
Chapter 16

Convergence of Random
Walks

This lecture examines the convergence of random walks to the
Wiener process. This is very important both physically and statis-
tically, and illustrates the utility of the theory of Feller processes.

Section 16.1 finds the semi-group of the Wiener process, shows
it satisfies the Feller properties, and finds its generator.

Section 16.2 turns random walks into cadlag processes, and gives
a fairly easy proof that they converge on the Wiener process.

16.1 The Wiener Process is Feller

Recall that the Wiener process W (t) is defined by starting at the origin, by
independent increments over non-overlapping intervals, by the Gaussian distri-
bution of increments, and by continuity of sample paths (Examples 38 and 78).
The process is homogeneous, and the transition kernels are (Section 11.1)

µt(w1, B) =
∫

B
dw2

1√
2πt

e−
(w2−w1)2

2t (16.1)

dµt(w1, w2)
dλ

=
1√
2πt

e−
(w2−w1)2

2t (16.2)

where the second line gives the density of the transition kernel with respect to
Lebesgue measure.

Since the kernels are known, we can write down the corresponding evolution
operators:

Ktf(w1) =
∫

dw2f(w2)
1√
2πt

e−
(w2−w1)2

2t (16.3)

We saw in Section 11.1 that the kernels have the semi-group property, so the
evolution operators do too.
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Let’s check that {Kt} , t ≥ 0 is a Feller semi-group. The first Feller property
is easier to check in its probabilistic form, that, for all t, y → x implies Wy(t) d→
Wx(t). The distribution of Wx(t) is just N (x, t), and it is indeed true that y → x
implies N (y, t) → N (x, t). The second Feller property can be checked in its
semi-group form: as t → 0, µt(w1, B) approaches δ(w−w1), so limt→0 Ktf(x) =
f(x). Thus, the Wiener process is a Feller process. This implies that it has
cadlag sample paths (Theorem 158), but we already knew that, since we know
it’s continuous. What we did not know was that the Wiener process is not just
Markov but strong Markov, which follows from Theorem 159.

It’s easier to find the generator of {Kt} , t ≥ 0, it will help to re-write it in
an equivalent form, as

Ktf(w) = E
[
f(w + Z

√
t)

]
(16.4)

where Z is an independent N (0, 1) random variable. (You should convince
yourself that this is equivalent.) Now let’s pick an f ∈ C0 which is also twice
continuously differentiable, i.e., f ∈ C0∩C2. Look at Ktf(w)−f(w), and apply
Taylor’s theorem, expanding around w:

Ktf(w)− f(w) = E
[
f(w + Z

√
t)

]
− f(w) (16.5)

= E
[
f(w + Z

√
t)− f(w)

]
(16.6)

= E
[
Z
√

tf ′(w) +
1
2
tZ2f ′′(w) + R(Z

√
t)

]
(16.7)

=
√

tf ′(w)E [Z] + t
f ′′(w)

2
E

[
Z2

]
+ E

[
R(Z

√
t)

]
(16.8)

lim
t↓0

Ktf(w)− f(w)
t

=
1
2
f ′′(w) + lim

t↓0

E
[
R(Z

√
t)

]

t
(16.9)

So, we need to investigate the behavior of the remainder term R(Z
√

t). We
know from Taylor’s theorem that

R(Z
√

t) =
tZ2

2

∫ 1

0
du f ′′(w + uZ

√
t)− f ′′(w) (16.10)

(16.11)

Since f ∈ C0∩C2, we know that f ′′ ∈ C0. Therefore, f ′′ is uniformly continuous,
and has a modulus of continuity,

m(f ′′, h) = sup
x,y: |x−y|≤h

|f ′′(x)− f ′′(y)| (16.12)

which goes to 0 as h ↓ 0. Thus
∣∣∣R(Z

√
t)

∣∣∣ ≤ tZ2

2
m(f ′′, Z

√
t) (16.13)

lim
t→0

∣∣R(Z
√

t)
∣∣

t
≤ lim

t→0

Z2m(f ′′, Z
√

t)
2

(16.14)

