
Chapter 13

The Strong Markov
Property and Martingale
Problems

Section 13.1 introduces the strong Markov property — indepen-
dence of the past and future conditional on the state at random
(optional) times.

Section 13.2 describes “the martingale problem for Markov pro-
cesses”, explains why it would be nice to solve the martingale prob-
lem, and how solutions are strong Markov processes.

13.1 The Strong Markov Property

A process is Markovian, with respect to a filtration F , if for any fixed time t,
the future of the process is independent of Ft given Xt. This is not necessarily
the case for a random time τ , because there could be subtle linkages between
the random time and the evolution of the process. If these can be ruled out, we
have a strong Markov process.

Definition 131 (Strongly Markovian at a Random Time) Let X be a Markov
process with respect to a filtration F , with transition kernels µt,s and evolution
operators Kt,s. Let τ be an F-optional time which is almost surely finite. Then
X is strongly Markovian at τ when either of the two following (equivalent)
conditions hold

P (Xt+τ ∈ B|Fτ ) = µτ,τ+t(Xτ , B) (13.1)
E [f(Xτ+t)|Fτ ] = (Kτ,τ+tf)(Xτ ) (13.2)

for all t ≥ 0, B ∈ X and bounded measurable functions f .
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Definition 132 (Strong Markov Property) If X is Markovian with respect
to F , and strongly Markovian at every F-optional time which is almost surely
finite, then it is a strong Markov process with respect to F .

If the index set T is discrete, then the strong Markov property is implied
by the ordinary Markov property (Definition 99). If time is continuous, this is
not necessarily the case. It is generally true that, if X is Markov and τ takes
on only countably many values, X is strongly Markov at τ (Exercise 13.1). We
would like to find conditions under which a process is strongly Markovian for
all optional times, however.

13.2 Martingale Problems

One approach to getting strong Markov processes is through martingales, and
more specifically through what is known as the martingale problem.

Notice the following consequence of Theorem 125:

Ktf(x)− f(x) =
∫ t

0
KsGf(x)ds (13.3)

for any t ≥ 0 and f ∈ Dom(G). The relationship between Ktf and the condi-
tional expectation of f suggests the following definition.

Definition 133 (Martingale Problem) Let Ξ be a Polish space, D a class
of bounded, continuous, real-valued functions on Ξ, and G an operator from D
to bounded, measurable functions on Ξ. A Ξ-valued stochastic process on R+ is
a solution to the martingale problem for G and D if, for all f ∈ D,

f(Xt)−
∫ t

0
Gf(Xs)ds (13.4)

is a martingale with respect to FX , the natural filtration of X.

Proposition 134 Suppose X is a cadlag solution to the martingale problem
for G,D. Then for any f ∈ D, the stochastic process given by Eq. 13.4 is also
cadlag.

Proof: Follows from the assumption that f is continuous. !

Lemma 135 X is a solution to the martingale problem for G,D if and only if,
for all t, s ≥ 0,

E
[
f(Xt+s)|FX

t

]
−E

[∫ t+s

t
Gf(Xu)du|FX

t

]
= f(Xt) (13.5)
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Proof: Take the definition of a martingale and re-arrange the terms in Eq.
13.4. !

Martingale problems are important because of the two following theorems
(which can both be refined considerably).

Theorem 136 (Markov Processes Solve Martingale Problems) Let X be
a homogeneous Markov process with generator G and cadlag sample paths, and
let D be the continuous functions in Dom(G). Then X solves the martingale
problem for G,D.

Proof: Exercise 13.2. !
Theorem 137 (Solutions to the Martingale Problem are Strongly Markovian)
Suppose that for each x ∈ Ξ, there is a unique cadlag solution to the martingale
problem for G,D such that X0 = x. Then the collection of these solutions is a
homogeneous strong Markov family X, and the generator is equal to G on D.

Proof: Exercise 13.3. !
The main use of Theorem 136 is that it lets us prove convergence of some

functions of Markov processes, by showing that they can be cast into the form of
Eq. 13.4, and then applying the martingale convergence devices. The other use
is in conjunction with Theorem 137. We will often want to show that a sequence
of Markov processes converges on a limit which is, itself, a Markov process. One
approach is to show that the terms in the sequence solve martingale problems
(via Theorem 136), argue that then the limiting process does too, and finally
invoke Theorem 137 to argue that the limiting process must itself be strongly
Markovian. This is often much easier than showing directly that the limiting
process is strongly Markovian. Theorem 137 itself is often a convenient way of
showing that the strong Markov property holds.

13.3 Exercises

Exercise 13.1 (Strongly Markov at Discrete Times) Let X be a homo-
geneous Markov process with respect to a filtration F and τ be an F-optional
time. Prove that if P (τ <∞) = 1, and τ takes on only countably many values,
then X is strongly Markovian at τ . (Note: the requirement that X be homoge-
neous can be lifted, but requires some more technical machinery I want to avoid.)

Exercise 13.2 (Markovian Solutions of the Martingale Problem) Prove
Theorem 136. Hints: Use Lemma 135, bounded convergence, and Theorem 125.

Exercise 13.3 (Martingale Solutions are Strongly Markovian) Prove The-
orem 137. Hint: use the Optional Sampling Theorem (from 36-752, or from
chapter 7 of Kallenberg).


