
Chapter 15

Convergence of Feller
Processes

This chapter looks at the convergence of sequences of Feller pro-
cesses to a limiting process.

Section 15.1 lays some ground work concerning weak convergence
of processes with cadlag sample paths.

Section 15.2 states and proves the central theorem about the
convergence of sequences of Feller processes.

Section 15.3 examines a particularly important special case, the
approximation of ordinary differential equations by pure-jump Markov
processes.

15.1 Weak Convergence of Processes with Cad-
lag Paths (The Skorokhod Topology)

Recall that a sequence of random variables X1, X2, . . . converges in distribution
on X, or weakly converges on X, Xn

d→ X, if and only if E [f(Xn)] → E [f(X)],
for all bounded, continuous functions f . This is still true when Xn are ran-
dom functions, i.e., stochastic processes, only now the relevant functions f are
functionals of the sample paths.

Definition 161 (Convergence in Finite-Dimensional Distribution) Random
processes Xn on T converge in finite-dimensional distribution on X, Xn

fd→ X,
when, ∀J ∈ Fin(T ), Xn(J) d→ X(J).

Proposition 162 Convergence in finite-dimensional distribution is necessary
but not sufficient for convergence in distribution.
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Proof: Necessity is obvious: the coordinate projections πt are continuous func-
tionals of the sample path, so they must converge if the distributions converge.
Insufficiency stems from the problem that, even if a sequence of Xn all have
sample paths in some set U , the limiting process might not: recall our example
(78) of the version of the Wiener process with unmeasurable suprema. !

Definition 163 (The Space D) By D(T,Ξ) we denote the space of all cadlag
functions from T to Ξ. By default, D will mean D(R+,Ξ).

D admits of multiple topologies. For most purposes, the most convenient one
is the Skorokhod topology, a.k.a. the J1 topology or the Skorokhod J1 topology,
which makes D(Ξ) a complete separable metric space when Ξ is itself complete
and separable. (See Appendix A2 of Kallenberg.) For our purposes, we need
only the following notion and theorem.

Definition 164 (Modified Modulus of Continuity) The modified modu-
lus of continuity of a function x ∈ D(T,Ξ) at time t ∈ T and scale h > 0
is given by

w(x, t, h) ≡ inf
(Ik)

max
k

sup
r,s∈Ik

ρ(x(s), x(r)) (15.1)

where the infimum is over partitions of [0, t) into half-open intervals whose length
is at least h (except possibly for the last one). Because x is cadlag, for fixed x
and t, w(x, t, h) → 0 as h → 0.

Theorem 165 (Weak Convergence in D(R+,Ξ)) Let Ξ be a complete, sep-
arable metric space. Then a sequence of random functions X1, X2, . . . ∈ D(R+,Ξ)
converges in distribution to X ∈ D if and only if

i The set Tc = {t ∈ T : X(t) = X(t−)} has a countable dense subset T0,
and the finite-dimensional distributions of the Xn converge on those of X
on T0.

ii For every t,

lim
h→0

lim sup
n→∞

E [w(Xn, t, h) ∧ 1] = 0 (15.2)

Proof: See Kallenberg, Theorem 16.10, pp. 313–314. !

Theorem 166 (Sufficient Condition for Weak Convergence) The follow-
ing three conditions are all equivalent, and all imply condition (ii) in Theorem
165.

1. For any sequence of a.s.-finite FXn-optional times τn and positive con-
stants hn → 0,

ρ(Xn(τn), Xn(τn + hn)) P→ 0 (15.3)
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2. For all t > 0, for all

lim
h→0

lim sup
n→∞

sup
σ,τ

E [ρ(Xn(σ), Xn(τ)) ∧ 1] = 0 (15.4)

where σ and τ are FXn-optional times σ, τ ≤ t, with σ ≤ τ ≤ τ + h.

3. For all t > 0,

lim
δ→0

lim sup
n→∞

sup
τ≤t

sup
0≤h≤δ

E [ρ(Xn(τ), Xn(τ + h)) ∧ 1] = 0 (15.5)

where the supremum in τ runs over all FXn-optional times ≤ t.

Proof: See Kallenberg, Theorem 16.11, pp. 314–315. !

15.2 Convergence of Feller Processes

We need some technical notions about generators.

Definition 167 (Closed and Closable Generators, Closures) A linear op-
erator O on a Banach space B is closed if its graph —

{
f, g ∈ B2 : f ∈ Dom(O), g = Of

}

— is a closed set. An operator is closable if the closure of its graph is a function
(and not just a relation). The closure of a closable operator is that function.

Notice, by the way, that because O is linear, it is closable iff fn → 0 and
Afn → g implies g = 0.

Definition 168 (Core of an Operator) Let O be a closed linear operator on
a Banach space B. A linear subspace D ⊆ Dom(O) is a core of O if the closure
of O restricted to D is, again O.

The idea of a core is that we can get away with knowing how the operator
works on a linear subspace, which is often much easier to deal with, rather than
controlling how it acts on its whole domain.

Proposition 169 The generator of every Feller semigroup is closed.

