
Chapter 9

Markov Processes

This lecture begins our study of Markov processes.
Section 9.1 is mainly “ideological”: it formally defines the Markov

property for one-parameter processes, and explains why it is a nat-
ural generalization of both complete determinism and complete sta-
tistical independence.

Section 9.2 introduces the description of Markov processes in
terms of their transition probabilities and proves the existence of
such processes.

9.1 The Correct Line on the Markov Property

The Markov property is the independence of the future from the past, given the
present. Let us be more formal.

Definition 99 (Markov Property) A one-parameter process X is a Markov
process with respect to a filtration F when Xt is adapted to the filtration, and,
for any s > t, Xs is independent of Ft given Xt, Xs |= Ft|Xt. If no filtration is
mentioned, it may be assumed to be the natural one generated by X. If X is also
conditionally stationary, then it is a time-homogeneous (or just homogeneous)
Markov process.

Lemma 100 Let X+
t stand for the collection of Xu, u > t. If X is Markov,

then X+
t |= Ft|Xt.

Proof: See Exercise 9.1. !
There are two routes to the Markov property. One is the path followed by

Markov himself, of desiring to weaken the assumption of strict statistical inde-
pendence between variables to mere conditional independence. In fact, Markov
specifically wanted to show that independence was not a necessary condition for
the law of large numbers to hold, because his arch-enemy claimed that it was,
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and used that as grounds for believing in free will and Christianity.1 It turns
out that all the key limit theorems of probability — the weak and strong laws of
large numbers, the central limit theorem, etc. — work perfectly well for Markov
processes, as well as for IID variables.

The other route to the Markov property begins with completely deterministic
systems in physics and dynamics. The state of a deterministic dynamical system
is some variable which fixes the value of all present and future observables.
As a consequence, the present state determines the state at all future times.
However, strictly deterministic systems are rather thin on the ground, so a
natural generalization is to say that the present state determines the distribution
of future states. This is precisely the Markov property.

Remarkably enough, it is possible to represent any one-parameter stochastic
process X as a noisy function of a Markov process Z. The shift operators give
a trivial way of doing this, where the Z process is not just homogeneous but
actually fully deterministic. An equally trivial, but slightly more probabilistic,
approach is to set Zt = X−

t , the complete past up to and including time t. (This
is not necessarily homogeneous.) It turns out that, subject to mild topological
conditions on the space X lives in, there is a unique non-trivial representation
where Zt = ε(X−

t ) for some function ε, Zt is a homogeneous Markov process,
and Xu |= σ({Xt, t ≤ u})|Zt. (See Knight (1975, 1992).) We may explore such
predictive Markovian representations at the end of the course, if time permits.

9.2 Transition Probability Kernels

The most obvious way to specify a Markov process is to say what its transition
probabilities are. That is, we want to know P (Xs ∈ B|Xt = x) for every s > t,
x ∈ Ξ, and B ∈ X . Probability kernels (Definition 30) were invented to let us
do just this.

Definition 101 (Product of Probability Kernels) Let µ and ν be two prob-
ability kernels from Ξ to Ξ. Then their product µν is a kernel from Ξ to Ξ,
defined by

(µν)(x,B) ≡
∫

µ(x, dy)ν(y, B) (9.1)

= (µ⊗ ν)(x,Ξ×B) (9.2)

Intuitively, all the product does is say that the probability of starting at the
point x and landing in the set B is equal the probability of first going to y and
then ending in B, integrated over all intermediate points y. (Strictly speaking,
there is an abuse of notation in Eq. 9.2, since the second kernel in a composition
⊗ should be defined over a product space, here Ξ×Ξ. So suppose we have such a

1I am not making this up. See Basharin et al. (2004) for a nice discussion of the origin of
Markov chains and of Markov’s original, highly elegant, work on them. There is a translation
of Markov’s original paper in an appendix to Howard (1971), and I dare say other places as
well.
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kernel ν′, only ν′((x, y), B) = ν(y, B).) Finally, observe that if µ(x, ·) = δx, the
delta function at x, then (µν)(x, B) = ν(x, B), and similarly that (νµ)(x, B) =
ν(x,B).

Definition 102 For every (t, s) ∈ T × T , s ≥ t, let µt,s be a probability kernel
from Ξ to Ξ. These probability kernels form a transition semi-group when

1. For all t, µt,t(x, ·) = δx.

2. For any t ≤ s ≤ u ∈ T , µt,u = µt,sµs,u.

A transition semi-group for which ∀t ≤ s ∈ T , µt,s = µ0,s−t ≡ µs−t is homoge-
neous.

As with the shift semi-group, this is really a monoid (because µt,t acts as the
identity).

The major theorem is the existence of Markov processes with specified tran-
sition kernels.

