez (1968), illustrating the mixing action of the map by successively distorting
an image of a cat.

27.3 Convergence of Distributions Under Mix-
ing

To show how distributions converge (weakly) under mixing, we need to recall
some properties of Markov operators. Remember that, for a Markov process,
the time-evolution operator for observables, K, was defined through Kf(x) =
E [f(X1)|X0 = x]. Remember also that it induces an adjoint operator for the
evolution of distributions, taking signed measures to signed measures, through
the intermediary of the transition kernel. We can view the measure-updating
operator U as a linear operator on L1(µ), which takes non-negative µ-integrable
functions to non-negative µ-integrable functions, and probability densities to
probability densities. Since dynamical systems are Markov processes, all of this
remains valid; we have K defined through Kf(x) = f(Tx), and U through the
adjoint relationship, Eµ [f(X)Kg(X)] = E [Uf(X)g(X)]µ, where g ∈ L∞ and
f ∈ L1(µ). These relations continue to remain valid for powers of the operators.
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Lemma 348 In any Markov process, Und converges weakly to 1, for all initial
probability densities d, if and only if Unf converges weakly to Eµ [f ], for all
initial L1 functions f , i.e. Eµ [Unf(X)g(X)] → Eµ [f(X)] Eµ [g(X)] for all
bounded, measurable g.

Proof: “If”: If d is a probability density with respect to µ, then Eµ [d] = 1.
“Only if”: Re-write an arbitrary f ∈ L1(µ) as the difference of its positive
and negative parts, f = f+ − f−. A positive f is a re-scaling of some density,
f = cd for constant c = Eµ [f ] and a density d. Through the linearity of U and
its powers,

limU tf = limU tf+ − limU tf− (27.14)
= Eµ

[
f+
]
limU td+ −Eµ

[
f−
]
limU td− (27.15)

= Eµ

[
f+
]
−Eµ

[
f−
]

(27.16)

= Eµ

[
f+ − f−

]
= Eµ [f ] (27.17)

using the linearity of expectations at the last step. �

Theorem 349 A T -invariant probability measure µ is T -mixing if and only if
any initial probability measure ν << µ converges weakly to µ under the action
of T , i.e., iff, for all bounded, measurable f ,

EUtν [f(X)] → Eµ [f(X)] (27.18)

Proof: Exercise. The way to go is to use the previous lemma, of course. With
that tool, one can prove that the convergence holds for indicator functions, and
then for simple functions, and finally, through the usual arguments, for all L1

densities.

Theorem 350 (Decay of Correlations) A stationary system is mixing if and
only if

lim
t→∞

cov (f(X0), g(Xt)) = 0 (27.19)

for all bounded observables f , g.

Proof: Exercise, from the fact that convergence in distribution implies con-
vergence of expectations of all bounded measurable functions. �

It is natural to ask what happens if U tν → µ not weakly but strongly. This
is known as asymptotic stability or (especially in the nonlinear dynamics liter-
ature) exactness. Remarkably enough, it is equivalent to the requirement that
µ(T tA) → 1 whenever µ(A) > 0. (Notice that for once the expression involves
images rather than pre-images.) There is a kind of hierarchy here, where differ-
ent levels of convergence of distribution (Cesáro, weak, strong) match different
sorts of ergodicity (metric transitivity, mixing, exactness). For more details, see
Lasota and Mackey (1994).
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27.4 A Central Limit Theorem for Mixing Se-
quences

Notice that I say “a central limit theorem”, rather than “the central limit the-
orem”. In the IID case, the necessary and sufficient condition for the CLT is
well-known (you saw it in 36-752) and reasonably comprehensible. In the mixing
case, a necessary and sufficient condition is known2, but not commonly used,
because quite opaque and hard to check. Rather, the common practice is to
rely upon a large set of distinct sufficient conditions. Some of these, it must be
said, are pretty ugly, but they are more susceptible of verification.

Recall the notation that X−
t consists of the entire past of the process, in-

cluding Xt, and X+
t its entire future.

Definition 351 (Mixing Coefficients) For a stochastic process Xt, define
the strong-, Rosenblatt- or α- mixing coefficients as

α(t1, t2) = sup
{
|P (A ∩B)− P (A) P (B)| : A ∈ σ(X−

t1), B ∈ σ(X+
t2)
}

(27.20)

If the system is conditionally stationary, then α(t1, t2) = α(t2, t1) = α(|t1 −
t2|) ≡ α(τ). If α(τ) → 0, then the process is strong-mixing or α-mixing. If
α(τ) = O(e−bτ ) for some b > 0, the process is exponentially mixing, b is the
mixing rate, and 1/b is the mixing time. If α(τ) = O(τ−k) for some k > 0,
then the process is polynomially mixing.

Notice that α(t1, t2) is just the total variation distance between the joint distri-
bution, L

(
X−
t1 , X

+
t2

)
, and the product of the marginal distributions, L

(
X−
t1

)
×

L
(
X+
t2

)
. Thus, it is a natural measure of the degree to which the future of

the system depends on its past. However, there are at least four other mixing
coefficients (β, φ, ψ and ρ) regularly used in the literature. Since any of these
others going to zero implies that α goes to zero, we will stick with α-mixing, as
in Rosenblatt (1956).

Also notice that if Xt is a Markov process (e.g., a dynamical system) then
the Markov property tells us that we only need to let the supremum run over
measurable sets in σ(Xt1) and σ(Xt2).

Lemma 352 If a dynamical system is α-mixing, then it is mixing.

Proof: α is the supremum of the quantity appearing in the definition of mixing.
�

Notation: For the remainder of this section,

Sn ≡
n∑
k=1

Xn (27.21)

σ2
n ≡ Var [Sn] (27.22)

Yn(t) ≡
S[nt]

σn
(27.23)

2Doukhan (1995, p. 47) cites Jakubowski and Szewczak (1990) as the source, but I have
not verified the reference.
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where n is any positive integer, and t ∈ [0, 1].

Definition 353 Xt obeys the central limit theorem when

Sn
σ
√
n

d→ N (0, 1) (27.24)

for some positive σ.

Definition 354 Xt obeys the functional central limit theorem or the invariance
principle when

Yn
d→W (27.25)

where W is a standard Wiener process on [0, 1], and the convergence is in the
Skorokhod topology of Sec. 15.1.

Theorem 355 (Central Limit Theorem for α-Mixing Sequences) Let Xt

be a stationary sequence with E [Xt] = 0. Suppose X is α-mixing, and that for
some δ > 0

E
[
|Xt|2+δ

]
≤ ∞ (27.26)

∞∑
n=0

α
δ

2+δ (n) ≤ ∞ (27.27)

Then

lim
n→∞

σ2
n

n
= E

[
|X1|2

]
+ 2

∞∑
k=1

E [X1Xk] ≡ σ2 (27.28)

If σ2 > 0, moreover, Xt obeys both the central limit theorem with variance σ2,
and the functional central limit theorem.

Proof: Complicated, and based on a rather technical central limit theorem for
martingale difference arrays. See Doukhan (1995, sec. 1.5), or, for a simplified
presentation, Durrett (1991, sec. 7.7). �

For the rate of convergence of of L (Sn/
√
n) to a Gaussian distribution, in

the total variation metric, see Doukhan (1995, sec. 1.5.2), summarizing sev-
eral works. Polynomially-mixing sequences converge polynomially in n, and
exponentially-mixing sequences converge exponentially.

There are a number of results on central limit theorems and functional cen-
tral limit theorems for deterministic dynamical systems. A particularly strong
one was recently proved by Tyran-Kamińska (2005), in a friendly paper which
should be accessible to anyone who’s followed along this far, but it’s too long
for us to do more than note its existence.



Chapter 28

Shannon Entropy and
Kullback-Leibler
Divergence

Section 28.1 introduces Shannon entropy and its most basic prop-
erties, including the way it measures how close a random variable is
to being uniformly distributed.

Section 28.2 describes relative entropy, or Kullback-Leibler di-
vergence, which measures the discrepancy between two probability
distributions, and from which Shannon entropy can be constructed.
Section 28.2.1 describes some statistical aspects of relative entropy,
especially its relationship to expected log-likelihood and to Fisher
information.

Section 28.3 introduces the idea of the mutual information shared
by two random variables, and shows how to use it as a measure of
serial dependence, like a nonlinear version of autocovariance (Section
28.3.1).

Information theory studies stochastic processes as sources of information,
or as models of communication channels. It appeared in essentially its modern
form with Shannon (1948), and rapidly proved to be an extremely useful mathe-
matical tool, not only for the study of “communication and control in the animal
and the machine” (Wiener, 1961), but more technically as a vital part of prob-
ability theory, with deep connections to statistical inference (Kullback, 1968),
to ergodic theory, and to large deviations theory. In an introduction that’s so
limited it’s almost a crime, we will do little more than build enough theory to
see how it can fit in with the theory of inference, and then get what we need
to progress to large deviations. If you want to learn more (and you should!),
the deservedly-standard modern textbook is Cover and Thomas (1991), and a
good treatment, at something more like our level of mathematical rigor, is Gray

189
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(1990).1

28.1 Shannon Entropy

The most basic concept of information theory is that of the entropy of a random
variable, or its distribution, often called Shannon entropy to distinguish it from
the many other sorts. This is a measure of the uncertainty or variability asso-
ciated with the random variable. Let’s start with the discrete case, where the
variable takes on only a finite or countable number of values, and everything is
easier.

Definition 356 (Shannon Entropy (Discrete Case)) The Shannon entropy,
or just entropy, of a discrete random variable X is

H[X] ≡ −
∑
x

P (X = x) log P (X = x) = −E [log P (X)] (28.1)

when the sum exists. Entropy has units of bits when the logarithm has base 2,
and nats when it has base e.

The joint entropy of two random variables, H[X,Y ], is the entropy of their
joint distribution.

The conditional entropy of X given Y , H[X|Y ] is

H[X|Y ] ≡
∑
y

P (Y = y)
∑
x

P (X = x|Y = y) log P (X = x|Y = y)(28.2)

= −E [log P (X|Y )] (28.3)
= H[X,Y ]−H[Y ] (28.4)

Here are some important properties of the Shannon entropy, presented with-
out proofs (which are not hard).

1. H[X] ≥ 0

2. H[X] = 0 iff ∃x0 : X = x0 a.s.

3. If X can take on n <∞ different values (with positive probability), then
H[X] ≤ log n. H[X] = log n iff X is uniformly distributed.

4. H[X]+H[Y ] ≥ H[X,Y ], with equality iff X and Y are independent. (This
comes from the logarithm in the definition.)

1Remarkably, almost all of the post-1948 development has been either amplifying or refining
themes first sounded by Shannon. For example, one of the fundamental results, which we
will see in the next chapter, is the “Shannon-McMillan-Breiman theorem”, or “asymptotic
equipartition property”, which says roughly that the log-likelihood per unit time of a random
sequence converges to a constant, characteristic of the data-generating process. Shannon’s
original version was convergence in probability for ergodic Markov chains; the modern form
is almost sure convergence for any stationary and ergodic process. Pessimistically, this says
something about the decadence of modern mathematical science; optimistically, something
about the value of getting it right the first time.
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5. H[X,Y ] ≥ H[X].

6. H[X|Y ] ≥ 0, with equality iff X is a.s. constant given Y , for almost all
Y .

7. H[X|Y ] ≤ H[X], with equality iff X is independent of Y . (“Conditioning
reduces entropy”.)

8. H[f(X)] ≤ H[X], for any measurable function f , with equality iff f is
invertible.

The first three properties can be summarized by saying that H[X] is max-
imized by a uniform distribution, and minimized, to zero, by a degenerate one
which is a.s. constant. We can then think of H[X] as the variability of X,
something like the log of the effective number of values it can take on. We can
also think of it as how uncertain we are about X’s value.2 H[X,Y ] is then how
much variability or uncertainty is associated with the pair variable X,Y , and
H[Y |X] is how much uncertainty remains about Y once X is known, averag-
ing over Y . Similarly interpretations follow for the other properties. The fact
that H[f(X)] = H[X] if f is invertible is nice, because then f just relabels the
possible values, meshing nicely with this interpretation.

A simple consequence of the above results is particularly important for later
use.

Lemma 357 (Chain Rule for Shannon Entropy) Let X1, X2, . . . Xn be discrete-
valued random variables on a common probability space. Then

H[X1, X2, . . . Xn] = H[X1] +
n∑
i=2

H[Xn|X1, . . . Xn−1] (28.5)

Proof: From the definitions, it is easily seen that H[X2|X1] = H[X2, X1] −
H[X1]. This establishes the chain rule for n = 2. A simple argument by
induction does the rest. �

For non-discrete random variables, it is necessary to introduce a reference
measure, and many of the nice properties go away.

Definition 358 (Shannon Entropy (General Case)) The Shannon entropy
of a random variable X with distribution µ, with respect to a reference measure
ρ, is

Hρ[X] ≡ −Eµ

[
log

dµ

dρ

]
(28.6)

2This line of reasoning is sometimes supplemented by saying that we are more “surprised”
to find that X = x the less probable that event is, supposing that surprise should go as the
log of one over that probability, and defining entropy as expected surprise. The choice of
the logarithm, rather than any other increasing function, is of course retroactive, though one
might cobble together some kind of psychophysical justification, since the perceived intensity
of a sensation often grows logarithmically with the physical magnitude of the stimulus. More
dubious, to my mind, is the idea that there is any surprise at all when a fair coin coming up
heads.
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when µ << ρ. Joint and conditional entropies are defined similarly. We will
also write Hρ[µ], with the same meaning. This is sometimes called differential
entropy when ρ is Lebesgue measure on Euclidean space, especially R, and then
is written h(X) or h[X].

