
Chapter 6

Random Times and Their
Properties

Section 6.1 recalls the definition of a filtration (a growing col-
lection of σ-fields) and of “stopping times” (basically, measurable
random times).

Section 6.2 defines various sort of “waiting’ times, including hit-
ting, first-passage, and return or recurrence times.

Section 6.3 proves the Kac recurrence theorem, which relates the
finite-dimensional distributions of a stationary process to its mean
recurrence times.

6.1 Reminders about Filtrations and Stopping
Times

You will have seen these in 36-752 as part of martingale theory, though their
application is more general, as we’ll see.

Definition 55 (Filtration) Let T be an ordered index set. A collection Ft, t ∈
T of σ-algebras is a filtration (with respect to this order) if it is non-decreasing,
i.e., f ∈ Ft implies f ∈ mathcalFs for all s > t. We generally abbreviate this
filtration by F . Define F+

t as
⋂

s>t Fs. If F+ = F , then F is right-continuous.

Recall that we generally think of a σ-algebra as representing available infor-
mation — for any event f ∈ F , we can answer the question “did f happen?”
A filtration is a way of representing our information about a system growing
over time. To see what right-continuity is about, imagine it failed, which would
mean Ft ⊂

⋂
s>t Fs. Then there would have to be events which were detectable

at all times after t, but not at t itself, i.e., some sudden jump in our information
right after t. This is what right-continuity rules out.
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Definition 56 (Adapted Process) A stochastic process X on T is adapted
to a filtration F if ∀t, Xt is Ft-measurable. Any process is adapted to the
filtration it induces, σ {Xs : s ≤ t}.

A process being adapted to a filtration just means that, at every time, the
filtration gives us enough information to find the value of the process.

Definition 57 (Stopping Time, Optional Time) An optional time or a stop-
ping time, with respect to a filtration F , is a T -valued random variable τ such
that, for all t,

{ω ∈ Ω : τ(ω) ≤ t} ∈ Ft (6.1)

If Eq. 6.1 holds with < instead of ≤, then τ is weakly optional or a weak
stopping time.

Basically, all we’re doing here is defining what we mean by “a random time
at which something detectable happens”.

6.2 Waiting Times

“Waiting times” are particular kinds of optional kinds: how much time must
elapse before a given event happens, either from a particular starting point,
or averaging over all trajectories? Often, these are of particular interest in
themselves, and some of them can be related to other quantities of interest.

Definition 58 (Hitting Time) Given a one-sided Ξ-valued process X, the
hitting time τB of a measurable set B ⊂ Ξ is the first time at which X(t) ∈ B;

τB = inf {t > 0 : Xt ∈ B} (6.2)

Example 59 (Fixation through Genetic Drift) Consider the variation in
a given locus (roughly, gene) in an evolving population. If there are k different
versions of the gene (“alleles”), the state of the population can be represented by
a vector X(t) ∈ Rk, where at each time Xi(t) ≥ 0 and

∑
i Xi(t) = 1. This set

is known as the k-dimensional probability simplex Sk. We say that a certain
allele has been fixed in the population or gone to fixation at t if Xi(t) = 1 for
some i, meaning that all members of the population have that version of the
gene. Fixation corresponds to X(t) ∈ V , where V consists of the vertices of
the simplex. An important question in evolutionary theory is how long it takes
the population to go to fixation. By comparing the actual rate of fixation to
that expected under a model of adaptively-neutral genetic drift, it is possible to
establish that some genes are under the influence of natural selection.

Gillespie (1998) is a nice introduction to population genetics, including this
problem among many others, using only elementary probability. More sophis-
ticated models treat populations as measure-valued stochastic processes.
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Example 60 (Stock Options) A stock option1 is a legal instrument giving
the holder the right to buy a stock at a specified price (the strike price, c) before
a certain expiration date te. The point of the option is that, if you exercise it at
a time t when the price of the stock p(t) is above c, you can turn around and sell
the stock to someone else, making a profit of p(t)−c. When p(t) > c, the option
is said to be in money or above water. Options can themselves be sold, and the
value of an option depends on how much money it could be used to make, which
in turn depends on the probability that it will be “in money” before time te. An
important part of mathematical finance thus consists of problems of the form
“assuming prices p(t) follow a process distribution µ, what is the distribution of
hitting times of the set p(t) > c?”