Theorem 103 Let µt,s be a transition semi-group and νt a collection of distri-
butions on a Borel space Ξ. If

νs = νtµt,s (9.3)

then there exists a Markov process X such that

∀t, L (Xt) = νt (9.4)
∀t1 ≤ t2 ≤ . . . ≤ tn, L (Xt1 , Xt2 . . . Xtn) = νt1 ⊗ µt1,t2 ⊗ . . .⊗ µtn−1,tn(9.5)

Conversely, if X is a Markov process with values in Ξ, then there exist distri-
butions νt and a transition kernel semi-group µt,s such that Equations 9.4 and
9.3 hold, and

P (Xs ∈ B|Ft) = µt,s a.s. (9.6)

Proof: (From transition kernels to a Markov process.) For any finite set of
times J = {t1, . . . tn} (in ascending order), define a distribution on ΞJ as

νJ ≡ νt1 ⊗ µt1,t2 ⊗ . . .⊗ µtn−1,tn (9.7)

It is easily checked, using point (2) in the definition of a transition kernel semi-
group (Definition 102), that the νJ form a projective family of distributions.
Thus, by the Kolmogorov Extension Theorem (Theorem 29), there exists a
stochastic process whose finite-dimensional distributions are the νJ . Now pick
a J of size n, and two sets, B ∈ Xn−1 and C ∈ X .

P (XJ ∈ B × C) = νJ(B × C) (9.8)
= E [1B×C(XJ)] (9.9)
= E

[
1B(XJ\tn

)µtn−1,tn(Xtn−1 , C)
]

(9.10)
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Set Ft to be the natural filtration, σ({Xu, u ≤ s}). If A ∈ Fs for some s ≤ t,
then by the usual generating class arguments we have

P
(
Xt ∈ C,X−

s ∈ A
)

= E [1Aµs,t(Xs, C)] (9.11)
P (Xt ∈ C|Fs) = µs,t(Xs, C) (9.12)

i.e., Xt |= Fs|Xs, as was to be shown.
(From the Markov property to the transition kernels.) From the Markov

property, for any measurable set C ∈ X , P (Xt ∈ C|Fs) is a function of Xs

alone. So define the kernel µs,t by µs,t(x,C) = P (Xt ∈ C|Xs = x), with a pos-
sible measure-0 exceptional set from (ultimately) the Radon-Nikodym theorem.
(The fact that Ξ is Borel guarantees the existence of a regular version of this
conditional probability.) We get the semi-group property for these kernels thus:
pick any three times t ≤ s ≤ u, and a measurable set C ⊆ Ξ. Then

µt,u(Xt, C) = P (Xu ∈ C|Ft) (9.13)
= P (Xu ∈ C,Xs ∈ Ξ|Ft) (9.14)
= (µt,s ⊗ µs,u)(Xt,Ξ× C) (9.15)
= (µt,sµs,u)(Xt, C) (9.16)

The argument to get Eq. 9.3 is similar. !
Note: For one-sided discrete-parameter processes, we could use the Ionescu-

Tulcea Extension Theorem 33 to go from a transition kernel semi-group to a
Markov process, even if Ξ is not a Borel space.

Definition 104 Let X be a homogeneous Markov process with transition ker-
nels µt. A distribution ν on Ξ is invariant when, ∀t, ν = νµt, i.e.,

(νµt)(B) ≡
∫

ν(dx)µt(x,B) (9.17)

= ν(B) (9.18)

ν is also called an equilibrium distribution.

The term “equilibrium” comes from statistical physics, where however its
meaning is a bit more strict, in that “detailed balance” must also be satisified:
for any two sets A,B ∈ X ,

∫
ν(dx)1Aµt(x, B) =

∫
ν(dx)1Bµt(x,A) (9.19)

i.e., the flow of probability from A to B must equal the flow in the opposite
direction. Much confusion has resulted from neglecting the distinction between
equilibrium in the strict sense of detailed balance and equilibrium in the weaker
sense of invariance.

Theorem 105 Suppose X is homogeneous, and L (Xt) = ν, where ν is an
invariant distribution. Then the process X+

t is stationary.

Proof: Exercise 9.4. !
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9.3 Exercises

Exercise 9.1 Prove Lemma 100.

Exercise 9.2 Show that if X is a Markov process, then, for any t ∈ T , X+
t is

a one-sided Markov process.

Exercise 9.3 Let X be a continuous-parameter Markov process, and tn a count-
able set of strictly increasing indices. Set Yn = Xtn . Is Yn a Markov process?
If X is homogeneous, is Y also homogeneous? Does either answer change if
tn = nt for some constant interval t > 0?

Exercise 9.4 Prove Theorem 105.