It remains true, in the general case, that Hρ[X|Y ] = Hρ[X,Y ]−Hρ[Y ], pro-
vided all of the entropies are finite. The chain rule remains valid, conditioning
still reduces entropy, and the joint entropy is still ≤ the sum of the marginal
entropies, with equality iff the variables are independent. However, depending
on the reference measure, Hρ[X] can be negative; e.g., if ρ is Lebesgue measure
and L (X) = δ(x), then Hρ[X] = −∞.

28.2 Relative Entropy or Kullback-Leibler Di-
vergence

Some of the difficulties associated with Shannon entropy, in the general case,
can be evaded by using relative entropy.

Definition 359 (Relative Entropy, Kullback-Leibler Divergence) Given
two probability distributions, ν << µ, the relative entropy of ν with respect to
µ, or the Kullback-Leibler divergence of ν from µ, is

D(µ‖ν) = −Eµ

[
log

dν

dµ

]
(28.7)

If ν is not absolutely continuous with respect to µ, then D(µ‖ν) = ∞.

Lemma 360 D(µ‖ν) ≥ 0, with equality iff ν = µ almost everywhere (µ).

Proof: From Jensen’s inequality, Eµ

[
log dν

dµ

]
≤ log Eµ

[
dν
dµ

]
= log 1 = 0. The

second part follows from the conditions for equality in Jensen’s inequality. �

Lemma 361 (Divergence and Total Variation) For any two distributions,
D(µ‖ν) ≥ 1

2 ln 2‖µ− ν‖21.

Proof: Algebra. See, e.g., Cover and Thomas (1991, Lemma 12.6.1, pp. 300–
301). �

Definition 362 The conditional relative entropy, D(µ(Y |X)‖ν(Y |X)) is

D(µ(Y |X)‖ν(Y |X)) ≡ −Eµ

[
log

dν(Y |X)
dµ(Y |X)

]
(28.8)

Lemma 363 (Chain Rule for Relative Entropy) D(µ(X,Y )‖ν(X,Y )) =
D(µ(X)‖ν(X)) +D(µ(Y |X)‖ν(Y |X))
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Proof: Algebra. �
Shannon entropy can be constructed from the relative entropy.

Lemma 364 The Shannon entropy of a discrete-valued random variable X,
with distribution µ, is

H[X] = log n−D(µ‖υ) (28.9)

where n is the number of values X can take on (with positive probability), and
υ is the uniform distribution over those values.

Proof: Algebra. �
A similar result holds for the entropy of a variable which takes values in a

finite subset, of volume V , of a Euclidean space, i.e., Hλ[X] = log V −D(µ‖υ),
where λ is Lebesgue measure and υ is the uniform probability measure on the
range of X.

28.2.1 Statistical Aspects of Relative Entropy

From Lemma 361, “convergence in relative entropy”, D(µ‖νn) → 0 as n→∞,
implies convergence in the total variation (L1) metric. Because of Lemma 360,
we can say that KL divergence has some of the properties of a metric on the
space of probability distribution: it’s non-negative, with equality only when the
two distributions are equal (a.e.). Unfortunately, however, it is not symmetric,
and it does not obey the triangle inequality. (This is why it’s the KL divergence
rather than the KL distance.) Nonetheless, it’s enough like a metric that it can
be used to construct a kind of geometry on the space of probability distributions,
and so of statistical models, which can be extremely useful. While we will not
be able to go very far into this information geometry3, it will be important to
indicate a few of the connections between information-theoretic notions, and
the more usual ones of statistical theory.

Definition 365 (Cross-entropy) The cross-entropy of ν and µ, Q(µ‖ν), is

Qρ(µ‖ν) ≡ −Eµ

[
log

dν

dρ

]
(28.10)

where ν is absolutely continuous with respect to the reference measure ρ. If the
domain is discrete, we will take the reference measure to be uniform and drop
the subscript, unless otherwise noted.

Lemma 366 Suppose ν and µ are the distributions of two probability models,
and ν << µ. Then the cross-entropy is the expected negative log-likelihood of
the model corresponding to ν, when the actual distribution is µ. The actual
or empirical negative log-likelihood of the model corresponding to ν is Qρ(ν‖η),
where η is the empirical distribution.

3See Kass and Vos (1997) or Amari and Nagaoka (1993/2000). For applications to sta-
tistical inference for stochastic processes, see Taniguchi and Kakizawa (2000). For an easier
general introduction, Kulhavý (1996) is hard to beat.
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Proof: Obvious from the definitions. �

Lemma 367 If ν << µ << ρ, then Qρ(µ‖ν) = Hρ[µ] +D(µ‖ν).

Proof: By the chain rule for densities,

dν

dρ
=

dµ

dρ

dν

dµ
(28.11)

log
dν

dρ
= log

dµ

dρ
+ log

dν

dµ
(28.12)

Eµ

[
log

dν

dρ

]
= Eµ

[
log

dµ

dρ

]
+ Eµ

[
log

dν

dµ

]
(28.13)

The result follows by applying the definitions. �

Corollary 368 (Gibbs’s Inequality) Qρ(µ‖ν) ≥ Hρ[µ], with equality iff ν =
µ a.e.

Proof: Insert the result of Lemma 360 into the preceding proposition. �
The statistical interpretation of the proposition is this: The log-likelihood

of a model, leading to distribution ν, can be broken into two parts. One is the
divergence of ν from µ; the other just the entropy of µ, i.e., it is the same for all
models. If we are considering the expected log-likelihood, then µ is the actual
data-generating distribution. If we are considering the empirical log-likelihood,
then µ is the empirical distribution. In either case, to maximize the likelihood
is to minimize the relative entropy, or divergence. What we would like to do, as
statisticians, is minimize the divergence from the data-generating distribution,
since that will let us predict future values. What we can do is minimize diver-
gence from the empirical distribution. The consistency of maximum likelihood
methods comes down, then, to finding conditions under which a shrinking di-
vergence from the empirical distribution guarantees a shrinking divergence from
the true distribution.4

Definition 369 Let θ ∈ Rk, k < ∞, be the parameter indexing a set M of
statistical models, where for every θ, νθ << ρ, with densities pθ. Then the
Fisher information matrix is

Iij(θ) ≡ Eνθ

[(
∂ log pθ
dθi

)(
∂ log pθ
dθj

)]
(28.14)

Corollary 370 The Fisher information matrix is equal to the Hessian (second
partial derivative) matrix of the relative entropy:

Iij(θ0) =
∂2

∂θi∂θj
D(νθ0‖νθ) (28.15)

4If we did have a triangle inequality, then we could say D(µ‖ν) ≤ D(µ‖η) + D(η‖ν), and
it would be enough to make sure that both the terms on the RHS went to zero, say by some
combination of maximizing the likelihood in-sample, so D(η‖ν) is small, and ergodicity, so
that D(µ‖η) is small. While, as noted, there is no triangle inequality, under some conditions
this idea is roughly right; there are nice diagrams in Kulhavý (1996).
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Proof: It is a classical result (see, e.g., Lehmann and Casella (1998, sec. 2.6.1))
that Iij(θ) = −Eνθ

[
∂2

∂θi∂θj
log pθ

]
. The present result follows from this, Lemma

366, Lemma 367, and the fact that Hρ[νθ0 ] is independent of θ. �

28.3 Mutual Information

Definition 371 (Mutual Information) The mutual information between two
random variables, X and Y , is the divergence of the product of their marginal
distributions from their actual joint distribution:

I[X;Y ] ≡ D(L (X,Y ) ‖L (X)× L (Y )) (28.16)

Similarly, the mutual information among n random variables X1, X2, . . . Xn is

I[X1;X2; . . . ;Xn] ≡ D(L (X1, X2, . . . Xn) ‖
n∏
i=1

L (Xi)) (28.17)

the divergence of the product distribution from the joint distribution.

Proposition 372 I[X;Y ] ≥ 0, with equality iff X and Y are independent.

Proof: Directly from Lemma 360. �

Proposition 373 If all the entropies involved are finite,

I[X;Y ] = H[X] +H[Y ]−H[X,Y ] (28.18)
= H[X]−H[X|Y ] (28.19)
= H[Y ]−H[Y |X] (28.20)

so I[X;Y ] ≤ H[X] ∧H[Y ].

Proof: Calculation. �
This leads to the interpretation of the mutual information as the reduction

in uncertainty or effective variability of X when Y is known, averaging over their
joint distribution. Notice that in the discrete case, we can say H[X] = I[X;X],
which is why H[X] is sometimes known as the self-information.

28.3.1 Mutual Information Function

Just as with the autocovariance function, we can define a mutual information
function for one-parameter processes, to serve as a measure of serial dependence.

Definition 374 (Mutual Information Function) The mutual information
function of a one-parameter stochastic process X is

ι(t1, t2) ≡ I[Xt1 ;Xt2 ] (28.21)

which is symmetric in its arguments. If the process is stationary, it is a function
of |t1 − t2| alone.
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Notice that, unlike the autocovariance function, ι includes nonlinear depen-
dencies between Xt1 and Xt2 . Also notice that ι(τ) = 0 means that the two
variables are strictly independent, not just uncorrelated.

Theorem 375 A stationary process is mixing if ι(τ) → 0.

Proof: Because then the total variation distance between the joint distribution,
L (Xt1Xt2), and the product of the marginal distributions, L (Xt1)L (Xt2), is
being forced down towards zero, which implies mixing (Definition 338). �



Chapter 29

Entropy Rates and
Asymptotic Equipartition

Section 29.1 introduces the entropy rate — the asymptotic en-
tropy per time-step of a stochastic process — and shows that it is
well-defined; and similarly for information, divergence, etc. rates.

Section 29.2 proves the Shannon-MacMillan-Breiman theorem,
a.k.a. the asymptotic equipartition property, a.k.a. the entropy
ergodic theorem: asymptotically, almost all sample paths of a sta-
tionary ergodic process have the same log-probability per time-step,
namely the entropy rate. This leads to the idea of “typical” se-
quences, in Section 29.2.1.

Section 29.3 discusses some aspects of asymptotic likelihood, us-
ing the asymptotic equipartition property, and allied results for the
divergence rate.

29.1 Information-Theoretic Rates

Definition 376 (Entropy Rate) The entropy rate of a random sequence X
is

h(X) ≡ lim
n
Hρ[Xn

1 ]n (29.1)

when the limit exists.

Definition 377 (Limiting Conditional Entropy) The limiting conditional
entropy of a random sequence X is

h′(X) ≡ lim
n
Hρ[Xn|Xn−1

1 ] (29.2)

when the limit exists.

197
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Lemma 378 For a stationary sequence, Hρ[Xn|Xn−1
1 ] is non-increasing in n.

Moreover, its limit exists if X takes values in a discrete space.

Proof: Because “conditioning reduces entropy”,Hρ[Xn+1|Xn
1 ] ≤ H[Xn+1|Xn

2 ].
By stationarity, Hρ[Xn+1|Xn

2 ] = Hρ[Xn|Xn−1
1 ]. If X takes discrete values,

then conditional entropy is non-negative, and a non-increasing sequence of non-
negative real numbers always has a limit. �

Remark: Discrete values are a sufficient condition for the existence of the
limit, not a necessary one.

We now need a natural-looking, but slightly technical, result from real anal-
ysis.

Theorem 379 (Cesàro) For any sequence of real numbers an → a, the se-
quence bn = n−1

∑n
i=1 an also converges to a.

Proof: For every ε > 0, there is an N(ε) such that |an − a| < ε whenever
n > N(ε). Now take bn and break it up into two parts, one summing the terms
below N(ε), and the other the terms above.

lim
n
|bn − a| = lim

n

∣∣∣∣∣n−1
n∑
i=1

ai − a

∣∣∣∣∣ (29.3)

≤ lim
n
n−1

n∑
i=1

|ai − a| (29.4)

≤ lim
n
n−1

N(ε)∑
i=1

|ai − a|+ (n−N(ε))ε

 (29.5)

≤ lim
n
n−1

N(ε)∑
i=1

|ai − a|+ nε

 (29.6)

= ε+ lim
n
n−1

N(ε)∑
i=1

|ai − a| (29.7)

= ε (29.8)

Since ε was arbitrary, lim bn = a. �

Theorem 380 (Entropy Rate) For a stationary sequence, if the limiting con-
ditional entropy exists, then it is equal to the entropy rate, h(X) = h′(X).

Proof: Start with the chain rule to break the joint entropy into a sum of
conditional entropies, use Lemma 378 to identify their limit as h]prime(X), and



CHAPTER 29. RATES AND EQUIPARTITION 199

then use Cesàro’s theorem:

h(X) = lim
n

1
n
Hρ[Xn

1 ] (29.9)

= lim
n

1
n

n∑
i=1

Hρ[Xi|Xi−1
1 ] (29.10)

= h′(X) (29.11)

as required. �
Because h(X) = h′(X) for stationary processes (when both limits exist), it is

not uncommon to find what I’ve called the limiting conditional entropy referred
to as the entropy rate.

Lemma 381 For a stationary sequence h(X) ≤ H[X1], with equality iff the
sequence is IID.