While the financial industry is a major consumer of stochastics, and it has
a legitimate role to play in capitalist society, I do hope you will find something
more interesting to do with your new-found mastery of random processes, so I
will not give many examples of this sort. If you want much, much more, read
Shiryaev (1999).

Definition 61 (First Passage Time) When Ξ = R or Z, we call the hitting
time of the origin the time of first passage through the origin, and similarly for
other points.

Definition 62 (Return Time, Recurrence Time) Fix a set B ∈ Ξ. Sup-
pose that X(t0) ∈ B. Then the return time or first return time of B is recur-
rence time of B is inf {t > t0 : X(t) ∈ B}, and the recurrence time θB is the
difference between the first return time and t0.

Note 1: If I’m to be honest with you, I should admit that “return time”
and “recurrence time” are used more or less interchangeably in the literature to
refer to either the time coordinate of the first return (what I’m calling the return
time) or the time interval which elapses before that return (what I’m calling
the recurrence time). I will try to keep these straight here. Check definitions
carefully when reading papers!

Note 2: Observe that if we have a discrete-parameter process, and are in-
terested in recurrences of a finite-length sequence of observations w ∈ Ξk, we
can handle this situation by the device of working with the shift operator in
sequence space.

The question of whether any of these waiting times is optional (i.e., mea-
surable) must, sadly, be raised. The following result is generally enough for our
purposes.

Proposition 63 Let X be a Ξ-valued process on a one-sided parameter T ,
adapted to a filtration F , and let B be an arbitrary measurable set in Ξ. Then
τB is weakly F-optional under any of the following (sufficient) conditions, and
F-optional under the first two:

1Actually, this is just one variety of option (an “American call”), out of a huge variety. I
will not go into details.



CHAPTER 6. RANDOM TIMES 30

1. T is discrete.

2. T is R+, Ξ is a metric space, B is closed, and X(t) is a continuous
function of t.

3. T is R+, Ξ is a topological space, B is open, and X(t) is right-continuous
as a function of t.

Proof: See, for instance, Kallenberg, Lemma 7.6, p. 123.

6.3 Kac’s Recurrence Theorem

For strictly stationary, discrete-parameter sequences, a very pretty theorem,
due to Mark Kac (1947), relates the probability of seeing a particular event to
the mean time between recurrences of the event. Throughout, we consider an
arbitrary Ξ-valued process X, subject only to the requirements of stationarity
and a discrete parameter.

Fix an arbitrary measurable set A ∈ Ξ with P (X1 ∈ A) > 0, and consider a
new process Y (t), where Yt = 1 if Xt ∈ A and Yt = 0 otherwise. By Exercise
5.1, Yt is also stationary. Thus P (X1 ∈ A,X2 '∈ A) = P (Y1 = 1, Y2 = 0). Let
us abbreviate P (Y1 = 0, Y2 = 0, . . . Yn1 = 0, Yn = 0) as wn; this is the probabil-
ity of making n consecutive observations, none of which belong to the event
A. Clearly, wn ≥ wn+1. Similarly, let en = P (Y1 = 1, Y2 = 0, . . . Yn = 0) and
rn = P (Y1 = 1, Y2 = 0, . . . Yn = 1) — these are, respectively, the probabilities
of starting in A and not returning within n − 1 steps, and of starting in A
and returning for the first time after n − 2 steps. (Set e1 to P (Y1 = 1), and
w0 = e0 = 1.)

