
Chapter 3

Building Infinite Processes
from Regular Conditional
Probability Distributions

Section 3.1 introduces the notion of a probability kernel, which
is a useful way of systematizing and extending the treatment of
conditional probability distributions you will have seen in 36-752.

Section 3.2 gives an extension theorem (due to Ionescu Tulcea)
which lets us build infinite-dimensional distributions from a family
of finite-dimensional distributions. Rather than assuming topolog-
ical regularity of the space, as in Section 2.2, we assume that the
FDDs can be derived from one another recursively, through applying
probability kernels. This is the same as assuming regularity of the
appropriate conditional probabilities.

3.1 Probability Kernels

Definition 30 (Probability kernel) A probability kernel from a measurable
space Ξ,X to another measurable space Υ,Y is a function κ : Ξ × Y "→ [0, 1]
such that

1. for any Y ∈ Y, κ(x, Y ) is X -measurable; and

2. for any x ∈ Ξ, κ(x, Y ) ≡ κx(Y ) is a probability measure on Υ,Y. We will
write the integral of a function f : Υ "→ R, with respect to this measure,
as

∫
f(y)κ(x, dy),

∫
f(y)κx(dy), or, most compactly, κf(x).

If condition 1 is satisfied and, for fixed x, κ(x, Y ) is a measure but not a prob-
ability measure, then κ is called a measure kernel or even just a kernel.
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Notice that we can represent any distribution on Ξ as a kernel where the first
argument is irrelevant: κ(x1, Y ) = κ(x2, Y ) for all x1, x2 ∈ Ξ. The “kernels” in
kernel density estimation are probability kernels, as are the stochastic transition
matrices of Markov chains. (The kernels in support vector machines, however,
generally are not.) Regular conditional probabilities, which you will remember
from 36-752, are all probability kernels. This fact suggests how we define the
composition of kernels.

Definition 31 (Composition of probability kernels) Let κ1 be a kernel from
Ξ to Υ, and κ2 a kernel from Ξ×Υ to Γ. Then we define κ1⊗ κ2 as the kernel
from Ξ to Υ× Γ such that

(κ1 ⊗ κ2)(x,B) =
∫

κ1(x, dy)
∫

κ2(x, y, dz)1B(y, z)

for every measurable B ⊆ Υ× Γ (where z ranges over the space Γ).

Verbally, κ1 gives us a distribution on Υ, from any starting point x ∈ Ξ. Given
a pair of points (x, y) ∈ Ξ×Υ, κ2 gives a distribution on Γ. So their composition
says, basically, how to chain together conditional distributions, given a starting
point.

3.2 Extension via Recursive Conditioning

With the machinery of probability kernels in place, we are in a position to give
an alternative extension theorem, i.e., a different way of proving the existence of
stochastic processes with specified finite-dimensional marginal distributions. In
Section 2.2, we assumed some topological niceness in the sample spaces, namely
that they were Borel spaces. Here, instead, we will assume probabilistic niceness
in the FDDs themselves, namely that they can be obtained through composing
probability kernels. This is the same as assuming that they can be obtained
by chaining together regular conditional probabilities. The general form of this
result is attributed in the literature to Ionescu Tulcea.

Just as proving the Kolmogorov Extension Theorem needed a measure-
theoretic result, the Carathéodory Extension Theorem, our proof of the Ionescu
Tulcea Extension Theorem will require a different measure-theoretic result,
which is not, so far as I know, named after anyone.

Proposition 32 Suppose µ is a finite, non-negative, additive set function on a
field A. If, for any sequence of sets An ∈ A, An ↓ ∅ =⇒ µAn → 0, then (1) µ
is countably additive on A, and (2) µ extends uniquely to a measure on σ(A).

Proof: Part (1) is a weaker version of Theorem F in Chapter 2, §9 of Halmos,
Measure Theory (p. 39). (When reading his proof, remember that every field of
sets is also a ring of sets.) Part (2) follows from part (1) and the Carathéodory
Extension Theorem (28). !

With this preliminary out of the way, let’s turn to the main event.
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Theorem 33 (Ionescu Tulcea Extension Theorem) Consider a sequence
of measurable spaces Ξn,Xn, n ∈ N. Suppose that for each n, there exists a
probability kernel κn from

∏n−1
i=1 Ξi to Ξn (taking κ1 to be a kernel insensitive

to its first argument, i.e., a probability measure). Then there exists a sequence
of random variables Xn, n ∈ N, taking values in the corresponding Ξn, such
that L (X1, X2, . . . Xn) =

⊗n
i=1 κi.

Proof: As before, we’ll be working with the cylinder sets, but now we’ll make
our life simpler if we consider cylinders where the base set rests in the first n
spaces Ξ1, ...Ξn. More specifically, set Bn =

⊗n
i=1 Xi (these are the base sets),

and Cn = Bn ×
∏∞

i=n+1 Ξi (these are the cylinder sets), and C =
⋃

n Cn. C
clearly contains all the finite cylinders, so it generates the product σ-field on
infinite sequences. We will use it as the field in Proposition 32. (Checking that
C is a field is entirely parallel to checking that the D appearing in the proof of
Theorem 29 was a field.)