Proof: Conditioning reduces entropy, unless the variables are independent, so
H[Xn|Xn−1

1 ] < H[Xn], unless Xn |= Xn−1
1 . For this to be true of all n, which

is what’s needed for h(X) = H[X1], all the values of the sequence must be
independent of each other; since the sequence is stationary, this would imply
that it’s IID. �

Example 382 (Markov Sequences) If X is a stationary Markov sequence,
then h(X) = Hρ[X2|X1], because, by the chain rule, Hρ[Xn

1 ] = Hρ[X1] +∑n
t=2Hρ[Xt|Xt−1

1 ]. By the Markov property, however, Hρ[Xt|Xt−1
1 ] = Hρ[Xt|Xt−1],

which by stationarity is Hρ[X2|X1]. Thus, Hρ[Xn
1 ] = Hρ[X1]+(n−1)Hρ[X2|X1].

Dividing by n and taking the limit, we get Hρ[Xn
1 ] = Hρ[X2|X1].

Example 383 (Higher-Order Markov Sequences) If X is a kth order Markov
sequence, then the same reasoning as before shows that h(X) = Hρ[Xk+1|Xk

1 ]
when X is stationary.

Definition 384 (Divergence Rate) The divergence rate or relative entropy
rate of the infinite-dimensional distribution Q from the infinite-dimensional dis-
tribution P , d(P‖Q), is

d(P‖Q) = lim
n

EP

[
log

(
dP

dQ

∣∣∣∣
σ(X0

−n)

)]
(29.12)

if all the finite-dimensional distributions of Q dominate all the finite-dimensional
distributions of P . If P and Q have densities, respectively p and q, with respect
to a common reference measure, then

d(P‖Q) = lim
n

EP

[
log

p(X0|X−1
−n)

q(X0|X−1
−n)

]
(29.13)
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29.2 The Shannon-McMillan-Breiman Theorem
or Asymptotic Equipartition Property

This is a central result in information theory, acting as a kind of ergodic theorem
for the entropy. That is, we want to say that, for almost all ω,

− 1
n

log P (Xn
1 (ω)) → lim

n

1
n

E [− log P (Xn
1 )] = h(X)

At first, it looks like we should be able to make a nice time-averaging argument.
We can always factor the joint probability,

1
n

log P (Xn
1 ) =

1
n

n∑
t=1

log P
(
Xt|Xt−1

1

)
with the understanding that P

(
X1|X0

1

)
= P (X1). This looks rather like the

sort of Cesàro average that we became familiar with in ergodic theory. The
problem is, there we were averaging f(T tω) for a fixed function f . This is not
the case here, because we are conditioning on long and longer stretches of the
past. There’s no problem if the sequence is Markovian, because then the remote
past is irrelevant, by the Markov property, and we can just condition on a fixed-
length stretch of the past, so we’re averaging a fixed function shifted in time.
(This is why Shannon’s original argument was for Markov chains.) The result
nonetheless more broadly, but requires more subtlety than might otherwise be
thought. Breiman’s original proof of the general case was fairly involved1, re-
quiring both martingale theory, and a sort of dominated convergence theorem
for ergodic time averages. (You can find a simplified version of his argument
in Kallenberg, at the end of chapter 11.) We will go over the “sandwiching”
argument of Algoet and Cover (1988), which is, to my mind, more transparent.

The idea of the sandwich argument is to show that, for large n, −n−1 log P (Xn
1 )

must lie between an upper bound, hk, obtained by approximating the sequence
by a Markov process of order k, and a lower bound, which will be shown to be
h. Once we establish that hk ↓ h, we will be done.

Definition 385 (Markov Approximation) For each k, define the order k
Markov approximation to X by

µk(Xn
1 ) = P

(
Xk

1

) n∏
t=k+1

P
(
Xt|Xt−1

t−k
)

(29.14)

µk is the distribution of a stationary Markov process of order k, where the
distribution of Xk+1

1 matches that of the original process.

1Notoriously, the proof in his original paper was actually invalid, forcing him to publish a
correction.
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Lemma 386 For each k, the entropy rate of the order k Markov approximation
is is equal to H[Xk+1|Xk

1 ].

Proof: Under the approximation (but not under the original distribution ofX),
H[Xn

1 ] = H[Xk
1 ]+(n−k)H[Xk+1|Xk

1 ], by the Markov property and stationarity
(as in Examples 382 and 383). Dividing by n and taking the limit as n → ∞
gives the result. �

Lemma 387 If X is a stationary two-sided sequence, then Yt = f(Xt
−∞) de-

fines a stationary sequence, for any measurable f . If X is also ergodic, then Y
is ergodic too.

Proof: Because X is stationary, it can be represented as a measure-preserving
shift on sequence space. Because it is measure-preserving, θXt

−∞
d= Xt

−∞, so

Y (t) d= Y (t+ 1), and similarly for all finite-length blocks of Y . Thus, all of the
finite-dimensional distributions of Y are shift-invariant, and these determine the
infinite-dimensional distribution, so Y itself must be stationary.

To see that Y must be ergodic if X is ergodic, recall that a random sequence
is ergodic iff its corresponding shift dynamical system is ergodic. A dynamical
system is ergodic iff all invariant functions are a.e. constant (Theorem 304).
Because the Y sequence is obtained by applying a measurable function to the
X sequence, a shift-invariant function of the Y sequence is a shift-invariant
function of the X sequence. Since the latter are all constant a.e., the former are
too, and Y is ergodic. �

Lemma 388 If X is stationary and ergodic, then, for every k,

P
(

lim
n
− 1
n

logµk(Xn
1 (ω)) = hk

)
= 1 (29.15)

i.e., − 1
n logµk(Xn

1 (ω)) converges a.s. to hk.

Proof: Start by factoring the approximating Markov measure in the way sug-
gested by its definition:

− 1
n

logµk(Xn
1 ) = − 1

n
log P

(
Xk

1

)
− 1
n

n∑
t=k+1

log P
(
Xt|Xt−1

t−k
)

(29.16)

As n grows, 1
n log P

(
Xk

1

)
→ 0, for every fixed k. On the other hand, − log P

(
Xt|Xt−1

t−k
)

is a measurable function of the past of the process, and since X is stationary
and ergodic, it, too, is stationary and ergodic (Lemma 387). So

− 1
n

logµk(Xn
1 ) → − 1

n

n∑
t=k+1

log P
(
Xt|Xt−1

t−k
)

(29.17)

a.s.→ E
[
− log P

(
Xk+1|Xk

1

)]
(29.18)

= hk (29.19)

by Theorem 312. �
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Definition 389 The infinite-order approximation to the entropy rate of a discrete-
valued stationary process X is

h∞(X) ≡ E
[
− log P

(
X0|X−1

−∞
)]

(29.20)

Lemma 390 If X is stationary and ergodic, then

lim
n
− 1
n

log P
(
Xn

1 |X0
−∞
)

= h∞ (29.21)

almost surely.

Proof: Via Theorem 312 again, as in Lemma 388. �

Lemma 391 For a stationary, ergodic, finite-valued random sequence, hk(X) ↓
h∞(X).

Proof: By the martingale convergence theorem, for every x0 ∈ Ξ,

P
(
X0 = x0|X−1

n

) a.s.→ P
(
X0 = x0|X−1

∞
)

(29.22)

Since Ξ is finite, the probability of any point in Ξ is between 0 and 1 inclusive,
and p log p is bounded and continuous. So we can apply bounded convergence
to get that

hk = E

[
−
∑
x0

P
(
X0 = x0|X−1

−k
)
log P

(
X0 = x0|X−1

−k
)]

(29.23)

→ E

[
−
∑
x0

P
(
X0 = x0|X−1

−∞
)
log P

(
X0 = x0|X−1

−∞
)]

(29.24)

= h∞ (29.25)

Lemma 392 h∞(X) is the entropy rate of X, i.e. h∞(X) = h(X).

Proof: Clear from Theorem 380 and the definition of conditional entropy. �
We are almost ready for the proof, but need one technical lemma first.

Lemma 393 If Rn ≥ 0, E [Rn] ≤ 1 for all n, then

lim sup
n

1
n

logRn ≤ 0 (29.26)

almost surely.

Proof: Pick any ε > 0.

P
(

1
n

logRn ≥ ε

)
= P (Rn ≥ enε) (29.27)

≤ E [Rn]
enε

(29.28)

≤ e−nε (29.29)

by Markov’s inequality. Since
∑
n e

−nε ≤ ∞, by the Borel-Cantelli lemma,
lim supn n−1 logRn ≤ ε. Since ε was arbitrary, this concludes the proof. �
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Theorem 394 (Asymptotic Equipartition Property) For a stationary, er-
godic, finite-valued random sequence X,

− 1
n

log P (Xn
1 ) → h(X) a.s. (29.30)

Proof: For every k, µk(Xn
1 )/P (Xn

1 ) ≥ 0, and E [µk(Xn
1 )/P (Xn

1 )] ≤ 1. Hence,
by Lemma 393,

lim sup
n

1
n

log
µk(Xn

1 )
P (Xn

1 )
≤ 0 (29.31)

a.s. Manipulating the logarithm,

lim sup
n

1
n

logµk(Xn
1 ) ≤ − lim sup

n
− 1
n

log P (Xn
1 ) (29.32)

From Lemma 388, lim supn
1
n logµk(Xn

1 ) = limn
1
n logµk(Xn

1 ) = −hk(X), a.s.
Hence, for each k,

hk(X) ≥ lim sup
n

− 1
n

log P (Xn
1 ) (29.33)

almost surely.
A similar manipulation of P (Xn

1 ) /P
(
Xn

1 |X0
−∞
)

gives

h∞(X) ≤ lim inf
n

− 1
n

log P (Xn
1 ) (29.34)

a.s.
As hk ↓ h∞, it follows that the liminf and the limsup of the normalized log

likelihood must be equal almost surely, and so equal to h∞, which is to say to
h(X). �

Why is this called the AEP? Because, to within an o(n) term, all sequences
of length n have the same log-likelihood (to within factors of o(n), if they have
positive probability at all. In this sense, the likelihood is “equally partitioned”
over those sequences.

29.2.1 Typical Sequences

Let’s turn the result of the AEP around. For large n, the probability of a
given sequence is either approximately 2−nh or approximately zero2. To get
the total probability to sum up to one, there need to be about 2nh sequences
with positive probability. If the size of the alphabet is s, then the fraction
of sequences which are actually exhibited is 2n(h−log s), an increasingly small
fraction (as h ≤ log s). Roughly speaking, these are the typical sequences, any
one of which, via ergodicity, can act as a representative of the complete process.

2Of course that assumes using base-2 logarithms in the definition of entropy.
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29.3 Asymptotic Likelihood

29.3.1 Asymptotic Equipartition for Divergence

Using methods analogous to those we employed on the AEP for entropy, it is
possible to prove the following.

Theorem 395 Let P be an asymptotically mean-stationary distribution, with
stationary mean P , with ergodic component function φ. Let M be a homoge-
neous finite-order Markov process, whose finite-dimensional distributions dom-
inate those of P and P ; denote the densities with respect to M by p and p,
respectively. If limn n

−1 log p(Xn
1 ) is an invariant function P -a.e., then

− 1
n

log p(Xn
1 (ω)) a.s.→ d(Pφ(ω)‖M) (29.35)

where Pφ(ω) is the stationary, ergodic distribution of the ergodic component.

Proof: See Algoet and Cover (1988, theorem 4), Gray (1990, corollary 8.4.1).
Remark. The usual AEP is in fact a consequence of this result, with the

appropriate reference measure. (Which?)

29.3.2 Likelihood Results

It is left as an exercise for you to obtain the following result, from the AEP for
relative entropy, Lemma 367 and the chain rules.

Theorem 396 Let P be a stationary and ergodic data-generating process, whose
entropy rate, with respect to some reference measure ρ, is h. Further let M be a
finite-order Markov process which dominates P , whose density, with respect to
the reference measure, is m. Then

− 1
n

logm(Xn
1 ) → h+ d(P‖M) (29.36)

P -almost surely.

29.4 Exercises

Exercise 29.1 Markov approximations are maximum-entropy approximations.
(You may assume that the process X takes values in a finite set.)

a Prove that µk, as defined in Definition 385, gets the distribution of se-
quences of length k + 1 correct, i.e., for any set A ∈ X k+1, ν(A) =
P
(
Xk+1

1 ∈ A
)
.

b Prove that µk′ , for any any k′ > k, also gets the distribution of length
k + 1 sequences right.
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c In a slight abuse of notation, let H[ν(Xn
1 )] stand for the entropy of a se-

quence of length n when distributed according to ν. Show that H[µk(Xn
1 )] ≥

H[µk′(Xn
1 )] if k′ > k. (Note that the n ≤ k case is easy!)

d Is it true that that if ν is any other measure which gets the distribution
of sequences of length k + 1 right, then H[µk(Xn

1 )] ≥ H[ν(Xn
1 )]? If yes,

prove it; if not, find a counter-example.

Exercise 29.2 Prove Theorem 396.



Chapter 30

General Theory of Large
Deviations

A family of random variables follows the large deviations princi-
ple if the probability of the variables falling into “bad” sets, repre-
senting large deviations from expectations, declines exponentially in
some appropriate limit. Section 30.1 makes this precise, using some
associated technical machinery, and explores a few consequences.
The central one is Varadhan’s Lemma, for the asymptotic evalua-
tion of exponential integrals in infinite-dimensional spaces.

Having found one family of random variables which satisfy the
large deviations principle, many other, related families do too. Sec-
tion 30.2 lays out some ways in which this can happen.