Lemma 64 The following recurrence relations hold among the probabilities wn,
en and rn:

en = wn−1 − wn, n ≥ 1 (6.3)
rn = en−1 − en, n ≥ 2 (6.4)
rn = wn−2 − 2wn−1 + wn, n ≥ 2 (6.5)

Proof: To see the first equality, notice that

P (Y1 = 0, Y2 = 0, . . . Yn−1 = 0) (6.6)
= P (Y2 = 0, Y3 = 0, . . . Yn = 0)
= P (Y1 = 1, Y2 = 0, . . . Yn = 0) + P (Y1 = 0, Y2 = 0, . . . Yn = 0) (6.7)

using first stationarity and then total probability. To see the second equality,
notice that, by total probability,

P (Y1 = 1, Y2 = 0, . . . Yn−1 = 0) (6.8)
= P (Y1 = 1, Y2 = 0, . . . Yn−1 = 0, Yn = 0) + P (Y1 = 1, Y2 = 0, . . . Yn−1 = 0, Yn = 1)

The third relationship follows from the first two. !
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Theorem 65 (Recurrence in Stationary Processes) Let X be a Ξ-valued
discrete-parameter stationary process. For any set A with P (X1 ∈ A) > 0, for
almost all ω such that X1(ω) ∈ A, there exists a τ for which Xτ (ω) ∈ A.

∞∑

k=1

P (θA = k|X1 ∈ A) = 1 (6.9)

Proof: The event {θA = k,X1 ∈ A} is the same as the event {Y1 = 1, Y2 = 0, . . . Yk+1 = 1}.
Since P (X1 ∈ A) > 0, we can handle the conditional probabilities in an elemen-
tary fashion:

P (θA = k|X1 ∈ A) =
P (θA = k,X1 ∈ A)

P (X1 ∈ A)
(6.10)

=
P (Y1 = 1, Y2 = 0, . . . Yk+1 = 1)

P (Y1 = 1)
(6.11)

∞∑

k=1

P (θA = k|X1 ∈ A) =
∑∞

k=1 P (Y1 = 1, Y2 = 0, . . . Yk+1 = 1)
P (Y1 = 1)

(6.12)

=
∑∞

k=2 rk

e1
(6.13)

Now consider the finite sums, and apply Eq. 6.5.

n∑

k=2

rk =
n∑

k=2

wk−2 − 2wk−1 + wk (6.14)

=
n−2∑

k=0

wk +
n∑

k=2

wk − 2
n−1∑

k=1

wk (6.15)

= w0 + wn − w1 − wn−1 (6.16)
= (w0 − w1)− (wn−1 − wn) (6.17)
= e1 − (wn−1 − wn) (6.18)

where the last line uses Eq. 6.4. Since wn−1 ≥ wn, there exists a limn wn, which
is ≥ 0 since every individual wn is. Hence limn wn−1 − wn = 0.

∞∑

k=1

P (θA = k|X1 ∈ A) =
∑∞

k=2 rk

e1
(6.19)

= lim
n→∞

e1 − (wn−1 − wn)
e1

(6.20)

=
e1

e1
(6.21)

= 1 (6.22)

which was to be shown. !
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Corollary 66 (Poincaré Recurrence Theorem) Let F be a transformation
which preserves measure µ. Then for any measurable set A, for µ-almost-all
x ∈ A, ∃n ≥ 1 such that Fn(x) ∈ A.

Proof: A direct application of the theorem, given the relationship between
stationary processes and measure-preserving transformations we established in
the last lecture. !

Corollary 67 (“Nietzsche”) In the set-up of the previous theorem, if X1(ω) ∈
A, then Xt ∈ A for infinitely many t (a.s.).

Proof: Repeated application of the theorem yields an infinite sequence of times
τ1, τ2, τ3, . . . such that Xτi(ω) ∈ A, for almost all ω such that X1(ω) ∈ A in the
first place. !

Now that we’ve established that once something happens, it will happen
again and again, we would like to know how long we have to wait between
recurrences.

Theorem 68 (Kac’s Recurrence Theorem) Continuing the previous nota-
tion, E [θA|X1 ∈ A] = 1/P (X1 ∈ A) if and only if limn wn = 0.

