
Chapter 10

Alternate Characterizations
of Markov Processes

This lecture introduces two ways of characterizing Markov pro-
cesses other than through their transition probabilities.

Section 10.1 addresses a question raised in the last class, about
when being Markovian relative to one filtration implies being Markov
relative to another.

Section 10.2 describes discrete-parameter Markov processes as
transformations of sequences of IID uniform variables.

Section 10.3 describes Markov processes in terms of measure-
preserving transformations (Markov operators), and shows this is
equivalent to the transition-probability view.

10.1 The Markov Property Under Multiple Fil-
trations

In the last lecture, we defined what it is for a process to be Markovian relative
to a given filtration Ft. The question came up in class of when knowing that
X Markov with respect to one filtration Ft will allow us to deduce that it is
Markov with respect to another, say Gt.

To begin with, let’s introduce a little notation.

Definition 106 (Natural Filtration) The natural filtration for a stochastic
process X is FX

t ≡ σ({Xu, u ≤ t}). Obviously, every process X is adapted to
FX

t .

Definition 107 (Comparison of Filtrations) A filtration Gt is finer than or
more refined than or a refinement of Ft, Ft ≺ Gt, if, for all t, Ft ⊆ Gt, and
at least sometimes the inequality is strict. Ft is coarser or less fine than Gt. If
Ft ≺ Gt or Ft = Gt, we write Ft % Gt.
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Lemma 108 If X is adapted to Gt, then FX
t % Gt.

Proof: For each t, Xt is Gt measurable. But FX
t is, by construction, the

smallest σ-algebra with respect to which Xt is measurable, so, for every t,
FX

t ⊆ Gt, and the result follows. !

Theorem 109 If X is Markovian with respect to Gt, then it is Markovian with
respect to any coarser filtration to which it is adapted, and in particular with
respect to its natural filtration.

Proof: Use the smoothing property of conditional expectations: For any two
σ-fields F ⊂ G and random variable Y , E [Y |F ] = E [E [Y |G] |F ] a.s. So, if Ft is
coarser than Gt, and X is Markovian with respect to the latter, for any function
f ∈ L1 and time s > t,

E [f(Xs)|Ft] = E [E [f(Xs)|Gt] |Ft] a.s. (10.1)
= E [E [f(Xs)|Xt] |Ft] (10.2)
= E [f(Xs)|Xt] (10.3)

where the last line uses the facts that (i) E [f(Xs)|Xt] is a function Xt, (ii) X
is adapted to Ft, so Xt is Ft-measurable, and (iii) if Y is F-measurable, then
E [Y |F ] = Y . Since this holds for all f ∈ L1, it holds in particular for 1A, where
A is any measurable set, and this established the conditional independence which
constitutes the Markov property. Since (Lemma 108) the natural filtration is
the coarsest filtration to which X is adapted, the remainder of the theorem
follows. !

The converse is false, as the following example shows.

Example 110 We revert to the symbolic dynamics of the logistic map, Ex-
amples 39 and 40. Let S1 be distributed on the unit interval with density
1/π

√
s(1− s), and let Sn = 4Sn−1(1 − Sn−1). Finally, let Xn = 1[0.5,1.0](Sn).

It can be shown that the Xn are a Markov process with respect to their natural
filtration; in fact, with respect to that filtration, they are independent and iden-
tically distributed Bernoulli variables with probability of success 1/2. However,
P

(
Xn+1|FS

n , Xn

)
)= P (Xn+1|Xn), since Xn+1 is a deterministic function of Sn.

But, clearly, FS
n is a refinement of FX

n .

The issue can be illustrated with graphical models (Spirtes et al., 2001;
Pearl, 1988). A discrete-time Markov process looks like Figure 10.1a. Xn blocks
all the pasts from the past to the future (in the diagram, from left to right),
so it produces the desired conditional independence. Now let’s add another
variable which actually drives the Xn (Figure 10.1b). If we can’t measure the
Sn variables, just the Xn ones, then it can still be the case that we’ve got the
conditional independence among what we can see. But if we can see Xn as
well as Sn — which is what refining the filtration amounts to — then simply
conditioning on Xn does not block all the paths from the past of X to its future,
and, generally speaking, we will lose the Markov property. Note that knowing



CHAPTER 10. MARKOV CHARACTERIZATIONS 56

a

X1 X2 X3 ...

b

S1

X1

S2

X2

S3

X3

...