As the great forensic statistician C. Chan once remarked, “Improbable events
permit themselves the luxury of occurring” (reported in Biggers, 1928). Large
deviations theory, as I have said, studies these little luxuries.

30.1 Large Deviation Principles: Main Defini-
tions and Generalities

Some technicalities:

Definition 397 (Level Sets) For any real-valued function f : Ξ 7→ R, the
level sets are the inverse images of intervals from −∞ to c inclusive, i.e., all
sets of the form {x ∈ Ξ : f(x) ≤ c}.

Definition 398 (Lower Semi-Continuity) A real-valued function f : Ξ 7→
R is lower semi-continuous if xn → x implies lim inf f(xn) ≥ f(x).

206
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Lemma 399 A function is lower semi-continuous iff either of the following
equivalent properties hold.

i For all x ∈ Ξ, the infimum of f over increasingly small open balls centered
at x approaches f(x):

lim
δ→0

inf
y: d(y,x)<δ

f(y) = f(x) (30.1)

ii f has closed level sets.

Proof: A character-building exercise in real analysis, left to the reader. �

Lemma 400 A lower semi-continuous function attains its minimum on every
non-empty compact set, i.e., if C is compact and 6= ∅, there is an x ∈ C such
that f(x) = infy∈C f(y).

Proof: Another character-building exercise in real analysis. �

Definition 401 (Logarithmic Equivalence) Two sequences of positive real
numbers an and bn are logarithmically equivalent, an ' bn, when

lim
n→∞

1
n

(log an − log bn) = 0 (30.2)

Similarly, for continuous parameterizations by ε > 0, aε ' bε when

lim
ε→0

ε (log aε − log bε) = 0 (30.3)

Lemma 402 (“Fastest rate wins”) For any two sequences of positive num-
bers, (an + bn) ' an ∨ bn.

Proof: A character-building exercise in elementary analysis. �

Definition 403 (Large Deviation Principle) A parameterized family of ran-
dom variables, Xε, ε > 0, taking values in a metric space Ξ with Borel σ-field
X , obeys a large deviation principle with rate 1/ε, or just obeys an LDP, when,
for any set B ∈ X ,

− inf
x∈intB

J(x) ≤ lim inf
ε→0

ε log P (Xε ∈ B) ≤ lim sup
ε→0

ε log P (Xε ∈ B) ≤ − inf
x∈clB

J(x)

(30.4)
for some non-negative function J : Ξ 7→ [0,∞], its raw rate function. If J is
lower semi-continuous, it is just a rate function. If J is lower semi-continuous
and has compact level sets, it is a good rate function.1 By a slight abuse of
notation, we will write J(B) = infx∈B J(x).

1Sometimes what Kallenberg and I are calling a “good rate function” is just “a rate func-
tion”, and our “rate function” gets demoted to “weak rate function”.
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Remark: The most common choices of ε are 1/n, in sample-size or discrete
sequence problems, or ε2, in small-noise problems (as in Chapter 22).

Lemma 404 (Uniqueness of Rate Functions) If Xε obeys the LDP with
raw rate function J , then it obeys the LDP with a unique rate function J ′.

Proof: First, show that a raw rate function can always be replaced by a lower
semi-continuous function, i.e. a non-raw (cooked?) rate function. Then, show
that non-raw rate functions are unique.

For any raw rate function J , define J ′(x) = lim infy→x J(x). This is clearly
lower semi-continuous, and J ′(x) ≤ J(x). However, for any open setB, infx∈B J ′(x) =
infx∈B J(x), so J and J ′ are equivalent for purposes of the LDP.

Now assume that J is a lower semi-continuous rate function, and suppose
that K 6= J was too; without loss of generality, assume that J(x) > K(x) at
some point x. We can use semi-continuity to find an open neighborhood B
of x such that J(clB) > K(x). But, substituting into Eq. 30.4, we obtain a
contradiction:

−K(x) ≤ −K(B) (30.5)
≤ lim inf

ε→0
ε log P (Xε ∈ B) (30.6)

≤ −J(clB) (30.7)
≤ −K(x) (30.8)

Hence there can be no such rate function K, and J is the unique rate function.
�

Lemma 405 If Xε obeys an LDP with rate function J , then J(x) = 0 for some
x.

Proof: Because P (Xε ∈ Ξ) = 1, we must have J(Ξ) = 0, and rate functions
attain their infima. �

Definition 406 A Borel set B is J-continuous, for some rate function J , when
J(intB) = J(clB).

Lemma 407 If Xε satisfies the LDP with rate function J , then for every J-
continuous set B,

lim
ε→0

ε log P (Xε ∈ B) = −J(B) (30.9)

Proof: By J-continuity, the right and left hand extremes of Eq. 30.4 are equal,
so the limsup and the liminf sandwiched between them are equal; consequently
the limit exists. �

Remark: The obvious implication is that, for small ε, P (Xε ∈ B) ≈ ce−J(B)/ε,
which explains why we say that the LDP has rate 1/ε. (Actually, c need not be
constant, but it must be at least o(ε), i.e., it must go to zero faster than ε itself
does.)

There are several equivalent ways of defining the large deviation principle.
The following is especially important, because it is often simplifies proofs.



CHAPTER 30. LARGE DEVIATIONS: BASICS 209

Lemma 408 Xε obeys the LDP with rate 1/ε and rate function J(x) if and
only if

lim sup
ε→0

ε log P (Xε ∈ C) ≤ −J(C) (30.10)

lim inf
ε→0

ε log P (Xε ∈ O) ≥ −J(O) (30.11)

for every closed Borel set C and every open Borel set O ⊂ Ξ.

Proof: “If”: The closure of any set is closed, and the interior of any set is
open, so Eqs. 30.10 and 30.11 imply

lim sup
ε→0

ε log P (Xε ∈ clB) ≤ −J(clB) (30.12)

lim inf
ε→0

ε log P (Xε ∈ intB) ≥ −J(intB) (30.13)

but P (Xε ∈ B) ≤ P (Xε ∈ clB) and P (Xε ∈ B) ≥ P (Xε ∈ intB), so the LDP
holds. “Only if”: every closed set is equal to its own closure, and every open set
is equal to its own interior, so the upper bound in Eq. 30.4 implies Eq. 30.10,
and the lower bound Eq. 30.11. �

A deeply important consequence of the LDP is the following, which can be
thought of as a version of Laplace’s method for infinite-dimensional spaces.

Theorem 409 (Varadhan’s Lemma) If Xε are random variables in a metric
space Ξ, obeying an LDP with rate 1/ε and rate function J , and f : Ξ 7→ R is
continuous and bounded from above, then

Λf ≡ lim
ε→0

ε log E
[
ef(Xε)/ε

]
= sup
x∈Ξ

f(x)− J(x) (30.14)

Proof: We’ll find the limsup and the liminf, and show that they are both
sup f(x)− J(x).

First the limsup. Pick an arbitrary positive integer n. Because f is contin-
uous and bounded above, there exist finitely closed sets, call them B1, . . . Bm,
such that f ≤ −n on the complement of

⋃
iBi, and within each Bi, f varies by

at most 1/n. Now

lim sup ε log E
[
ef(Xε)/ε

]
(30.15)

≤ (−n) ∨max
i≤m

lim sup ε log E
[
ef(Xε)/ε1Bi

(Xε)
]

≤ (−n) ∨max
i≤m

sup
x∈Bi

f(x)− inf
x∈Bi

J(x) (30.16)

≤ (−n) ∨max
i≤m

sup
x∈Bi

f(x)− J(x) + 1/n (30.17)

≤ (−n) ∨ sup
x∈Ξ

f(x)− J(x) + 1/n (30.18)
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Letting n→∞, we get lim sup ε log E
[
ef(Xε)/ε

]
= sup f(x)− J(x).

To get the liminf, pick any x ∈ Xi and an arbitrary ball of radius δ around
it, Bδ,x. We have

lim inf ε log E
[
ef(Xε)/ε

]
≥ lim inf ε log E

[
ef(Xε)/ε1Bδ,x

(Xε)
]

(30.19)

≥ inf
y∈Bδ,x

f(y)− inf
y∈Bδ,x

J(y) (30.20)

≥ inf
y∈Bδ,x

f(y)− J(x) (30.21)

Since δ was arbitrary, we can let it go to zero, so (by continuity of f) infy∈Bδ,x
f(y) →

f(x), or
lim inf ε log E

[
ef(Xε)/ε

]
≥ f(x)− J(x) (30.22)

Since this holds for arbitrary x, we can replace the right-hand side by a supre-
mum over all x. Hence sup f(x)− J(x) is both the liminf and the limsup. �

Remark: The implication of Varadhan’s lemma is that, for small ε, E
[
ef(Xε)/ε

]
≈

c(ε)eε
−1(supx∈Ξ f(x)−J(x)), where c(ε) = o(ε). So, we can replace the exponential

integral with its value at the extremal points, at least to within a multiplicative
factor and to first order in the exponent.

An important, if heuristic, consequence of the LDP is that “Highly im-
probable events tend to happen in the least improbable way”. Let us con-
sider two events B ⊂ A, and suppose that P (Xε ∈ A) > 0 for all ε. Then
P (Xε ∈ B|Xε ∈ A) = P (Xε ∈ B) /P (Xε ∈ A). Roughly speaking, then, this
conditional probability will vanish exponentially, with rate J(A)− J(B). That
is, even if we are looking at an exponentially-unlikely large deviation, the vast
majority of the probability is concentrated around the least unlikely part of the
event. More formal statements of this idea are sometimes known as “conditional
limit theorems” or “the Gibbs conditioning principle”.

30.2 Breeding Large Deviations

Often, the easiest way to prove that one family of random variables obeys a
large deviations principle is to prove that another, related family does.

Theorem 410 (Contraction Principle) If Xε, taking values in a metric space
Ξ, obeys an LDP, with rate ε and rate function J , and f : Ξ 7→ Υ is a continu-
ous function from that metric space to another, then Yε = f(Xε) also obeys an
LDP, with rate ε and raw rate function K(y) = J(f−1(y)). If J is a good rate
function, then so is K.
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Proof: Since f is continuous, f−1 takes open sets to open sets, and closed sets
to closed sets. Pick any closed C ⊂ Υ. Then

lim sup
ε→0

ε log P (f(Xε) ∈ C) (30.23)

= lim sup
ε→0

ε log P
(
Xε ∈ f−1(C)

)
≤ −J(f−1(C)) (30.24)
= − inf

x∈f−1(C)
J(x) (30.25)

= − inf
y∈C

inf
x∈f−1(y)

J(x) (30.26)

= − inf
y∈C

K(y) (30.27)

as required. The argument for open sets in Υ is entirely parallel, establishing
that K, as defined, is a raw rate function. By Lemma 404, K can be modified
to be lower semi-continuous without affecting the LDP, i.e., we can make a rate
function from it. If J is a good rate function, then it has compact level sets.
But continuous functions take compact sets to compact sets, so K = J ◦ f−1

will also have compact level sets, i.e., it will also be a good rate function. �
There are a bunch of really common applications of the contraction principle,

relating the large deviations at one level of description to those at coarser levels.
To make the most frequent set of implications precise, let’s recall a couple of
definitions.

Definition 411 (Empirical Mean) If X1, . . . Xn are random variables in a
common vector space Ξ, their empirical mean is Xn ≡ 1

n

∑n
i=1Xi.

We have already encountered this as the sample average or, in ergodic theory,
the finite time average. (Notice that nothing is said about the Xi being IID, or
even having a common expectation.)

Definition 412 (Empirical Distribution) Let X1, . . . Xn be random variables
in a common measurable space Ξ (not necessarily a vector or metric space). The
empirical distribution is P̂n ≡ 1

n

∑n
i=1 δXi

, where δx is the probability measure
that puts all its probability on the point x, i.e., δx(B) = 1B(x). P̂n is a ran-
dom variable taking values in P (Ξ), the space of all probability measures on Ξ.
(Cf. Example 10 in chapter 1 and Example 43 in chapter 4.) P (Ξ) is a met-
ric space under any of several distances, and a complete separable metric space
(i.e., Polish) under, for instance, the total variation metric.

Definition 413 (Finite-Dimensional Empirical Distributions) For each
k, the k-dimensional empirical distribution is

P̂ kn ≡
1
n

n∑
i=1

δ(Xi,Xi+1,...Xi+k) (30.28)

where the addition of indices for the delta function is to be done modulo n, i.e.,
P̂ 2

3 = 1
3

(
δ(X1,X2) + δ(X2,X3) + δ(X3,X1)

)
. P̂ kn takes values in P

(
Ξk
)
.
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Definition 414 (Empirical Process Distribution) With a finite sequence
of random variables X1, . . . Xn, the empirical process is the periodic, infinite
random sequence X̃n as the repetition of the sample without limit, i.e., X̃n(i) =
Xi mod n. If T is the shift operator on the sequence space, then the empirical
process distribution is

P̂∞n ≡ 1
n

n−1∑
i−0

δT iX̃n
(30.29)

P̂∞n takes values in the space of infinite-dimensional distributions for one-sided
sequences, P

(
ΞN). In fact, it is always a stationary distribution, because by

construction it is invariant under the shift T .

Be careful not to confuse this empirical process with the quite distinct empirical
process of Examples 10 and 43.

Corollary 415 The following chain of implications hold:

i If the empirical process distribution obeys an LDP, so do all the finite-
dimensional distributions.

ii If the n-dimensional distribution obeys an LDP, all m < n dimensional
distributions do.

iii If any finite-dimensional distribution obeys an LDP, the empirical distri-
bution does.

iv If the empirical distribution obeys an LDP, the empirical mean does.