Proof: We need to show that the graph of G contains all of its limit points, that
is, if fn ∈ Dom(G) converges (in L∞) on f , and Gfn → g, then f ∈ Dom(G)
and Gf = g. First we show that f ∈ Dom(G).

lim
n→∞

(I −G)fn = lim
n

fn − lim
n

Gfn (15.6)

= f − g (15.7)
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But (I −G)−1 = R1. Since this is a bounded linear operator, we can exchange
applying the inverse and taking the limit, i.e.,

R1 lim
n

(I −G)fn = R1(f − g) (15.8)

lim
n

R1(I −G)fn = R1(f − g) (15.9)

lim
n

fn = R1(f − g) (15.10)

f = R1(f − g) (15.11)

Since the range of the resolvents is contained in the domain of the generator,
f ∈ Dom(G). We can therefore say that f − g = (I −G)f , which implies that
Gf = g. Hence, the graph of G contains all its limit points, and G is closed. !

Theorem 170 Let Xn be a sequence of Feller processes with semigroups Kn,t

and generators Gn, and X be another Feller process with semigroup Kt and a
generator G containing a core D. Then the following are equivalent.

1. If f ∈ D, there exists a sequence of fn ∈ Dom(Gn) such that ‖fn − f‖∞ →
0 and ‖Anfn −Af‖∞ → 0.

2. Kn,t → Kt for every t > 0

3. ‖Kn,tf −Ktf‖∞ → 0 uniformly over f ∈ C0 for bounded positive t

4. If Xn(0) d→ X(0) in Ξ, then Xn
d→ X in D.

Proof: See Kallenberg, Theorem 19.25, p. 385. !
Remark. The important versions of the property above are the second —

convergence of the semigroups — and the fourth — converge in distribution of
the processes. The other two are there to simplify the proof.

15.3 Approximation of Ordinary Differential Equa-
tions by Markov Processes

The following result, due to Following Kurtz (1970, 1971), is essentially an
application of Theorem 170.

First, recall that continuous-time, discrete-state Markov processes work es-
sentially like a combination of a Poisson process (giving the time of transitions)
with a Markov chain (giving the state moved to on transitions). This can be
generalized to continuous-time, continuous-state processes, of what are called
“pure jump” type.

Definition 171 (Pure Jump Markov Process) A continuous-parameter Markov
process is a pure jump process when its sample paths are piece-wise constant.
For each state, there is an exponential distribution of times spent in that state,
whose parameter is denoted λ(x), and a transition probability kernel or exit
distribution µ(x,B).
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Observe that pure-jump Markov processes always have cadlag sample paths.
Also observe that the average amount of time the process spends in state x, once
it jumps there, is 1/λ(x). So the time-average “velocity”, i.e., rate of change,
starting from x,

λ(x)
∫

Ξ
(y − x)µ(x, dy)

Theorem 172 Let Xn be a sequence of pure-jump Markov processes with state
spaces Ξn, holding time parameters λn and transition probabilities µn. Suppose
that, for all n Ξn is a Borel-measurable subset of Rk for some k. Let Ξ be
another measurable subset of Rk, on which there exists a function F (x) such
that |F (x)−F (y)| ≤ M |x−y| for some constant M . Suppose all of the following
conditions holds.

1. The time-averaged rate of change is always finite:

sup
n

sup
x∈Ξn∩Ξ

λn(x)
∫

Ξn

|y − x|µn(x, dy) < ∞ (15.12)

2. There exists a positive sequence εn → 0 such that

lim
n→∞

sup
x∈Ξn∩Ξ

λn(x)
∫

|y−x|>ε
|y − x|µn(x, dy) = 0 (15.13)

3. The worst-case difference between F (x) and the time-averaged rates of
change goes to zero:

lim
n→∞

sup
x∈Ξn∩Ξ

∣∣∣∣F (x)− λn(x)
∫

(y − x)µn(x, dy)
∣∣∣∣ = 0 (15.14)

Let X(s, x0) be the solution to the initial-value problem where the differential is
given by F , i.e., for each 0 ≤ s ≤ t,

∂

∂s
X(s, x0) = F (X(s, x0)) (15.15)

X(0, x0) = x0 (15.16)

and suppose there exists an η > 0 such that, for all n,

Ξn ∩
{

y ∈ Rk : inf
0≤s≤t

|y −X(s, x0)| ≤ η

}
⊆ Ξ (15.17)

Then lim Xn(0) = x0 implies that, for every δ > 0,

lim
n→∞

P
(

sup
0≤s≤t

|Xn(s)−X(s, x0)| > δ

)
= 0 (15.18)
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The first conditions on the Xn basically make sure that they are Feller
processes. The subsequent ones make sure that the mean time-averaged rate of
change of the jump processes converges on the instantaneous rate of change of
the differential equation, and that, if we’re sufficiently close to the solution of
the differential equation in Rk, we’re not in some weird way outside the relevant
domains of definition. Even though Theorem 170 is about weak convergence,
converging in distribution on a non-random object is the same as converging in
probability, which is how we get uniform-in-time convergence in probability for
a conclusion.

There are, broadly speaking, two kinds of uses for this result. One kind is
practical, and has to do with justifying convenient approximations. If n is large,
we can get away with using an ODE instead of the noisy stochastic scheme, or
alternately we can use stochastic simulation to approximate the solutions of ugly
ODEs. The other kind is theoretical, about showing that the large-population
limit behaves deterministically, even when the individual behavior is stochastic
and strongly dependent over time.


