
Chapter 12

Generators of Markov
Processes

This lecture is concerned with the infinitessimal generator of a
Markov process, and the sense in which we are able to write the evo-
lution operators of a homogeneous Markov process as exponentials
of their generator.

Take our favorite continuous-time homogeneous Markov process, and con-
sider its semi-group of time-evolution operators Kt. They obey the relationship
Kt+s = KtKs. That is, multiplication of the operators corresponds to addition
of their parameters, and vice versa. This is reminiscent of the exponential func-
tions on the reals, where, for any k ∈ R, k(t+s) = ktks. In the discrete-parameter
case, in fact, Kt = (K1)

t, where integer powers of operators are defined in the
obvious way, through iterated composition, i.e., K2f = K ◦ (Kf). It would
be nice if we could extend this analogy to continuous-parameter Markov pro-
cesses. One approach which suggests itself is to notice that, for any k, there’s
another real number g such that kt = etg, and that etg has a nice representation
involving integer powers of g:

etg =
∞∑

i=0

(tg)i

i!

The strategy this suggests is to look for some other operator G such that

Kt = etG ≡
∞∑

i=0

tiGi

i!

Such an operator G is called the generator of the process, and the purpose of this
section is to work out the conditions under which this analogy can be carried
through.

In the exponential function case, we notice that g can be extracted by taking
the derivative at zero: d

dte
tg

∣∣
t=0

= g. This suggests the following definition.
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Definition 119 (Infinitessimal Generator) Let Kt be a continuous-parameter
semi-group of homogeneous Markov operators. Say that a function f ∈ L1 be-
longs to Dom(G) if the limit

lim
h↓0

Khf −K0f

h
≡ Gf (12.1)

exists in an L1-norm sense, i.e., there exists some element of L1, which we shall
call Gf , such that

lim
h↓0

∥∥∥∥
Khf −K0f

h
−Gf

∥∥∥∥ = 0 (12.2)

The operator G defined through Eq. 12.1 is called the infinitessimal generator of
the semi-group Kt.

Lemma 120 G is a linear operator.

Proof: Exercise 12.1. !

Lemma 121 If µ is an invariant distribution of the semi-group Kt, then, ∀f ∈
Dom(G), µGf = 0.

Proof: Since µ is invariant, µKt = µ for all t, hence µKhf = µf for all
h ≥ 0 and all f . Since taking expectations with respect to a measure is a linear
operator, µ(Khf − f) = 0, and obviously then µGf = 0. !

Remark: The converse statement, that if µGf = 0 for all f , then µ is an
invariant measure, requires extra conditions.

You will usually see the definition of the generator written with f instead
of K0f , but I chose this way of doing it to emphasize that G is, basically,
the derivative at zero, that G = dK/dt|t=0. Recall, from calculus, that the
exponential function can kt be defined by the fact that d

dtk
t ∝ kt (and e can

be defined as the k such that the constant of proportionality is 1). As part of
our program, we will want to extend this differential point of view. The next
lemma builds towards it, by showing that if f ∈ Dom(G), then Ktf is too.

Lemma 122 If G is the generator of the semi-group Kt, and f is in the domain
of G, then Kt and G commute, for all t:

KtGf = lim
t′→t

Kt′f −Ktf

t′ − t
(12.3)

= GKtf (12.4)

Proof: Exercise 12.2. !
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Definition 123 (Time Derivative in Function Space) For every t ∈ T ,
let u(t, x) be a function in L1. When the limit

u′(t0, x) = lim
t→t0

u(t, x)− u(t0, x)
t− t0

(12.5)

exists in the L1 sense, then we say that u′(t0) is the time derivative or strong
derivative of u(t) at t0.

Lemma 124 Let Kt be a homogeneous semi-group of Markov operators with
generator G. Let u(t) = Ktf for some f ∈ Dom(G). Then u(t) is differentiable
at t = 0, and its derivative there is Gf .

Proof: Obvious from the definitions. !

Theorem 125 Let Kt be a homogeneous semi-group of Markov operators with
generator G, and let u(t, x) = (Ktf)(x), for fixed f ∈ Dom(G). Then u′(t)
exists for all t, and is equal to Gu(t).

