
Chapter 7

Continuity of Stochastic
Processes

Section 7.1 describes the leading kinds of continuity for stochastic
processes, which derive from the modes of convergence of random
variables. It also defines the idea of versions of a stochastic process.

Section 7.2 explains why continuity of sample paths is often prob-
lematic, and why we need the whole “paths in U” song-and-dance.
As an illustration, we consider a Gausssian process which is close to
the Wiener process, except that it’s got a nasty non-measurability.

Section 7.3 introduces separable random functions.

7.1 Kinds of Continuity for Processes

Continuity is a convergence property: a continuous function is one where con-
vergence of the inputs implies convergence of the outputs. But we have several
kinds of convergence for random variables, so we may expect to encounter several
kinds of continuity for random processes. Note that the following definitions are
stated broadly enough that the index set T does not have to be one-dimensional.

Definition 70 (Continuity in Mean) A stochastic process X is continuous
in the mean at t0 if t → t0 implies E

[
|X(t)−X(t0)|2

]
→ 0. X is continuous

in the mean if this holds for all t0.

It would, of course, be more natural to refer to this as “continuity in mean
square”, or even “continuity in L2”, and one can define continuity in Lp for
arbitrary p.

Definition 71 (Continuity in Probability) X is continuous in probability
at t0 if t → t0 implies X(t) P→ X(t0). X is continuous in probability or stochas-
tically continuous if this holds for all t0.
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Note that neither Lp-continuity nor stochastic continuity says that the indi-
vidual sample paths, themselves, are continuous.

Definition 72 (Continuous Sample Paths) A process X is continuous at
t0 if, for almost all ω, t → t0 implies X(t, ω) → X(t0,ω). A process is continu-
ous if, for almost all ω, X(·,ω) is a continuous function.

Obviously, continuity of sample paths implies stochastic continuity and Lp-
continuity.

A weaker pathwise property than strict continuity, frequently used in prac-
tice, is the combination of continuity from the right with limits from the left.
This is usually known by the term “cadlag”, abbreviating the French phrase
“continues à droite, limites à gauche”; “rcll” is an unpronounceable synonym.

Definition 73 (Cadlag) A sample function x on a well-ordered set T is cadlag
if it is continuous from the right and limited from the left at every point. That
is, for every t0 ∈ T , t ↓ t0 implies x(t) → x(t0), and for t ↑ t0, limt↑t0 x(t)
exists, but need not be x(t0). A stochastic process X is cadlag if almost all its
sample paths are cadlag.

As we will see, it will not be easy to show that our favorite random processes
have any of these desirable properties. What will be easy will be to show that
they are, in some sense, easily modified into ones which do have good regularity
properties, without loss of probabilistic content. This is made more precise
by the notion of versions of a stochastic process, related to that of versions of
conditional probabilities.

Definition 74 (Versions of a Stochastic Process) Two stochastic processes
X and Y with a common index set T are called versions of one another if

∀t ∈ T, P (ω : X(t,ω) = Y (t,ω)) = 1

Such processes are also said to be stochastically equivalent.

Lemma 75 If X and Y are versions of one another, they have the same finite-
dimensional distributions.

Proof: Clearly it will be enough to show that P (XJ = YJ) = 1 for arbitrary
finite collections of indices J . Pick any such collection J = {t1, t2, . . . tj}. Then

P (XJ = YJ) = P
(
Xt1 = Yt1 , . . . Xtj = Ytj

)
(7.1)

= 1− P
(

⋃

ti∈J

Xti '= Yti

)
(7.2)

≥ 1−
∑

ti∈J

P (Xti '= Yti) (7.3)

= 1 (7.4)
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using only finite sub-additivity. !
There is a stronger notion of similarity between processes than that of ver-

sions, which will sometimes be useful.

