
Chapter 1

Basic Definitions: Indexed
Collections and Random
Functions

Section 1.1 introduces stochastic processes as indexed collections
of random variables.

Section 1.2 builds the necessary machinery to consider random
functions, especially the product σ-field and the notion of sample
paths, and then re-defines stochastic processes as random functions
whose sample paths lie in nice sets.

You will have seen, briefly, the definition of a stochastic process in 36-752,
but it’ll be useful to review it here.

We will flip back and forth between two ways of thinking about stochastic
processes: as indexed collections of random variables, and as random functions.

As always, assume we have a nice base probability space (Ω,F , P ), which is
rich enough that all the random variables we need exist.

1.1 So, What Is a Stochastic Process?

Definition 1 (Stochastic Process: As Collection of Random Variables)
A stochastic process {Xt}t∈T is a collection of random variables Xt, taking val-
ues in a common measure space (Ξ,X ), indexed by a set T .

That is, for each t ∈ T , Xt(ω) is an F/X -measurable function from Ω to Ξ,
which induces a probability measure on Ξ in the usual way.

It’s sometimes more convenient to write X(t) in place of Xt. Also, when
S ⊂ T , Xs or X(S) refers to that sub-collection of random variables.

Example 2 Any single random variable is a (trivial) stochastic process. (Take
T = {1}, say.)
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Example 3 Let T = {1, 2, . . . k} and Ξ = R. Then {Xt}t∈T is a random vector
in Rk.

Example 4 Let T = {1, 2, . . .} and Ξ be some finite set (or R or C or Rk. . . ).
Then {Xt}t∈T is a one-sided discrete (real, complex, vector-valued, . . . ) random
sequence. Most of the stochastic processes you have encountered are probably of
this sort: Markov chains, discrete-parameter martingales, etc.

Example 5 Let T = Z and Ξ be as in Example 4. Then {Xt}t∈T is a two-sided
random sequence.

Example 6 Let T = Zd and Ξ be as in Example 4. Then {Xt}t∈T is a d-
dimensional spatially-discrete random field.

Example 7 Let T = R and Ξ = R. Then {Xt}t∈T is a real-valued, continuous-
time random process (or random motion or random signal).

Vector-valued processes are an obvious generalization.

Example 8 Let T = B, the Borel field on the reals, and Ξ = R+
, the non-

negative extended reals. Then {Xt}t∈T is a random set function on the reals.

The definition of random set functions on Rd is entirely parallel. Notice that
if we want not just a set function, but a measure or a probability measure,
this will imply various forms of dependence among the random variables in the
collection, e.g., a measure must respect finite additivity over disjoint sets. We
will return to this topic in the next section.

Example 9 Let T = B×N and Ξ = R+
. Then {Xt}t∈T is a one-sided random

sequence of set functions.

Example 10 (Empirical Processes) Suppose Zi, = 1, 2, . . . are independent,
identically-distributed real-valued random variables. (We can see from Example
4 that this is a one-sided real-valued random sequence.) For each Borel set B
and each n, define

P̂n(B) =
1
n

n∑

i=1

1B(Zi)

i.e., the fraction of the samples up to time n which fall into that set. This is
the empirical measure. P̂n(B) is a one-sided random sequence of set functions
— in fact, of probability measures. We would like to be able to say something
about how it behaves. It would be very reassuring, for instance, to be able to
show that it converges to the common distribution of the Zi.
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1.2 Random Functions

X(t, ω) has two arguments, t and ω. For each fixed value of t, Xt(ω) is straight-
forward random variable. For each fixed value of ω, however, X(t) is a function
from T to Ξ — a random function. The advantage of the random function
perspective is that it lets us consider the realizations of stochastic processes as
single objects, rather than large collections. This isn’t just tidier; we will need
to talk about relations among the variables in the collection or their realiza-
tions, rather than just properties of individual variables, and this will help us
do so. In Example 10, it’s important that we’ve got random probability mea-
sures, rather than just random set functions, so we need to require that, e.g.,
P̂n(A ∪B) = P̂n(A) + P̂n(B) when A and B are disjoint Borel sets, and this is
a relationship among the three random variables P̂n(A), P̂n(B) and P̂n(A∪B).
Plainly, working out all the dependencies involved here is going to get rather
tedious, so we’d like a way to talk about acceptable realizations of the whole
stochastic process. This is what the random functions notion will let us do.

We’ll make this more precise by defining a random function as a function-
valued random variable. To do this, we need a measure space of functions, and
a measurable mapping from (Ω,F , P ) to that function space. To get a measure
space, we need a carrier set and a σ-field on it. The natural set to use is ΞT ,
the set of all functions from T to Ξ. (We’ll see how to restrict this to just the
functions we want presently.) Now, how about the σ-field?