Proof: In each case, we obtain the lower-level statistic from the higher-level
one by applying a continuous function, hence the contraction principle applies.
For the distributions, the continuous functions are the projection operators of
Chapter 2. �

Corollary 416 (“Tilted” LDP) In set-up of Theorem 409, let µε = L (Xε).
Define the probability measures µf,ε via

µf,ε(B) ≡
E
[
ef(Xε)/ε1B(Xε)

]
E
[
ef(Xε)/ε

] (30.30)

Then Yε ∼ µf,ε obeys an LDP with rate 1/ε and rate function

JF (x) = −(f(x)− J(x)) + sup
y∈Ξ

f(y)− J(y) (30.31)
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Proof: Define a set function Fε(B) = E
[
ef(Xε)/ε1B(Xε)

]
; then µf,ε(B) =

Fε(B)/Fε(Ξ). From Varadhan’s Lemma, we know that Fε(Ξ) has asymptotic
logarithm supy∈Ξ f(y)− J(y), so it is just necessary to show that

lim sup
ε

ε logFε(B) ≤ sup
x∈clB

f(x)− J(x) (30.32)

lim inf
ε

ε logFε(B) ≥ sup
x∈intB

f(x)− J(x) (30.33)

which can be done by imitating the proof of Varadhan’s Lemma itself. �
Remark: “Tilting” here refers to some geometrical analogy which, in all

honesty, has never made any sense to me.
Because the LDP is about exponential decay of probabilities, it is not sur-

prising that several ways of obtaining it require a sort of exponential bound on
the dispersion of the probability measure.

Definition 417 (Exponentially Tight) The parameterized family of random
variables Xε, ε > 0, is exponentially tight if, for every finite real M , there exists
a compact set C ⊂ Ξ such that

lim sup
ε→0

ε log P (Xε 6∈ C) ≤ −M (30.34)

The first use of exponential tightness is a converse to the contraction prin-
ciple: a high-level LDP is implied by the combination of a low-level LDP and
high-level exponential tightness.

Theorem 418 (Inverse Contraction Principle) If Xε are exponentially tight,
f is continuous and injective, and Yε = f(Xε) obeys an LDP with rate function
K, then Xε obeys an LDP with a good rate function J(x) = K(f(x)).

Proof: See Kallenberg, Theorem 27.11 (ii). Notice, by the way, that the proof
of the upper bound on probabilities (i.e. that lim sup ε log P (Xε ∈ B) ≤ −J(B)
for closed B ⊆ Ξ) does not depend on exponential tightness, just the continuity
of f . Exponential tightness is only needed for the lower bound. �

Theorem 419 (Bryc’s Theorem) If Xε are exponentially tight, and, for all
bounded continuous f , the limit

Λf ≡ lim
ε→0

ε log E
[
ef(Xε/ε)

]
(30.35)

exists, then Xε obeys the LDP with good rate function

J(x) ≡ sup
f
f(x)− Λf (30.36)

where the supremum extends over all bounded, continuous functions.

Proof: See Kallenberg, Theorem 27.10, part (ii). �
Remark: This is a converse to Varadhan’s Lemma.
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Theorem 420 (Projective Limit) Let Ξ1,Ξ2, . . . be a countable sequence of
metric spaces, and let Xε be a random sequence from this space. If, for every n,
Xn
ε = πnXε obeys the LDP with good rate function Jn, then Xε obeys the LDP

with good rate function
J(x) ≡ sup

n
Jn(πnx) (30.37)

Proof: See Kallenberg, Theorem 27.12. �

Definition 421 (Exponentially Equivalent Random Variables) Two fam-
ilies of random variables, Xε and Yε, taking values in a common metric space,
are exponentially equivalent when, for all positive δ,

lim
ε→0

ε log P (d(Xε, Yε) > δ) = −∞ (30.38)

Lemma 422 If Xε and Yε are exponentially equivalent, one of them obeys the
LDP with a good rate function J iff the other does as well.

Proof: It is enough to prove that the LDP for Xε implies the LDP for Yε, with
the same rate function. (Draw a truth-table if you don’t believe me!) As usual,
first we’ll get the upper bound, and then the lower.

Pick any closed set C, and let Cδ be its closed δ neighborhood, i.e., Cδ =
{x : ∃y ∈ C, d(x, y) ≤ δ}. Now

P (Yε ∈ Cδ) ≤ P (Xε ∈ Cδ) + P (d(Xε, Yε) > δ) (30.39)

Using Eq. 30.38 from Definition 421, the LDP for Xε, and Lemma 402

lim sup ε log P (Yε ∈ C) (30.40)
≤ lim sup ε log P (Xε ∈ Cδ) + ε log P (d(Xε, Yε) > δ)
≤ lim sup ε log P (Xε ∈ Cδ) ∨ lim sup ε log P (d(Xε, Yε) > δ) (30.41)
≤ −J(Cδ) ∨ −∞ (30.42)
= −J(Cδ) (30.43)

Since J is a good rate function, we have J(Cδ) ↑ J(C) as δ ↓ 0; since δ was
arbitrary to start with,

lim sup ε log P (Yε ∈ C) ≤ −J(C) (30.44)

As usual, to obtain the lower bound on open sets, pick any open set O and any
point x ∈ O. Because O is open, there is a δ > 0 such that, for some open
neighborhood U of x, not only is U ⊂ O, but Uδ ⊂ O. In which case, we can
say that

P (Xε ∈ U) ≤ P (Yε ∈ O) + P (d(Xε, Yε) > h) (30.45)
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Proceeding as for the upper bound,

− J(x) ≤ −J(U) (30.46)
≤ lim inf ε log P (Xε ∈ U) (30.47)
≤ lim inf ε log P (Yε ∈ O) ∨ lim sup ε log P (d(Xε, Yε) > δ)(30.48)
= lim inf ε log P (Yε ∈ O) (30.49)

(Notice that the initial arbitrary choice of δ has dropped out.) Taking the
supremum over all x gives −J(O) ≤ lim inf ε log P (Yε ∈ O), as required. �



Chapter 31

Large Deviations for IID
Sequences: The Return of
Relative Entropy

Section 31.1 introduces the exponential version of the Markov in-
equality, which will be our major calculating device, and shows how
it naturally leads to both the cumulant generating function and the
Legendre transform, which we should suspect (correctly) of being the
large deviations rate function. We also see the reappearance of rela-
tive entropy, as the Legendre transform of the cumulant generating
functional of distributions.

Section 31.2 proves the large deviations principle for the empir-
ical mean of IID sequences in finite-dimensional Euclidean spaces
(Cramér’s Theorem).

Section 31.3 proves the large deviations principle for the empiri-
cal distribution of IID sequences in Polish spaces (Sanov’s Theorem),
using Cramér’s Theorem for a well-chosen collection of bounded con-
tinuous functions on the Polish space, and the tools of Section 30.2.
Here the rate function is the relative entropy.

Section 31.4 proves that even the infinite-dimensional empirical
process distribution of an IID sequence in a Polish space obeys the
LDP, with the rate function given by the relative entropy rate.

The usual approach in large deviations theory is to establish an LDP for
some comparatively tractable basic case through explicit calculations, and then
use the machinery of Section 30.2 to extend it to LDPs for more complicated
cases. This chapter applies this strategy to IID sequences.

216
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31.1 Cumulant Generating Functions and Rela-
tive Entropy

Suppose the only inequality we knew in probability theory was Markov’s inequal-
ity, P (X ≥ a) ≤ E [X] /a when X ≥ 0. How might we extract an exponential
probability bound from it? Well, for any real-valued variable, etX is positive, so
we can say that P (X ≥ a) = P

(
etX ≥ eta

)
≤ E

[
etX
]
/eta. E

[
etX
]

is of course
the moment generating function of X. It has the nice property that addition of
independent random variables leads to multiplication of their moment generat-
ing functions, as E

[
et(X1+X2)

]
= E

[
etX1etX2

]
= E

[
etX1

]
E
[
etX2

]
if X1 |= X2.

If X1, X2, . . . are IID, then we can get a deviation bound for their sample mean
Xn through the moment generating function:

P
(
Xn ≥ a

)
= P

(
n∑
i=1

Xi ≥ na

)
P
(
Xn ≥ a

)
≤ e−nta

(
E
[
etX1

])n
1
n

log P
(
Xn ≥ a

)
≤ −ta+ log E

[
etX1

]
≤ inf

t
−ta+ log E

[
etX1

]
≤ − sup

t
ta− log E

[
etX1

]
This suggests that the functions log E

[
etX
]

and sup ta− log E
[
etX
]

will be
useful to us. Accordingly, we encapsulate them in a pair of definitions.

Definition 423 (Cumulant Generating Function) The cumulant generat-
ing function of a random variable X in Rd is a function Λ : Rd 7→ R,

Λ(t) ≡ log E
[
et·X

]
(31.1)

Definition 424 (Legendre Transform) The Legendre transform of a real-
valued function f on Rd is another real-valued function on Rd,

f∗(x) ≡ sup
t∈Rd

t · x− f(t) (31.2)

The definition of cumulant generating functions and their Legendre trans-
forms can be extended to arbitrary spaces where some equivalent of the inner
product (a real-valued form, bilinear in its two arguments) makes sense; f and
f∗ then must take arguments from the complementary spaces.

Legendre transforms are particularly important in convex analysis1, since
convexity is preserved by taking Legendre transforms. If f is not convex initially,
then f∗∗ is (in one dimension) something like the greatest convex lower bound
on f ; made precise, this statement even remains true in higher dimensions. I
make these remarks because of the following fact:

1See Rockafellar (1970), or, more concisely, Ellis (1985, ch. VI).
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Lemma 425 The cumulant generating function Λ(t) is convex.

Proof: Simple calculation, using Hölder’s inequality in one step:

Λ(at+ bu) = log E
[
e(at+bu)X

]
(31.3)

= log E
[
eatXebuX

]
(31.4)

= log E
[(
etX
)a(

euX
)b]

(31.5)

≤ log
(
E
[
etX
])a(

E
[
ebuX

])b
(31.6)

= aΛ(t) + bΛ(u) (31.7)

which proves convexity. �
Our previous result, then, is easily stated: if the Xi are IID in R, then

P
(
Xn ≥ a

)
≤ Λ∗(a) (31.8)

where Λ∗(a) is the Legendre transform of the cumulant generating function of
the Xi. This elementary fact is, surprisingly enough, the foundation of the large
deviations principle for empirical means.

The notion of cumulant generating functions can be extended to probability
measures, and this will be useful when dealing with large deviations of empiri-
cal distributions. The definitions follow the pattern one would expect from the
complementarity between probability measures and bounded continuous func-
tions.

Definition 426 (Cumulant Generating Functional) Let X be a random
variable on a metric space Ξ, with distribution µ, and let Cb(Ξ) be the class of all
bounded, continuous, real-valued functions on Ξ. Then the cumulant-generating
functional Λ : Cb(Ξ) 7→ R is

Λ(f) ≡ log E
[
ef(X)

]
(31.9)

Definition 427 The Legendre transform of a real-valued functional F on Cb(Ξ)
is

F ∗(ν) ≡ sup
f∈Cb(Ξ)

Eν [f ]− Λ(f) (31.10)

where ν ∈ P (Ξ), the set of all probability measures on Ξ.

Lemma 428 (Donsker and Varadhan) The Legendre transform of the cu-
mulant generating functional is the relative entropy:

Λ∗(ν) = D (ν‖µ) (31.11)
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Proof: First of all, notice that the supremum in Eq. 31.10 can be taken over
all bounded measurable functions, not just functions in Cb, since Cb is dense.
This will let us use indicator functions and simple functions in the subsequent
argument.

If ν 6� µ, then D (ν‖µ) = ∞. But then there is also a set, call it B, with
µ(B) = 0, ν(B) > 0. Take fn = n1B . Then Eν [fn]−Λ(fn) = nν(B)−0, which
can be made arbitrarily large by taking n arbitrarily large, hence the supremum
in Eq. 31.10 is ∞.

If ν � µ, then show that D (ν‖µ) ≤ Λ∗(ν) and D (ν‖µ) ≥ Λ∗(ν), so they
must be equal. To get the first inequality, start with the observation then
dν
dµ exists, so set f = log dν

dµ , which is measurable. Then D (ν‖µ) is Eν [f ] −
log Eµ

[
ef
]
. If f is bounded, this shows that D (ν‖µ) ≤ Λ∗(ν). If f is not

bounded, approximate it by a sequence of bounded, measurable functions fn
with Eµ

[
efn
]
→ 1 and Eν [fn] → Eν [fn], again concluding that D (ν‖µ) ≤

Λ∗(ν).
To go the other way, first consider the special case where X is finite, and so

generated by a partition, with cells B1, . . . Bn. Then all measurable functions
are simple functions, and Eν [f ]− Λ(f) is

g(f) =
n∑
i=1

fiν(Bi)− log
n∑
i=1

efiµ(Bi) (31.12)

Now, g(f) is concave on all the fi, and

∂g(f)
∂fi

= ν(Bi)−
1∑n

i=1 e
fiµ(Bi)

µ(Bi)efi (31.13)

Setting this equal to zero,

ν(Bi)
µ(Bi)

=
1∑n

i=1 µ(Bi)efi
efi (31.14)

log
ν(Bi)
µ(Bi)

= fi (31.15)

gives the maximum value of g(f). (Remember that 0 log 0 = 0.) But then
g(f) = D (ν‖µ). So Λ∗(ν) ≤ D (ν‖µ) when the σ-algebra is finite. In the
general case, consider the case where f is a simple function. Then σ(f) is finite,
and Eν [f ] − log Eµ

[
ef
]
≤ D (ν‖µ) follows by the finite case and smoothing.