...

Figure 10.1: (a) Graphical model for a Markov chain. (b) Refining the filtration,
say by conditioning on an additional random variable, can lead to a failure of
the Markov property.

Sn does block all paths from past to future — so this remains a hidden Markov
model. Markovian representation theory is about finding conditions under which
we can get things to look like Figure 10.1b, even if we can’t get them to look
like Figure 10.1a.

10.2 Markov Sequences as Transduced Noise

A key theorem says that discrete-time Markov processes can be viewed as the
result of applying a certain kind of filter to pure noise.

Theorem 111 Let X be a one-sided discrete-parameter process taking values in
a Borel space Ξ. X is Markov iff there are measurable functions fn : Ξ×[0, 1] +→
Ξ such that, for IID random variables Zn ∼ U(0, 1), all independent of X1,
Xn+1 = fn(Xn, Zn) almost surely. X is homogeneous iff fn = f for all n.

Proof: Kallenberg, Proposition 8.6, p. 145. Notice that, in order to get the
“only if” direction to work, Kallenberg invokes what we have as 26, which is
where the assumptions that Ξ is a Borel space comes in. You should verify that
the “if” direction does not require this assumption. !

Let us stick to the homogeneous case, and consider the function f in some-
what more detail.

In engineering or computer science, a transducer is an apparatus — really, a
function — which takes a stream of inputs of one kind and produces a stream
of outputs of another kind.

Definition 112 (Transducer) A (deterministic) transducer is a sextuple 〈Σ,Υ,Ξ, f, h, s0〉
where Σ, Υ and Ξ are, respectively, the state, input and output spaces, f : Σ×
Ξ +→ Σ is the state update function or state transition function, h : Σ×Υ +→ Ξ
is the measurement or observation function, and s0 ∈ Σ is the starting state.
(We shall assume both f and h are always measurable.) If h does not depend
on its state argument, the transducer is memoryless. If f does not depend on
its state argument, the transducer is without after-effect.
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It should be clear that if a memoryless transducer is presented with IID
inputs, its output will be IID as well. What Theorem 111 says is that, if
we have a transducer with memory (so that h depends on the state) but is
without after-effect (so that f does not depend on the state), IID inputs will
produce Markovian outputs, and conversely any reasonable Markov process can
be represented in this way. Notice that if a transducer is without memory,
we can replace it with an equivalent with a single state, and if it is without
after-effect, we can identify Σ and Ξ.

Notice also that the two functions f and h determine a transition func-
tion where we use the input to update the state: g : Σ × Υ +→ Σ, where
g(s, y) = f(s, h(s, y)). Thus, if the inputs are IID and uniformly distributed,
then (Theorem 111) the successive states of the transducer are always Marko-
vian. The question of which processes can be produced by noise-driven transduc-
ers is this intimately bound up with the question of Markovian representations.
While, as mentioned, quite general stochastic processes can be put in this form
(Knight, 1975, 1992), it is not necessarily possible to do this with a finite in-
ternal state space Σ, even when Ξ is finite. The distinction between finite and
infinite Σ is crucial to theoretical computer science, and we might come back to
it later, but

Two issues suggest themselves in connection with this material. One is
whether, given a two-sided process, we can pull the same trick, and represent a
Markovian X as a transformation of an IID sequence extending into the infinite
past. (Remember that the theorem is for one-sided processes, and starts with
an initial X1.) This is more subtle than it seems at first glance, or even than it
seemed to Norbert Wiener when he first posed the question (Wiener, 1958); for
a detailed discussion, see Rosenblatt (1971), and, for recent set of applications,
Wu (2005). The other question is whether the same trick can be pulled in
continuous time; here much less is known.