Definition 11 (Cylinder Set) Given an index set T and a collection of σ-
fields Xt on spaces Ξt, t ∈ T . Pick any t ∈ T and any At ∈ Xt. Then At ×∏

s "=t Ξs is a one-dimensional cylinder set.

For any finite k, k−dimensional cylinder sets are defined similarly, and clearly
are the intersections of k different one-dimensional cylinder sets. To see why
they have this name, notice a cylinder, in Euclidean geometry, consists of all the
points where the x and y coordinates fall into a certain set (the base), leaving the
z coordinate unconstrained. Similarly, a cylinder set like At ×

∏
s "=t Ξs consists

of all the functions in ΞT where f(t) ∈ At, and are otherwise unconstrained.

Definition 12 (Product σ-field) The product σ-field, ⊗t∈TXt, is the σ-field
over ΞT generated by all the one-dimensional cylinder sets. If all the Xt are the
same, X , we write the product σ-field as X T .

The product σ-field is enough to let us define a random function, and is
going to prove to be almost enough for our purposes.

Definition 13 (Random Function; Sample Path) A Ξ-valued random func-
tion on T is a map X : Ω '→ ΞT which is F/X T -measurable. The realizations
of X are functions x(t) taking values in Ξ, called its sample paths.

Definition 14 (Functional of the Sample Path) Let E, E be a measure-space.
A functional of the sample path is a mapping f : ΞT '→ E which is X T /E-
measurable.
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Examples of useful and common functionals include maxima, minima, sam-
ple averages, etc. Notice that none of these are functions of any one random
variable, and in fact their value cannot be determined from any part of the
sample path smaller than the whole thing.

Definition 15 (Projection Operator, Coordinate Map) A projection op-
erator or coordinate map πt is a map from ΞT to Ξ such that πtX = X(t).

The projection operators are a convenient device for recovering the individ-
ual coordinates — the random variables in the collection — from the random
function. Obviously, as t ranges over T , πtX gives us a collection of random vari-
ables, i.e., a stochastic process in the sense of our first definition. The following
lemma lets us go back and forth between the collection-of-variables, coordinate
view, and the entire-function, sample-path view.

Lemma 16 X is F/⊗t∈T Xt-measurable iff πtX is F/Xt-measurable for every
t.

Proof: This follows from the fact that the one-dimensional cylinder sets gen-
erate the product σ-field. !

We have said before that we will want to constrain our stochastic processes
to have certain properties — to be probability measures, rather than just set
functions, or to be continuous, or twice differentiable, etc. Write the set of all
functions in ΞT as U . Notice that U does not have to be an element of the
product σ-field, and in general is not. (We will consider some of the reasons for
this later.) As usual, by U ∩ X T we will mean the collection of all sets of the
form U ∩C, where C ∈ X T . Notice that (U,U ∩X T ) is a measure space. What
we want is to ensure that the sample path of our random function lies in U .

Definition 17 (Stochastic Process: As Random Function) A Ξ-valued stochas-
tic process on T with paths in U , U ⊆ ΞT , is a random function X : Ω '→ U
which is F/U ∩ X T -measurable.

Corollary 18 A function X from Ω to U is F/U ∩ X T -measurable iff Xt is
F/X -measurable for all t.

Proof: Because X(ω) ∈ U , X(ω) is F/U ∩ X T iff it is F/X T -measurable.
Then apply Lemma 16. !

Example 19 (Random Measures) Let T = Bd, the Borel field on Rd, and
let Ξ = R+

, the non-negative extended reals. Then ΞT is the class of set func-
tions on Rd. Let M be the class of such set functions which are also measures
(i.e., which are countably additive and give zero on the null set). Then a random
set function X with paths in M is a random measure.
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Example 20 (Point Process) Let X be a random measure, as in the previous
example. If X(B) is a finite integer for every bounded Borel set B, then X is a
point process. If in addition X(r) ≤ 1 for every r ∈ Rd, then X is simple. The
Poisson process is a simple point process.

Example 21 Let T = R+, Ξ = Rd, and C(T ) the class of continuous functions
from T to Ξ (in the usual topology). Then a Ξ-valued random process on T
with paths in C(T ) is a continuous random process. The Wiener process, or
Brownian motion, is an example. We will see that most sample paths in C(T )
are not differentiable.

Exercise 1.1 (The product σ-field answers countable questions) Let D =⋃
S XS, where the union ranges over all countable subsets S of the index set T .

For any event D ∈ D, whether or not a sample path x ∈ D depends on the value
of xt at only a countable number of indices t.

(a) Show that D is a σ-field.
(b) Show that if A ∈ X T , then A ∈ XS for some countable subset S of T .