Finally, if f is not simple, but is bounded and measurable, there is a simple h
such that Eν [f ]− log Eµ

[
ef
]
≤ Eν [h]− log Eµ

[
eh
]
, so

sup
f∈Cb(Ξ)

Eν [f ]− log Eµ

[
ef
]
≤ D (ν‖µ) (31.16)

which completes the proof. �



CHAPTER 31. IID LARGE DEVIATIONS 220

31.2 Large Deviations of the Empirical Mean in
Rd

Historically, the oldest and most important result in large deviations is that the
empirical mean of an IID sequence of real-valued random variables obeys a large
deviations principle with rate n; the oldest version of this proposition goes back
to Harald Cramér in the 1930s, and so it is known as Cramér’s theorem, even
though the modern version, which is both more refined technically and works in
arbitrary finite-dimensional Euclidean spaces, is due to Varadhan in the 1960s.

Theorem 429 (Cramér’s Theorem) If Xi are IID random variables in Rd,
and Λ(t) <∞ for all t ∈ Rd, then their empirical mean obeys an LDP with rate
n and good rate function Λ∗(x).

Proof: The proof has three parts. First, the upper bound for closed sets;
second, the lower bound for open sets, under an additional assumption on Λ(t);
third and finally, lifting of the assumption on Λ by means of a perturbation
argument (related to Lemma 422).

To prove the upper bound for closed sets, we first prove the upper bound
for sufficiently small balls around arbitrary points. Then, we take our favorite
closed set, and divide it into a compact part close to the origin, which we can
cover by a finite number of closed balls, and a remainder which is far from the
origin and of low probability.

First the small balls of low probability. Because Λ∗(x) = supu u · x− Λ(u),
for any ε > 0, we can find some u such that u · x − Λ(x) > min 1/ε,Λ∗(x)− ε.
(Otherwise, Λ∗(x) would not be the least upper bound.) Since u · x is contin-
uous in x, it follows that there exists some open ball B of positive radius,
centered on x, within which u · y − Λ(x) > min 1/ε,Λ∗(x)− ε, or u · y >
Λ(x) + min 1/ε,Λ∗(x)− ε. Now use the exponential Markov inequality to get

P
(
Xn ∈ B

)
≤ E

[
eu·nXn−n infy∈B u·y

]
(31.17)

≤ e−n(min 1
ε ,Λ

∗(x)−ε) (31.18)

which is small. To get the the compact set near the origin of high probability,
use the exponential decay of the probability at large ‖x‖. Since Λ(t) < ∞ for
all t, Λ∗(x) → ∞ as ‖x‖ → ∞. So, using (once again) the exponential Markov
inequality, for every ε > 0, there must exist an r > 0 such that

1
n

log P
(∥∥Xn

∥∥ > r
)
≤ −1

ε
(31.19)

for all n.
Now pick your favorite closed measurable set C ∈ Bd. Then C∩{x : ‖x‖ ≤ r}

is compact, and I can cover it by m balls B1, . . . Bm, with centers x1, . . . xm,
of the sort built in the previous paragraph. So I can apply a union bound to
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P
(
Xn ∈ C

)
, as follows.

P
(
Xn ∈ C

)
(31.20)

= P
(
Xn ∈ C ∩ {x : ‖x‖ ≤ r}

)
+ P

(
Xn ∈ C ∩ {x : ‖x‖ > r}

)
≤ P

(
Xn ∈

m⋃
i=1

Bi

)
+ P

(∥∥Xn

∥∥ > r
)

(31.21)

≤

(
m∑
i=1

P
(
Xn ∈ Bi

))
+ P

(∥∥Xn

∥∥ > r
)

(31.22)

≤

(
m∑
i=1

e−n(min 1
ε ,Λ

∗(xi)−ε)
)

+ e−n
1
ε (31.23)

≤ (m+ 1)e−n(min 1
ε ,Λ

∗(C)−ε) (31.24)

with Λ∗(C) = infx∈C Λ∗(x), as usual. So if I take the log, normalize, and go to
the limit, I have

lim sup
n

1
n

log P
(
Xn ∈ C

)
≤ −min

1
ε
,Λ∗(C)− ε (31.25)

≤ −Λ∗(C) (31.26)

since ε was arbitrary to start with, and I’ve got the upper bound for closed sets.
To get the lower bound for open sets, pick your favorite open set O ∈ Bd,

and your favorite x ∈ O. Suppose, for the moment, that Λ(t)/‖t‖ → ∞ as
‖t‖ → ∞. (This is the growth condition mentioned earlier, which we will left at
the end of the proof.) Then, because Λ(t) is smooth, there is some u such that
∇Λ(u) = x. (You will find it instructive to draw the geometry here.) Now let
Yi be a sequence of IID random variables, whose probability law is given by

P (Yi ∈ B) =
E
[
euX1B(X)

]
E [euX ]

= e−Λ(u)E
[
euX1B(X)

]
(31.27)

It is not hard to show, by manipulating the cumulant generating functions, that
ΛY (t) = ΛX(t+u)−ΛX(u), and consequently that E [Yi] = x. I construct these
Y to allow me to pull the following trick, which works if ε > 0 is sufficiently
small that the first inequality holds (and I can always chose small enough ε):

P
(
Xn ∈ O

)
≥ P

(∥∥Xn − x
∥∥ < ε

)
(31.28)

= enΛ(u)E
[
e−nuY n1{y : ‖y − x‖ < ε}(Y n)

]
(31.29)

≥ enΛ(u)−nu·x−nε‖u‖P
(∥∥Y n − x

∥∥ < ε
)

(31.30)
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By the strong law of large numbers, P
(∥∥Y n − x

∥∥ < ε
)
→ 1 for all ε, so

lim inf
1
n

log P
(
Xn ∈ O

)
≥ Λ(u)− u · x− ε‖u‖ (31.31)

≥ −Λ∗(x)− ε‖u‖ (31.32)
≥ −Λ∗(x) (31.33)
≥ − inf

x∈O
Λ∗(x) = −Λ(O) (31.34)

as required. This proves the LDP, as required, if Λ(t)/‖t‖ → ∞ as ‖t‖ → ∞.
Finally, to lift the last-named restriction (which, remember, only affected the

lower bound for open sets), introduce a sequence Zi of IID standard Gaussian
variables, i.e. Zi ∼ N (0, I), which are completely independent of the Xi. It is
easily calculated that the cumulant generating function of the Zi is ‖t‖2/2, so
that Zn satisfies the LDP. Another easy calculation shows that Xi + σZi has
cumulant generating function ΛX(t)+ σ2

2 ‖t‖
2, which again satisfies the previous

condition. Since ΛX+σZ ≥ ΛX , Λ∗X ≥ Λ∗X+σZ . Now, once again pick any open
set O, and any point x ∈ O, and an ε sufficiently small that all points within a
distance 2ε of x are also in O. Since the LDP applies to X + σZ,

P
(∥∥Xn + σZn − x

∥∥ ≤ ε
)

≥ −Λ∗X+σZ(x) (31.35)
≥ −Λ∗X(x) (31.36)

On the other hand, basic probability manipulations give

P
(∥∥Xn + σZn − x

∥∥ ≤ ε
)

≤ P
(
Xn ∈ O

)
+ P

(
σ
∥∥Zn∥∥ ≥ ε

)
(31.37)

≤ 2 max P
(
Xn ∈ O

)
,P
(
σ
∥∥Zn∥∥ ≥ ε

)
(31.38)

Taking the liminf of the normalized log of both sides,

lim inf
1
n

log P
(∥∥Xn + σZn − x

∥∥ ≤ ε
)

(31.39)

≤ lim inf
1
n

log
(
max P

(
Xn ∈ O

)
,P
(
σ
∥∥Zn∥∥ ≥ ε

))
≤ lim inf

1
n

log P
(
Xn ∈ O

)
∨
(
− ε2

2σ2

)
(31.40)

(31.41)

Since σ was arbitrary, we can let it go to zero, and obtain

lim inf
1
n

log P
(
Xn ∈ O

)
≥ −Λ∗X(x) (31.42)

≥ −Λ∗X(O) (31.43)

as required. �
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31.3 Large Deviations of the Empirical Measure
in Polish Spaces

The Polish space setting is, apparently, more general than Rd, but we will
represent distributions on the Polish space in terms of the expectation of a
separating set of functions, and then appeal to the Euclidean result.

Proposition 430 Any Polish space S can be represented as a Borel subset of
a compact metric space, namely [0, 1]N ≡M .

Proof: See, for instance, Appendix A of Kallenberg. �
Strictly speaking, there should be a function mapping points from S to

points in M . However, since this is an embedding, I will silently omit it in what
follows.

Proposition 431 Cb(M) has a countable dense separating set F = f1, f2, . . ..

Proof: See Kallenberg again. �
Because F is separating, to specify a probability distribution on K is equiv-

alent to specifying the expectation value of all the functions in F . Write fd1 (X)
to abbreviate the d-dimensional vector (f1(X), f2(X), . . . fd(X)), and f∞1 (X)
to abbreviate the corresponding infinite-dimensional vector.

Lemma 432 Empirical means are expectations with respect to empirical mea-
sure. That is, let f be a real-valued measurable function and Yi = f(Xi). Then
Y n = EP̂n

[f(X)].

Proof: Direct calculation.

Y n ≡ 1
n

n∑
i=1

f(Xi) (31.44)

=
1
n

n∑
i=1

EδXi
[f(X)] (31.45)

≡ EP̂n
[f(X)] (31.46)

�

Lemma 433 Let Xi be a sequence of IID random variables in a Polish space
Ξ. For each d, the sequence of vectors (EP̂n

[f1] , . . .EP̂n
[fd]) obeys the LDP

with rate n and good rate function Jd.

Proof: For each d, the sequence of vectors (f1(Xi), . . . fd(Xi)) are IID, so, by
Cramér’s Theorem (429), their empirical mean obeys the LDP with rate n and
good rate function

Jd(x) = sup
t∈Rd

t · x− log E
[
et·f

d
1 (X)

]
(31.47)
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But, by Lemma 432, the empirical means are expectations over the empirical
distributions, so the latter must also obey the LDP, with the same rate and rate
function. �

Notice, incidentally, that the fact that the fi ∈ F isn’t relevant for the proof
of the lemma; it will however be relevant for the proof of the theorem.

Theorem 434 (Sanov’s Theorem) Let Xi, i ∈ N, be IID random variables
in a Polish space Ξ, with common probability measure µ. Then the empirical dis-
tributions P̂n obey an LDP with rate n and good rate function J(ν) = D (ν‖µ).

Proof: Combining Lemma 433 and Theorem 420, we see that EP̂n
[f∞1 (X)]

obeys the LDP with rate n and good rate function

J(x) = sup
d
Jd(πdx) (31.48)

= sup
d

sup
t∈Rd

t · πdx− log E
[
et·f

d
1 (X)

]
(31.49)

Since P (M) is compact (so all random sequences in it are exponentially
tight), and the mapping from ν ∈ P (M) to Eν [f∞1 ] ∈ RN is continuous, apply
the inverse contraction principle (Theorem 418) to get that P̂n satisfies the LDP
with good rate function

J(ν) = J(Eν [f∞1 ]) (31.50)

= sup
d

sup
t∈Rd

t ·Eν

[
fd1
]
− log Eµ

[
et·f

d
1 (X)

]
(31.51)

= sup
f∈spanF

Eν [f ]− Λ(f) (31.52)

= sup
f∈Cb(M)

Eν [f ]− Λ(f) (31.53)

= D (ν‖µ) (31.54)

Notice however that this is an LDP in the space P (M), not in P (Ξ). However,
the embedding taking P (Ξ) to P (M) is continuous, and it is easily verified (see
Lemma 27.17 in Kallenberg) that P̂n is exponentially tight in P (Ξ), so another
application of the inverse contraction principle says that P̂n must obey the LDP
in the restricted space P (Ξ), and with the same rate. �

31.4 Large Deviations of the Empirical Process
in Polish Spaces

A fairly straightforward modification of the proof for Sanov’s theorem estab-
lishes a large deviations principle for the finite-dimensional empirical distribu-
tions of an IID sequence.

Corollary 435 Let Xi be an IID sequence in a Polish space Ξ, with common
measure µ. Then, for every finite positive integer k, the k-dimensional empirical
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distribution P̂ kn , obeys an LDP with rate n and good rate function Jk(ν) =
D (ν‖πk−1ν ⊗ µ) if ν ∈ P

(
Ξk
)

is shift invariant, and J(ν) = ∞ otherwise.

This leads to the following important generalization.

Theorem 436 If Xi are IID in a Polish space, with a common measure µ, then
the empirical process distribution P̂∞n obeys an LDP with rate n and good rate
function J∞(ν) = d(ν‖µ∞), the relative entropy rate, if ν is a shift-invariant
probability measure, and = ∞ otherwise.