10.3 Time-Evolution (Markov) Operators

Let’s look again at the evolution of the one-dimensional distributions for a
Markov process:

νs = νtµt,s (10.4)

νs(B) =
∫

νt(dx)µt,s(x, B) (10.5)

The transition kernels define linear operators taking distributions on Ξ to dis-
tributions on Ξ. This can be abstracted.

Definition 113 (Markov Operator) Take any measure space Ξ,X , µ, and
let L1 be as usual the class of all µ-integrable generalized functions on Ξ. A
linear operator P : L1 +→ L1 is a Markov operator when:

1. If f ≥ 0 (a.e. µ), Pf ≥ 0 (a.e. µ).
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2. If f ≥ 0 (a.e. µ), ‖Pf‖ = ‖f‖.

3. P1Ξ = 1Ξ.

4. If fn ↓ 0, then Pfn ↓ 0.

Lemma 114 Every probability kernel κ from Ξ to Ξ induces a Markov operator
K,

Kf(x) =
∫

κ(x, dy)f(y) (10.6)

and conversely every operator defines a transition probability kernel,

κ(x, B) = K1B(x) (10.7)

Proof: Exercise 10.1. !
Clearly, if κ is part of a transition kernel semi-group, then the collection of

induced Markov operators also forms a semi-group.

Theorem 115 (Markov operator semi-groups and Markov processes)
Let X be a Markov process with transition kernels µt,s, and let Kt,s be the cor-
responding semi-group of operators. Then for any f ∈ L1,

E [f(Xs)|Ft] = (Kt,sf)(Xt) (10.8)

Conversely, let X be any stochastic process, and let Kt,s be a semi-group of
Markov operators such that Equation 10.8 is valid (a.s.). Then X is a Markov
process.

Proof: Exercise 10.2. !
Remark. The proof works because the expectations of all L1 functions to-

gether determine a probability measure. If we knew of another collection of
functions which also sufficed to determine a measure, then linear operators on
that collection would work just as well, in the theorem, as do the Markov op-
erators, which by definition apply to all of L1. In particular, it is sometimes
possible to define operators only on much smaller, more restricted collections of
functions, which can have technical advantages. See Ethier and Kurtz (1986,
ch. 4, sec. 1) for details.

The next two lemmas will prove useful in establishing asymptotic results.

Lemma 116 (Markov Operators are Contractions) For any Markov op-
erator P and f ∈ L1,

‖Pf‖ ≤ ‖f‖ (10.9)
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Proof (after Lasota and Mackey (1994, prop. 3.1.1, pp. 38–39)): First, notice
that (Pf(x))+ ≤ Pf+(x), because (Pf(x))+ = (Pf+ − Pf−)+ = max (0, Pf+ − Pf−) ≤
max (0, Pf+) = Pf+. Similarly (Pf(x))− ≤ Pf−(x). Therefore |Pf | ≤ P |f |,
and then the statement follows by integration. !

Lemma 117 For any Markov operator, and any f, g ∈ L1, ‖Pnf − Png‖ is
non-increasing.

Proof: By linearity, ‖Pnf − Png‖ = ‖Pn(f − g)‖. By the definition of Pn,
‖Pn(f − g)‖ = ‖PPn−1(f − g)‖. By the contraction property (Lemma 116),
‖PPn−1(f − g)‖ ≤ ‖Pn−1(f − g)‖ = ‖Pn−1f − Pn−1g‖ (by linearity again). !

Theorem 118 A probability measure ν is invariant for a homogeneous Markov
process iff it is a fixed point of all the transition operators, νKt = ν.

Proof: Clear from the definitions! !

10.4 Exercises

Exercise 10.1 Prove Lemma 114. Hint: you will want to use the fact that
1B ∈ L1 for all measurable sets B.

Exercise 10.2 Prove Theorem 115. Hint: in showing that a collection of op-
erators determines a Markov process, try using mathematical induction on the
finite-dimensional distributions.