Proof: “If”: Unpack the expectation:

E [θA|X1 ∈ A] =
∞∑

k=1

k
P (Y1 = 1, Y2 = 0, . . . Yk+1 = 1)

P (Y1 = 1)
(6.23)

=
1

P (X1 ∈ A)

∞∑

k=1

krk+1 (6.24)

so we just need to show that the last series above sums to 1. Using Eq. 6.5
again,

n∑

k=1

krk+1 =
n∑

k=1

k(wk−1 − 2wk + wk+1) (6.25)

=
n∑

k=1

kwk−1 +
n∑

k=1

kwk+1 − 2
n∑

k=1

kwk (6.26)

=
n−1∑

k=0

(k + 1)wk +
n+1∑

k=2

(k − 1)wk − 2
n∑

k=1

kwk (6.27)

= w0 + nwn+1 − (n + 1)wn (6.28)
= 1− wn − n(wn − wn+1) (6.29)

We therefore wish to show that limn wn = 0 implies limn wn + n(wn − wn+1) =
0. By hypothesis, it is enough to show that limn n(wn − wn+1) = 0. The partial
sums on the left-hand side of Eq. 6.25 are non-decreasing, so wn +n(wn−wn+1)
is non-increasing. Since it is also ≥ 0, the limit limn wn + n(wn − wn+1) exists;
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using wn → 0 again, so does limn wn + n(wn − wn+1). Since limn wn exists,
the series

∑∞
n=1 wn − wn+1 must converge, and so wn − wn+1 must be at most

o(n−1). Hence limn n(wn − wn+1) = 0, as was to be shown.
“Only if”: From Eq. 6.29 in the “if” part, we see that the hypothesis is

equivalent to

1 = lim
n

1− wn − n(wn − wn+1) (6.30)

Since wn ≥ wn+1, 1−wn−n(wn−wn+1) ≤ 1−wn. We know from the proof of
Theorem 65 that limn wn exists, whether or not it is zero. If it is not zero, then
limn 1− wn − n(wn − wn+1) ≤ 1 − limn wn < 1. Hence wn → 0 is a necessary
condition. !
Example 69 One might imagine that the condition wn → 0 in Kac’s Theorem
is redundant, given the assumption of stationarity. Here is a counter-example.
Consider a homogeneous Markov chain on a finite space Ξ, which is partitioned
into two non-communicating components, Ξ1 and Ξ2. Each component is, in-
ternally, irreducible and aperiodic, so there will be an invariant measure µ1

supported on Ξ1, and another invariant measure µ2 supported on Ξ2. But then,
for any s ∈ [0, 1], sµ1+(1−s)µ2 will also be invariant. (Why?) Picking A ⊂ Ξ2

gives limn wn = s, the probability that the chain begins in the wrong component
to ever reach A.

Kac’s Theorem turns out to be the foundation for a fascinating class of
methods for learning the distributions of stationary processes, and for “univer-
sal” prediction and data compression. There is also an interesting interaction
with large deviations theory. This subject is one possibility for further discus-
sion at the end of the course. Whether or not we get there, let me recommend
some papers in the footnote.2

Exercise 6.1 (Weakly Optional Times and Right-Continuous Filtrations)
Show that a random time τ is weakly F-optional iff it is F+-optional.

Exercise 6.2 (Kac’s Theorem for the Logistic Map) First, do Exercise 5.3.
Then, using the same code, suitably modified, numerically check Kac’s Theorem
for the logistic map with a = 4. Pick any interval I ⊂ [0, 1] you like, but be sure
not to make it too small.

1. Generate n initial points in I, according to the invariant measure 1

π
√

x(1−x)
.

For each point xi, find the first t such that F t(xi) ∈ I, and take the mean
over the sample. What happens to this space average as n grows?

2. Generate a single point x0 in I, according to the invariant measure. Iterate
it N times. Record the successive times t1, t2, . . . at which F t(x0) ∈ I,
and find the mean of ti − ti−1 (taking t0 = 0). What happens to this time
average as N grows?

2Kontoyiannis et al. (1998); “How Sampling Reveals a Process” (Ornstein and Weiss, 1990);
Algoet (1992).