Proof: By Corollary 435 and the projective limit theorem 420, P̂∞n obeys an
LDP with rate n and good rate function

J∞(ν) = sup
k
Jk(πkν) = sup

k
D (πkν‖πk−1ν ⊗ µ) (31.55)

But, applying the chain rule for relative entropy (Lemma 363),

D (πnν‖µn) = D (πnν‖πn−1ν ⊗ µ) +D
(
πn−1ν‖µn−1

)
(31.56)

=
n∑
k=1

D (πkν‖πk−1ν ⊗ µ) (31.57)

lim
1
n
D (πnν‖µn) = lim

1
n

n∑
k=1

D (πkν‖πk−1ν ⊗ µ) (31.58)

= sup
k
D (πkν‖πk−1ν ⊗ µ) (31.59)

But limn−1D (πnν‖µn) is the relative entropy rate, d(ν‖µ∞), and we’ve already
identified the right-hand side as the rate function. �

The strength of Theorem 436 lies in the fact that, via the contraction prin-
ciple (Theorem 410), it implies that the LDP holds for any continuous function
of the empirical process distribution. This in particular includes the finite-
dimensional distributions, the empirical mean, functions of finite-length trajec-
tories, etc. Moreover, Theorem 410 also provides a means to calculate the rate
function for all these quantities.



Chapter 32

Large Deviations for
Markov Sequences

This chapter establishes large deviations principles for Markov
sequences as natural consequences of the large deviations principles
for IID sequences in Chapter 31. (LDPs for continuous-time Markov
processes will be treated in the chapter on Freidlin-Wentzell theory.)

Section 32.1 uses the exponential-family representation of Markov
sequences to establish an LDP for the two-dimensional empirical dis-
tribution (“pair measure”). The rate function is a relative entropy.

Section 32.2 extends the results of Section 32.1 to other observ-
ables for Markov sequences, such as the empirical process and time
averages of functions of the state.

For the whole of this chapter, let X1, X2, . . . be a homogeneous Markov se-
quence, taking values in a Polish space Ξ, with transition probability kernel µ,
and initial distribution ν and invariant distribution ρ. If Ξ is not discrete, we
will assume that ν and ρ have densities n and r with respect to some reference
measure, and that µ(x, dy) has density m(x, y) with respect to that same ref-
erence measure, for all x. (LDPs can be proved for Markov sequences without
such density assumptions — see, e.g., Ellis (1988) — but the argument is more
complicated.)

32.1 Large Deviations for Pair Measure of Markov
Sequences

It is perhaps not sufficiently appreciated that Markov sequences form expo-
nential families (Billingsley, 1961; Küchler and Sørensen, 1997). Suppose Ξ is

226
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discrete. Then

P
(
Xn

1 = xt1
)

= ν(x1)
t−1∏
i=1

µ(xi, xi+1) (32.1)

= ν(x1)e
Pt−1

i=1 log µ(xi,xi+1) (32.2)

= ν(x1)e
P

x,y∈Ξ2 Tx,y(xt
1) log µ(x,y) (32.3)

where Tx,y(xt1) counts the number of times the state y follows the state x in the
sequence xt1, i.e., it gives the transition counts. What we have just established is
that the Markov chains on Ξ with a given initial distribution form an exponential
family, whose natural sufficient statistics are the transition counts, and whose
natural parameters are the logarithms of the transition probabilities.

(If Ξ is not continuous, but we make the density assumptions mentioned at
the beginning of this chapter, we can write

pXt
1
(xt1) = n(x1)

t−1∏
i=1

m(xi, xi+1) (32.4)

= n(x1)e
R
Ξ2 dT (xt

1) logm(x,y) (32.5)

where now T (xt1) puts probability mass 1
n−1 at x, y for every i such that xi = x,

xi+1 = y.)
We can use this exponential family representation to establish the following

basic theorem.

Theorem 437 Let Xi be a Markov sequence obeying the assumptions set out
at the beginning of this chapter, and furthermore that µ(x, y)/ρ(y) is bounded
above (in the discrete-state case) or that m(x, y)/r(y) is bounded above (in
the continuous-state case). Then the two-dimensional empirical distribution
(“pair measure”) P̂ 2

t obeys an LDP with rate n and with rate function J2(ψ) =
D (ψ‖π1ψ × µ) if ν is shift-invariant, J(ν) = ∞ otherwise.

Proof: I will just give the proof for the discrete case, since the modifications
for the continuous case are straightforward (given the assumptions made about
densities), largely a matter of substituting Roman letters for Greek ones.

First, modify the representation of the probabilities in Eq. 32.3 slightly, so
that it refers directly to P̂ 2

t (as laid down in Definition 413), rather than to the
transition counts.

P
(
Xt

1 = xt1
)

=
ν(x1)

µ(xt, x1)
et

P
x,y∈Ξ P̂

2
t (x,y) log µ(x,y) (32.6)

=
ν(x1)

µ(xt, x1)
e
nE

P̂2
t
[log µ(X,Y )] (32.7)

Now construct a sequence of IID variables Yi, all distributed according to ρ, the
invariant measure of the Markov chain:

P
(
Y t1 = yt1

)
= e

nE
P̂2

t
[log ρ(Y )] (32.8)
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The ratio of these probabilities is the Radon-Nikodym derivative:

dPX
dPY

(xt1) =
ν(x1)

µ(xt, x1)
e
tEP̂2

n
[t log µ(X,Y )

ρ(Y ) ] (32.9)

(In the continuous-Ξ case, the derivative is the ratio of the densities with respect
to the common reference measure, and the principle is the same.) Introducing
the functional F (ν) = Eν

[
log µ(X,Y )

ρ(Y )

]
, the derivative is equal to O(1)etF (P̂ 2

t ),
and our initial assumption amounts to saying that F is not just continuous
(which it must be) but bounded from above.

Now introduce Qt,X , the distribution of the empirical pair measure P̂ 2
t un-

der the Markov process, and Qt,Y , the distribution of P̂ 2
t for the IID samples

produced by Yi. From Eq. 32.9,

1
t

log P
(
P̂ 2
t ∈ B

)
=

1
t

log
∫
B

dQt,X(ψ) (32.10)

=
1
t

log
∫
B

dQt,X
dQt,Y

dQt,Y (ψ) (32.11)

= O

(
1
t

)
+

1
t

log
∫
B

etF (ψ)dQt,Y (ψ) (32.12)

It is thus clear that

lim inf
1
t

log P
(
P̂ 2
t ∈ B

)
= lim inf

1
t

log
∫
B

etF (ψ)dQt,Y (ψ) (32.13)

lim sup
1
t

log P
(
P̂ 2
t ∈ B

)
= lim sup

1
t

log
∫
B

etF (ψ)dQt,Y (ψ) (32.14)

Introduce a (final) proxy random sequence, also taking values in P (() Ξ2), call
it Zt, with P (Zt ∈ B) =

∫
B
etF (ψ)dQt,Y (ψ). We know (Corollary 435) that,

under Qt,Y , the empirical pair measure satisfies an LDP with rate t and good
rate function JY = D (ψ‖π1ψ ⊗ ρ), so by Corollary 416, Zt satisfies an LDP
with rate t and good rate function

JF (ψ) = −(F (ψ)− JY (ψ)) + sup
ζ∈P(Ξ2)

F (ζ)− JY (ζ) (32.15)

A little manipulation turns this into

JF (ψ) = D (ψ‖π1ψ ⊗ µ)− inf
ζ∈P(Ξ2)

D (ζ‖π1ζ ⊗ µ) (32.16)

and the infimum is clearly zero. Since this is the rate function Zt, in view of
Eqs. 32.13 and 32.14 it is also the rate function for P̂ 2

n , which we have agreed
to call J2. �

Remark 1: The key to making this work is the assumption that F is bounded
from above. This can fail if, for instance, the process is not ergodic, although
usually in that case one can rescue the general idea by some kind of ergodic
decomposition.
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Remark 2: The LDP for the pair measure of an IID sequence can now
be seen to be a special case of the LDP for the pair measure of a Markov
sequence. The same is true, generally speaking, of all the other LDPs for IID
and Markov sequences. Calculations are almost always easier for the IID case,
however, which permits us to give explicit formulae for the rate functions of
empirical means and empirical distributions unavailable (generally speaking) in
the Markovian case.

Corollary 438 The minima of the rate function J2 are the invariant distribu-
tions.

Proof: The rate function is D (ψ‖π1ψ ⊗ µ). Since relative entropy is ≥ 0, and
equal to zero iff the two distributions are equal (Lemma 360), we get a minimum
of zero in the rate function iff ψ = π1ψ⊗ µ, or ψ = ρ2, for some ρ ∈ P (Ξ) such
that ρµ = ρ. Conversely, if ψ is of this form, then J2(ψ) = 0. �

Corollary 439 The empirical distribution P̂t obeys an LDP with rate t and
good rate function

J1(ψ) = inf
ζ∈P(Ξ2):π1ζ=ψ

D (ζ‖π1ζ ⊗ µ) (32.17)

Proof: This is a direct application of the Contraction Principle (Theorem 410),
as in Corollary 415. �

Remark: Observe that if ψ is invariant under the action of the Markov chain,
then J1(ψ) = 0 by a combination of the preceding corollaries. This is good,
because we know from ergodic theory that the empirical distribution converges
on the invariant distribution for an ergodic Markov chain. In fact, in view of
Lemma 361, which says that D (ψ‖ρ) ≥ 1

2 ln 2‖ψ − ρ‖21, the probability that the
empirical distribution differs from the invariant distribution ρ by more than δ,
in total variation distance, goes down like O(e−tδ

2/2).

Corollary 440 If Theorem 437 holds, then time averages of observables, Atf ,
obey a large deviations principle with rate function

J0(a) = inf
ζ∈P(Ξ2): Eπ1ζ [f(X)]

D (ζ‖π1ζ ⊗ µ) (32.18)

Proof: Another application the Contraction Principle, as in Corollary 415. �
Remark: Observe that if a = Eρ [f(X)], with ρ invariant, then the J0(a) = 0.

Again, it is reassuring to see that large deviations theory is compatible with
ergodic theory, which tells us to expect the almost-sure convergence of Atf on
Eρ [f(X)].

Corollary 441 If Xi are from a Markov sequence of order k + 1, then, under
conditions analogous to Theorem 437, the k+ 1-dimensional empirical distribu-
tion P̂ k+1

t obeys an LDP with rate t and good rate function

D (ν‖πk−1ν ⊗ µ) (32.19)
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Proof: An obvious extension of the argument for Theorem 437, using the
appropriate exponential-family representation of the higher-order process. �

Whether all exponential-family stochastic processes (Küchler and Sørensen,
1997) obey LDPs is an interesting question; I’m not sure if anyone knows the
answer.

32.2 Higher LDPs for Markov Sequences

In this section, I assume without further comment that the Markov sequence X
obeys the LDP of Theorem 437.

Theorem 442 For all k ≥ 2, the finite-dimensional empirical distribution P̂ kt
obeys an LDP with rate t and good rate function Jk(ψ) = D (ψ‖πk−1ψ ⊗ µ), if
ψ ∈ P

(
Ξk
)

is shift-invariant, and = ∞ otherwise.

Proof: The case k = 2 is just Theorem 437. However, if k ≥ 3, the argument
preceding that theorem shows that P

(
P̂ kt ∈ B

)
depends only on π2P̂

k
t , the pair

measure implied by the k-dimensional distribution, so the proof of that theorem
can be adapted to apply to P̂ kt , in conjunction with Corollary 435, establishing
the LDP for finite-dimensional distributions of IID sequences. The identification
of the rate function follows the same argument, too. �

Theorem 443 The empirical process distribution obeys an LDP with rate t
and good rate function J∞(ψ) = d(ψ‖ρ), with ρ here standing for the stationary
process distribution of the Markov sequence.

Proof: Entirely parallel to the proof of Theorem 436, with Theorem 442 sub-
stituting for Corollary 435. �

Consequently, any continuous function of the empirical process distribution
has an LDP.
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Tyran-Kamińska, Marta (2005). “An Invariance Principle for Maps with Poly-
nomial Decay of Correlations.” Communications in Mathematical Physics,
260: 1–15. URL http://arxiv.org/abs/math.DS/0408185.

von Plato, Jan (1994). Creating Modern Probability: Its Mathematics, Physics
and Philosophy in Historical Perspective. Cambridge, England: Cambridge
University Press.

Wiener, Norbert (1949). Extrapolation, Interpolation, and Smoothing of Station-
ary Time Series: With Engineering Applications. Cambridge, Massachusetts:
The Technology Press of the Massachusetts Institute of Technology.

— (1958). Nonlinear Problems in Random Theory . Cambridge, Massachusetts:
The Technology Press of the Massachusetts Institute of Technology.

— (1961). Cybernetics: Or, Control and Communication in the Animal and the
Machine. Cambridge, Massachusetts: MIT Press, 2nd edn. First edition New
York: Wiley, 1948.