Proof: Since f ∈ Dom(G), KtGf exists, but then, by Lemma 122, KtGf =
GKtf = Gu(t), so u(t) ∈ Dom(G) for all t. Now let’s consider the time deriva-
tive of u(t) at some arbitrary t0, working from above:

(u(t)− u(t0)
t− t0

=
Kt−t0u(t0)− u(t0)

t− t0
(12.6)

=
Khu(t0)− u(t0)

h
(12.7)

Taking the limit as h ↓ 0, we get that u′(t0) = Gu(t0), which exists, because
u(t0) ∈ Dom(G). !

Corollary 126 (Initial Value Problems in Function Space) u(t) = Ktf ,
f ∈ Dom(G), solves the initial value problem u(0) = f , u′(t) = Gu(t).

Proof: Immediate from the theorem. !
Remark: Such initial value problems are sometimes called Cauchy problems,

especially when G takes the form of a differential operator.
We are now almost ready to state the sense in which Kt is the result of

exponentiating G. This is given by the remarkable Hille-Yosida theorem, which
in turn involves a family of operators related to the time-evolution operators,
the “resolvents”, again built by analogy to the exponential functions. Notice
that, for any positive constant λ,

∫ ∞

t=0
e−λtetgdt =

1
λ− g

(12.8)

from which we could recover g. The left-hand side is just the Laplace transform
of etg.
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Definition 127 (Continuous Functions Vanishing at Infinity) Let Ξ be
a locally compact and separable metric space. The class of functions C0 will
consist of functions f : Ξ )→ R which are continuous and for which x → ∞
implies f(x) → 0.

Definition 128 (Resolvents) Given a continuous-parameter time-homogeneous
Markov semi-group Kt, for each λ > 0, the resolvent operator or resolvent Rλ

is the “Laplace transform” of Kt: for every f ∈ C0,

(Rλf)(x) ≡
∫ ∞

t=0
e−λt(Ktf)(x)dt (12.9)

Remark 1: The name “resolvent”, like some of the other ideas an terminol-
ogy of Markov operators, comes from the theory of integral equations; invariant
densities (when they exist) are solutions of homogeneous linear Fredholm in-
tegral equations of the second kind. Rather than pursue this analogy, or even
explain what that means, I will refer you to the classic treatment of integral
equations by Courant and Hilbert (1953, ch. 3), which everyone else seems to
follow very closely.

Remark 2: When the function f is a value (loss, benefit, utility, ...) function,
(Ktf)(x) is the expected value at time t when starting the process in state x.
(Rλf)(x) can be thought of as the net present expected value when starting at
x and applying a discount rate λ.

Definition 129 (Yosida Approximation of Operators) The Yosida approx-
imation to a semi-group Kt with generator G is given by

Kλ
t ≡ etGλ

(12.10)
Gλ ≡ λGRλ = λ(λRλ − I) (12.11)

The domain of Gλ contains all C0 functions, not just those in Dom(G).

Theorem 130 (Hille-Yosida Theorem) Let G be a linear operator on some
linear subspace D of L1. G is the generator of a continuous semi-group of
contractions Kt if and only if

1. D is dense in L1;

2. For every f ∈ L1 and λ > 0, there exists a unique g ∈ D such that
λg −Gg = f ;

3. For every g ∈ D and positive λ, ‖λg −Gg‖ ≥ λ‖g‖.

Under these conditions, the resolvents of Kt are given by Rλ = (λ−G)−1, and
Kt is the limit of the Yosida approximations as λ →∞:

Ktf = lim
λ→∞

Kλ
t f, ∀f ∈ L1 (12.12)

Proof: See Kallenberg, Theorem 19.11. !
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12.1 Exercises

Exercise 12.1 Prove Lemma 120.

Exercise 12.2 Prove Lemma 122.

a Prove Equation 12.3, restricted to t′ ↓ t instead of t′ → t. Hint: Write Tt

in terms of an integral over the corresponding transition kernel, and find
a reason to exchange integration and limits.

b Show that the limit as t′ ↑ t also exists, and is equal to the limit from
above. Hint: Re-write the quotient inside the limit so it only involves
positive time-differences.

c Prove Equation 12.4.