Definition 76 (Indistinguishable Processes) Two stochastic processes X
and Y are indistinguishable, or equivalent up to evanescence, when

P (ω : ∀t, X(t, ω) = Y (t, ω)) = 1

Notice that saying X and Y are indistinguishable means that their sample
paths are equal almost surely, while saying they are versions of one another
means that, at any time, they are almost surely equal. Indistinguishable pro-
cesses are versions of one another, but not necessarily the reverse. (Look at
where the quantifier and the probability statements go.) However, if T = Rd,
then any two right-continuous versions of the same process are indistinguishable
(Exercise 7.2).

7.2 Why Continuity Is an Issue

In many situations, we want to use stochastic processes to model dynamical
systems, where we know that the dynamics are continuous in time (i.e. the
index set is R, or maybe R+ or [0, T ] for some real T ).1 This means that we
ought to restrict the sample paths to be continuous functions; in some cases we’d
even want them to be differentiable, or yet more smooth. As well as being a
matter of physical plausibility or realism, it is also a considerable mathematical
convenience, as the following shows.

Proposition 77 Let X(t, ω) be a real-valued continuous-parameter process with
continuous sample paths. Then on any finite interval I, M(ω) ≡ supt∈I X(t, ω)
and m(ω) ≡ inft∈I X(t, ω) are measurable random variables.

Proof: It’ll be enough to prove this for the supremum function M ; the proof
for m is entirely parallel. First, notice that M(ω) must be finite, because the
sample paths X(·,ω) are continuous functions, and continuous functions are
bounded on bounded intervals. Next, notice that M(ω) > a if and only if
X(t, ω) > a for some t ∈ I. But then, by continuity, there will be some rational
t′ ∈ I ∩Q such that X(t′,ω) > a; countably many, in fact.2 Hence

{ω : M(ω) > a} =
⋃

t∈I∩Q

{ω : X(t,ω) > a}

1Strictly speaking, we don’t really know that space-time is a continuum, but the discretiza-
tion, if there is one, is so fine that it might as well be.

2Continuity means that we can pick a δ such that, for all t′ within δ of t, X(t′, ω) is within
1
2 (X(t, ω) − a) of X(t, ω). And there are countably many rational numbers within any real
interval. — There is nothing special about the rational numbers here; any countable, dense
subset of the real numbers would work as well.
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Since, for each t, X(t, ω) is a random variable, the sets in the union on the
right-hand side are all measurable, and the union of a countable collection of
measurable sets is itself measurable. Since intervals of the form (a,∞) generate
the Borel σ-field on the reals, we have shown that M(ω) is a measurable function
from Ω to the reals, i.e., a random variable. !

Continuity raises some very tricky technical issues. The product σ-field is
the usual way of formalizing the notion that what we know about a stochas-
tic process are values observed at certain particular times. What we saw in
Exercise 1.1 is that “the product σ-field answers countable questions”: for any
measurable set A, whether x(·,ω) ∈ A depends only on the value of x(t, ω) at
countably many indices t. It follows that the class of all continuous sample
paths is not product-σ-field measurable, because x(·,ω) is continuous at t iff
x(tn,ω) → x(t,ω) along every sequence tn → t, and this is involves the value of
the function at uncountably many coordinates. It is further true that the class
of differentiable functions is not product σ-field measurable. For that matter,
neither is the class of piecewise linear functions! (See Exercise 7.1.)

You might think that, on the basis of Theorem 23, this should not really be
much of an issue: that even if the class of continuous sample paths (say) isn’t
strictly measurable, it could be well-approximated by measurable sets, and so
getting the finite-dimensional distributions right is all that matters. This would
make the theory of stochastic processes in continuous time much simpler, but
unfortunately it’s not quite the case. Here is an example to show just how bad
things can get, even when all the finite-dimensional distributions agree.3

Example 78 (A Horrible Version of the proto-Wiener Process) Example
38 defined the Wiener process by four requirements: starting at the origin,
independent increments, a Gaussian distribution of increments, and continu-
ity of sample paths. Take a Wiener process W (t, ω) and consider M(ω) ≡
supt∈[0,1] W (t, ω), its supremum over the unit interval. By the preceding propo-
sition, we know that M is a measurable random variable. But we can construct
a version of W for which the supremum is not measurable.