Wu, Wei Biao (2005). “Nonlinear system theory: Another look at dependence.”
Proceedings of the National Academy of Sciences (USA), 102: 14150–14154.

http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html
http://cm.bell-labs.com/cm/ms/what/ shannonday/paper.html
http://arxiv.org/abs/math.DS/0408185

	Preface
	Basics
	So, What Is a Stochastic Process?
	Definition 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10


	Random Functions
	Definition 11
	Definition 12
	Definition 13
	Definition 14
	Definition 15
	Lemma 16
	Definition 17
	Corollary 18
	Example 19
	Example 20
	Example 21


	Exercises
	Exercise 1.1


	Building Processes
	Finite-Dimensional Distributions
	Definition 22
	Theorem 23


	Consistency and Extension
	Definition 24
	Lemma 25
	Proposition 26
	Theorem 27
	Theorem 28
	Theorem 29



	Building Processes by Conditioning
	Probability Kernels
	Definition 30
	Definition 31


	Extension via Recursive Conditioning
	Proposition 32
	Theorem 33


	Exercises
	Exercise 3.1
	Exercise 3.2



	One-Parameter Processes
	One-Parameter Processes
	Definition 34
	Example 35
	Example 36
	Example 37
	Example 38
	Example 39
	Example 40
	Example 41
	Example 42
	Example 43
	Example 44
	Example 45
	Example 46
	Example 47


	Operator Representations of One-Parameter Processes
	Definition 48

	Exercises
	Exercise 4.1
	Exercise 4.2



	Stationary Processes
	Kinds of Stationarity
	Definition 49
	Definition 50
	Definition 51


	Strictly Stationary Processes and Measure-Preserving Transformations
	Theorem 52
	Definition 53
	Corollary 54


	Exercises
	Exercise 5.1
	Exercise 5.2
	Exercise 5.3



	Random Times
	Reminders about Filtrations and Stopping Times
	Definition 55
	Definition 56
	Definition 57


	Waiting Times
	Definition 58
	Example 59
	Example 60
	Definition 61
	Definition 62
	Proposition 63


	Kac's Recurrence Theorem
	Lemma 64
	Theorem 65
	Corollary 66
	Corollary 67
	Theorem 68
	Example 69


	Exercises
	Exercise 6.1
	Exercise 6.2



	Continuity
	Kinds of Continuity for Processes
	Definition 70
	Definition 71
	Definition 72
	Definition 73
	Definition 74
	Lemma 75
	Definition 76


	Why Continuity Is an Issue
	Proposition 77
	Example 78


	Separable Random Functions
	Definition 79
	Lemma 80
	Definition 81


	Exercises
	Exercise 7.1
	Exercise 7.2



	More on Continuity
	Separable Versions
	Definition 82
	Example 83
	Lemma 84
	Lemma 85
	Lemma 86
	Theorem 87
	Corollary 88
	Corollary 89


	Measurable Versions
	Definition 90
	Theorem 91
	Theorem 92


	Cadlag Versions
	Theorem 93

	Continuous Modifications
	Theorem 94
	Definition 95
	Lemma 96
	Definition 97
	Theorem 98



	Markov Processes
	The Correct Line on the Markov Property
	Definition 99
	Lemma 100


	Transition Probability Kernels
	Definition 101
	Definition 102
	Theorem 103
	Definition 104
	Theorem 105


	Exercises
	Exercise 9.1
	Exercise 9.2
	Exercise 9.3
	Exercise 9.4



	Markov Characterizations
	The Markov Property Under Multiple Filtrations
	Definition 106
	Definition 107
	Lemma 108
	Theorem 109
	Example 110


	Markov Sequences as Transduced Noise
	Theorem 111
	Definition 112


	Time-Evolution (Markov) Operators
	Definition 113
	Lemma 114
	Theorem 115
	Lemma 116
	Corollary 117
	Theorem 118


	Exercises
	Exercise 10.1
	Exercise 10.2



	Markov Examples
	Transition Kernels for the Wiener Process
	Probability Densities in the Logistic Map
	Exercises
	Exercise 11.1
	Exercise 11.2



	Generators
	Definition 119
	Lemma 120
	Lemma 121
	Lemma 122
	Definition 123
	Lemma 124
	Theorem 125
	Corollary 126
	Definition 127
	Definition 128
	Definition 129
	Theorem 130


	Exercises
	Exericse 12.1
	Exericse 12.2



	Strong Markov, Martingales
	The Strong Markov Property
	Definition 131
	Definition 132


	Martingale Problems
	Definition 133
	Proposition 134
	Lemma 135
	Theorem 136
	Theorem 137


	Exercises
	Exercise 13.1
	Exercise 13.2
	Exercise 13.3



	Feller Processes
	An Example of a Markov Process Which Is Not Strongly Markovian
	Example 138

	Markov Families
	Definition 139
	Lemma 140
	Definition 141
	Definition 142


	Feller Processes
	Definition 143
	Definition 144
	Definition 145
	Definition 146
	Lemma 147
	Definition 148
	Definition 149
	Lemma 150
	Lemma 151
	Theorem 152
	Theorem 153
	Theorem 154
	Proposition 155
	Lemma 156
	Lemma 157
	Theorem 158
	Theorem 159
	Theorem 160


	Exercises
	Exercise 14.1
	Exercise 14.2
	Exercise 14.3
	Exercise 14.4



	Convergence of Feller Processes
	Weak Convergence of Processes with Cadlag Paths (The Skorokhod Topology)
	Definition 161
	Proposition 162
	Definition 163
	Definition 164
	Theorem 165
	Theorem 166


	Convergence of Feller Processes
	Definition 167
	Definition 168
	Proposition 169
	Theorem 170


	Approximation of Ordinary Differential Equations by Markov Processes
	Definition 171
	Theorem 172



	Convergence of Random Walks
	The Wiener Process is Feller
	Convergence of Random Walks
	Lemma 173
	Theorem 174
	Corollary 175
	Corollary 176


	Exercises
	Exercise 16.1
	Exercise 16.2
	Exercise 16.3
	Exercise 16.4



	Diffusions and the Wiener Process
	Diffusions and Stochastic Calculus
	Definition 177

	Once More with the Wiener Process and Its Properties
	Proposition 178
	Definition 179
	Definition 180
	Proposition 181


	Wiener Measure; Most Continuous Curves Are Not Differentiable
	Theorem 182


	Stochastic Integrals
	Martingale Characterization of the Wiener Process
	Theorem 183

	A Heuristic Introduction to Stochastic Integrals
	Integrals with Respect to the Wiener Process
	Definition 184
	Definition 185
	Definition 186
	Definition 187
	Definition 188
	Lemma 189
	Lemma 190
	Lemma 191
	Lemma 192
	Lemma 193
	Theorem 194
	Definition 195
	Corollary 196


	Exercises
	Exercise 18.1
	Exercise 18.2
	Exercise 18.3



	SDEs
	Some Easy Stochastic Integrals, with a Moral
	dW
	WdW

	Itô's Formula
	Definition 197
	Lemma 198
	Theorem 199
	Example 200
	Definition 201
	Theorem 202

	Stratonovich Integrals
	Martingale Representation
	Theorem 203


	Stochastic Differential Equations
	Definition 204
	Lemma 205
	Definition 206
	Definition 207
	Lemma 208
	Lemma 209
	Lemma 210
	Definition 211
	Lemma 212
	Lemma 213
	Lemma 214
	Theorem 215
	Theorem 216


	Brownian Motion, the Langevin Equation, and Ornstein-Uhlenbeck Processes
	Exercises
	Exercise 19.1
	Exercise 19.2
	Exercise 19.3
	Exercise 19.4
	Exercise 19.5



	More on SDEs
	Solutions of SDEs are Diffusions
	Theorem 217
	Theorem 218
	Corollary 219
	Theorem 220
	Corollary 221


	Forward and Backward Equations
	Example 222
	Example 223


	White Noise
	Proposition 224
	Proposition 225
	Proposition 226
	Proposition 227
	Proposition 228
	Proposition 229


	Exercises
	Exericse 20.1


	Spectral Analysis and L2 Ergodicity
	Spectral Representation of Weakly Stationary Procesess
	Definition 230
	Proposition 231
	Definition 232
	Definition 233
	Proposition 234
	Definition 235
	Proposition 236
	Definition 237
	Proposition 238
	Definition 239
	Theorem 240
	Theorem 241
	Definition 242
	Proposition 243
	Theorem 244

	How the White Noise Lost Its Color

	The Mean-Square Ergodic Theorem
	Mean-Square Ergodicity Based on the Autocovariance
	Definition 245
	Theorem 246
	Definition 247
	Corollary 248

	Mean-Square Ergodicity Based on the Spectrum
	Lemma 249
	Lemma 250
	Lemma 251
	Theorem 252


	Exercises
	Exercise 21.1
	Exercise 21.2
	Exercise 21.3
	Exercise 21.4



	Small-Noise SDEs
	Convergence in Probability of SDEs to ODEs
	Theorem 253

	Rate of Convergence; Probability of Large Deviations
	Lemma 254
	Lemma 255
	Theorem 256



	Ergodicity
	General Remarks
	Dynamical Systems and Their Invariants
	Definition 257
	Lemma 258
	Definition 259
	Definition 260
	Lemma 261
	Lemma 262
	Definition 263
	Lemma 264
	Definition 265
	Lemma 266
	Lemma 267


	Time Averages and Ergodic Properties
	Definition 268
	Lemma 269
	Definition 270
	Definition 271
	Lemma 272
	Lemma 273
	Lemma 274
	Lemma 275
	Lemma 276
	Lemma 277
	Lemma 278
	Lemma 279
	Lemma 280
	Lemma 281
	Corollary 282


	Asymptotic Mean Stationarity
	Definition 283
	Proposition 284
	Theorem 285
	Theorem 286
	Lemma 287
	Lemma 288
	Lemma 289
	Corollary 290
	Theorem 291
	Corollary 292
	Corollary 293



	The Almost-Sure Ergodic Theorem
	Definition 294
	Lemma 295
	Lemma 296
	Lemma 297
	Theorem 298
	Corollary 299



	Ergodicity
	Ergodicity and Metric Transitivity
	Definition 300
	Definition 301
	Proposition 302
	Proposition 303
	Theorem 304
	Lemma 305
	Theorem 306

	Examples of Ergodicity
	Example 307
	Example 308
	Example 309
	Example 310
	Example 311

	Consequences of Ergodicity
	Theorem 312


	Preliminaries to Ergodic Decompositions
	Proposition 313
	Proposition 314
	Proposition 315


	Exercises
	Exericse 25.1
	Exericse 25.2
	Exericse 25.3
	Exericse 25.4
	Exericse 25.5



	Ergodic Decomposition
	Construction of the Ergodic Decomposition
	Definition 316
	Proposition 317
	Proposition 318
	Proposition 319
	Proposition 320
	Proposition 321
	Definition 322
	Proposition 323
	Definition 324
	Proposition 325
	Proposition 326
	Proposition 327
	Lemma 328
	Lemma 329
	Lemma 330
	Theorem 331


	Statistical Aspects
	Ergodic Components as Minimal Sufficient Statistics
	Definition 332
	Lemma 333
	Theorem 334

	Testing Ergodic Hypotheses
	Theorem 335
	Corollary 336
	Corollary 337



	Mixing
	Definition and Measurement of Mixing
	Definition 338
	Lemma 339
	Theorem 340
	Definition 341
	Lemma 342
	Theorem 343


	Examples of Mixing Processes
	Example 344
	Example 345
	Example 346
	Example 347


	Convergence of Distributions Under Mixing
	Lemma 348
	Theorem 349
	Theorem 350


	A Central Limit Theorem for Mixing Sequences
	Definition 351
	Lemma 352
	Definition 353
	Definition 354
	Theorem 355



	Entropy and Divergence
	Shannon Entropy
	Definition 356
	Lemma 357
	Definition 358


	Relative Entropy or Kullback-Leibler Divergence
	Definition 359
	Lemma 360
	Lemma 361
	Definition 362
	Lemma 363
	Lemma 364

	Statistical Aspects of Relative Entropy
	Definition 365
	Lemma 366
	Lemma 367
	Corollary 368
	Definition 369
	Corollary 370


	Mutual Information
	Definition 371
	Proposition 372
	Proposition 373

	Mutual Information Function
	Definition 374
	Theorem 375



	Rates and Equipartition
	Information-Theoretic Rates
	Definition 376
	Definition 377
	Lemma 378
	Theorem 379
	Theorem 380
	Lemma 381
	Example 382
	Example 383
	Definition 384


	Asymptotic Equipartition
	Definition 385
	Lemma 386
	Lemma 387
	Lemma 388
	Definition 389
	Lemma 390
	Lemma 391
	Lemma 392
	Lemma 393
	Theorem 394

	Typical Sequences

	Asymptotic Likelihood
	Asymptotic Equipartition for Divergence
	Theorem 395

	Likelihood Results
	Theorem 396


	Exercises
	Exercise 29.1
	Exercise 29.2



	Large Deviations: Basics
	Large Deviation Principles: Main Definitions and Generalities
	Definition 397
	Definition 398
	Lemma 399
	Lemma 400
	Definition 401
	Lemma 402
	Definition 403
	Lemma 404
	Lemma 405
	Definition 406
	Lemma 407
	Lemma 408
	Theorem 409


	Breeding Large Deviations
	Theorem 410
	Definition 411
	Definition 412
	Definition 413
	Definition 414
	Corollary 415
	Corollary 416
	Definition 417
	Theorem 418
	Theorem 419
	Theorem 420
	Definition 421
	Lemma 422



	IID Large Deviations
	Cumulant Generating Functions and Relative Entropy
	Definition 423
	Definition 424
	Lemma 425
	Definition 426
	Definition 427
	Lemma 428


	Large Deviations of the Empirical Mean in Rd
	Theorem 429

	Large Deviations of the Empirical Measure in Polish Spaces
	Proposition 430
	Proposition 431
	Lemma 432
	Lemma 433
	Theorem 434


	Large Deviations of the Empirical Process in Polish Spaces
	Corollary 435
	Theorem 436



	Large Deviations for Markov Sequences
	Large Deviations for Pair Measure of Markov Sequences
	Theorem 437
	Corollary 438
	Corollary 439
	Corollary 440
	Corollary 441


	Higher LDPs for Markov Sequences
	Theorem 442
	Theorem 443



	Bibliography