For each base set A ∈ Bn, let [A] be the corresponding cylinder, [A] =
A×

∏∞
i=n+1 Ξi. Notice that for every set C ∈ C, there is at least one A, in some

Bn, such that C = [A]. Now we define a set function µ on C.

µ([A]) =

(
n⊗

i=1

κi

)
A (3.1)

(Checking that this is well-defined is left as an exercise, 3.2.) Clearly, this is a
finite, and finitely-additive, set function defined on a field. So to use Proposition
32, we just need to check continuity from above at ∅. Let An be any sequence
of sets such that [An] ↓ ∅ and An ∈ Bn. (Any sequence of sets in C ↓ ∅ can be
massaged into this form.) We wish to show that µ([An]) ↓ 0. We’ll get this to
work by considering functions which are (pretty much) conditional probabilities
for these sets:

pn|k =

(
n⊗

i=k+1

κi

)
1An , k ≤ n (3.2)

pn|n = 1An (3.3)

Two facts follow immediately from the definitions:

pn|0 =

(
n⊗

i=1

κi

)
1An = µ([An]) (3.4)

pn|k = κk+1pn|k+1 (3.5)

From the fact that the [An] ↓ ∅, we know that pn+1|k ≤ pn|k, for all k. This
implies that limn pn|k = mk exists, for each k, and is approached from above.
Applied to pn|0, we see from 3.5 that µ([An]) → m0. We would like m0 = 0.
Assume the contrary, that m0 > 0. From 3.5 and the dominated convergence
theorem, we can see that mk = κk+1mk+1. Hence if m0 > 0, κ1m1 > 0, which
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means (since that last expression is really an integral) that there is at least one
point x1 ∈ Ξ1 such that m1(s1) > 0. Recursing our way down the line, we get
a sequence x = x1, x2, . . . ∈ ΞN such that mn(x1, . . . xn) > 0 for all n. But now
look what we’ve done: for each n,

0 < mn(x1, . . . xn) (3.6)
≤ pn|n(x1, . . . xn) (3.7)
= 1An(x1, . . . xn) (3.8)
= 1[An](x) (3.9)

x ∈ [An] (3.10)

This is the same as saying that x ∈
⋂

n [An]. But [An] ↓ ∅, so there can be no
such x. Hence m0 = 0, meaning that µ([An]) → 0, and µ is continuous at the
empty set.

Since µ is finite, finitely-additive, non-negative and continuous at ∅, by
Proposition prop:continuity-at-emptyset it extends uniquely to a measure on
the product σ-field. !

Notes on the proof: It would seem natural that one could show m0 = 0
directly, rather than by contradiction, but I can’t think of a way to do it, and
every book I’ve consulted does it in exactly this way.

To appreciate the simplification made possible by the notion of probability
kernels, compare this proof to the one given by Fristedt and Gray (1997, §22.1).

Notice that the Daniell, Kolmogorov and Ionescu Tulcea Extension Theo-
rems all give sufficient conditions for the existence of stochastic processes, not
necessary ones. The necessary and sufficient condition for extending the FDDs
to a process probability measure is something called σ-smoothness. (See Pollard
(2002) for details.) Generally speaking, we will deal with processes which satisfy
both the Kolmogorov and the Ionescu Tulcea type conditions, e.g., real-valued
Markov process.

Exercise 3.1 (!Lomnick-Ulam Theorem on infinite product measures)
Let T be an uncountable index set, and (Ξt,Xt, µt) a collection of probability
spaces. Show that there exist independent random variables Xt in Ξt with dis-
tributions µt. Hint: use the Ionescu Tulcea theorem on countable subsets of T ,
and then imitate the proof of the Kolmogorov extension theorem.

Exercise 3.2 In the proof of the Ionescu Tulcea Theorem, we employed a set
function on the finite cylinder sets, where the measure of an infinite-dimensional
cylinder set [A] is set equal to the measure of its finite-dimensional base set A.
However, the same cylinder set can be specified by different base sets, so it is
necessary to show that Equation 3.1 has a unique value on its right-hand side.
In what follows, C is an arbitrary member of the class C.

(i) Show that, when A,B ∈ Bn, [A] = [B] iff A = B. That is, two cylinders
generated by bases of equal dimensionality are equal iff their bases are equal.
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(ii) Show that there is a smallest n such that C = [A] for an A ∈ Bn.
Conclude that the right-hand side of Equation 3.1 could be made well-defined if
we took n there to be this least possible n.

(iii) Suppose that m < n, A ∈ Bm, B ∈ Bn, and [A] = [B]. Show that
B = A×

∏n
i=m+1 Ξi.

(iv) Continuing the situation in (iii), show that
(

m⊗

i=1

κi

)
A =

(
n⊗

i=1

κi

)
B

Conclude that the right-hand side of Equation 3.1 is well-defined, as promised.