For starters, assume that Ω can be partitioned into an uncountable collec-
tion of disjoint measurable sets, one for each t ∈ [0, 1]. (This can be shown
as an exercise in real analysis.) Select any non-measurable real-valued function
B(ω), so long as B(ω) > M(ω) for all ω. (There are uncountably many suit-
able functions.) Set W ∗(t,ω) = W (t, ω) if ω '∈ Ωt, and = B(ω) if ω ∈ Ωt.
Now, at every t, P (W (t,ω) = W ∗(t, ω)) = 1. W ∗ is a version of W , and all
their finite-dimensional distributions. But, for every ω, there is a t such that
W ∗(t, ω) = B(ω) > supt W (t, ω), so supt W ∗(t, ω) = B(ω), which by design is
non-measurable.4

3I stole this example from Pollard (2002, p. 214).
4Note that the Wiener process is an important model for the price of a stock in financial

theory (more exactly, for the log of its price), and its maximum over an interval is closely
related to the value of an option on that stock, so this is something you really want to be able
to make probability statements about.
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Fundamentally, the issues with continuity are symptoms of a deeper problem.
The reason the supremum function is non-measurable in the example is that it
involves uncountably many indices. A countable collection of ill-behaved sets of
measure zero is a set of measure zero, and may be ignored, but an uncountable
collection of them can have probability 1. Fortunately, there are standard ways
of evading these measure-theoretic issues, by showing that one can always find
random functions which not only have prescribed finite-dimensional distribu-
tions (what we did in Lectures 2 and 3), but also are regular enough that we
can take suprema, or integrate over time, or force them to be continuous. This
hinges on the notion of separability for random functions.

7.3 Separable Random Functions

The basic idea of a separable random function is one whose properties can be
handled by dealing only with a countable, dense subset, just as, in the proof
of Proposition 77, we were able to get away with only looking at X(t) at only
rational values of t. Because a space with a countable, dense subset is called a
“separable” space, we will call such functions “separable functions”.

Definition 79 (Separable Functions) Let Ξ and T be metric spaces, and D
be a countable, dense subset of T . A function x : T ,→ Ξ is D-separable or
separable with respect to D if, forallt ∈ T , there exists a sequence ti ∈ D such
that ti → t and x(ti) → x(t).

Lemma 80 The following conditions are sufficient for separability:

1. T is countable.

2. x is continuous.

3. T is well-ordered and x is right-continuous.

Proof: (1) Take the separating set to be T itself. (2) Pick any countable dense
D. By density, for every t there will be a sequence ti ∈ D such that ti → t. By
continuity, along any sequence converging to t, x(ti) → t. (3) Just like (2), only
be sure to pick the ti > t. (You can do this, again, for any countable dense D.)
!

Definition 81 (Separable Process) A Ξ-valued process X on T is separable
with respect to D if D is a countable, dense subset of T , and there is a measure-
zero set N ⊂ Ω such that for every ω '∈ N , X(·,ω) is D-separable. That is,
X(·,ω) is almost surely D-separable.

We cannot easily guarantee that a process is separable. What we can easily
do is go from one process, which may or may not be separable, to a separa-
ble process with the same finite-dimensional distributions. This is known as
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a separable modification of the original process. Combined with the extension
theorems (Theorems 27, 29 and 33), this tells that we can always construct a
separable process with desired finite-dimensional distributions. We shall there-
fore feel entitled to assume that our processes are separable, without further
ado. The proofs of the existence of separable and continuous versions of gen-
eral processes are, however, somewhat involved, and so postponed to the next
lecture.

Exercise 7.1 Consider real-valued functions on the unit interval (i.e., Ξ = R,
T = [0, 1], X = B). The product σ-field is thus B[0,1]. In many circumstances,
it would be useful to constrain sample paths to be piece-wise linear functions of
the index. Let PL([0, 1]) denote this class of functions. Use the argument of
Exercise 1.1 to show that PL([0, 1]) '∈ B[0,1].

Exercise 7.2 Show that, if X and Y are versions of one another, with index
set Rd, and both are right-continuous, then they are indistinguishable.