= 0 (16.15)
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Plugging back in to Equation 16.9,

Gf(w) =
1
2
f ′′(w) + lim

t↓0

E
[
R(Z

√
t)

]

t
(16.16)

=
1
2
f ′′(w) (16.17)

That is, G = 1
2

d2

dw2 , one half of the Laplacian. We have shown this only for
C0 ∩ C2, but this is clearly a linear subspace of C0, and, since C2 is dense in
C, it is dense in C0, i.e., this is a core for the generator. Hence the generator is
really the extension of 1

2
d2

dw2 to the whole of C0, but this is too cumbersome to
repeat all the time, so we just say it’s the Laplacian.

16.2 Convergence of Random Walks

Let X1, X2, . . . be a sequence of IID variables with mean 0 and variance 1. The
random walk process Sn is then just

∑n
i=1 Xi. It is a discrete-time Markov

process, and consequently also a strong Markov process. Imagine each step of
the walk takes some time h, and imagine this time interval becoming smaller
and smaller. Then, between any two times t1 and t2, the number of steps of the
random walk will be about t2−t1

h , which will go to infinity. The displacement of
the random walk between t1 and t2 will then be a sum of an increasingly large
number of IID random variables, and by the central limit theorem will approach
a Gaussian distribution. Moreover, if we look at the interval of time from t2 to
t3, we will see another Gaussian, but all of the random-walk steps going into it
will be independent of those going into our first interval. So, we expect that the
random walk will in some sense come to look like the Wiener process, no matter
what the exact distribution of the X1. Let’s consider this in more detail.

Define Yn(t) = n−1/2
∑[nt]

i=0 Xi = n−1/2S[nt], where X0 = 0 and [nt] is the
integer part of the real number nt. You should convince yourself that this is a
Markov process, with cadlag sample paths.

We want to consider the limiting distribution of Yn as n → ∞. First of
all, we should convince ourselves that a limit distribution exists. But this is
not too hard. For any fixed t, Yn(t) approaches a Gaussian distribution by the
central limit theorem. For any fixed finite collection of times t1 ≤ t2 . . . ≤ tk,
Yn(t1), Yn(t2), . . . Yn(tk) approaches a limiting distribution if Yn(t1), Yn(t2) −
Yn(t1), . . . Yn(tk)−Yn(tk−1) does, but that again will be true by the (multivari-
ate) central limit theorem. Since the limiting finite-dimensional distributions
exist, some limiting distribution exists (via Theorem 23). It remains to identify
it.

Lemma 173 Yn
fd→ W .
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Proof: For all n, Yn(0) = 0 = W (0). For any t2 > t1,

L (Yn(t2)− Yn(t1)) = L



 1√
n

[nt2]∑

i=[nt1]

Xi



 (16.18)

d→ N (0, t2 − t1) (16.19)
= L (W (t2)−W (t1)) (16.20)

Finally, for any three times t1 < t2 < t3, Yn(t3) − Yn(t2) and Yn(t2) − Yn(t1)
are independent for sufficiently large n, because they become sums of disjoint
collections of independent random variables. Thus, the limiting distribution of
Yn starts at the origin and has independent Gaussian increments. Since these
properties determine the finite-dimensional distributions of the Wiener process,
Yn

fd→ W . !

Theorem 174 Yn
d→ W .

Proof: By Theorem 165, it is enough to show that Yn
fd→ W , and that any of the

properties in Theorem 166 hold. The lemma took care of the finite-dimensional
convergence, so we can turn to the second part. A sufficient condition is property
(1) inn the latter theorem, that |Yn(τn +hn)−Yn(τn)| P→ 0 for all finite optional
times τn and any sequence of positive constants hn → 0.

|Yn(τn + hn)− Yn(τn)| = n−1/2
∣∣S[nτn+nhn] − S[nτn]

∣∣ (16.21)
d= n−1/2

∣∣S[nhn] − S0

∣∣ (16.22)

= n−1/2
∣∣S[nhn]

∣∣ (16.23)

= n−1/2

∣∣∣∣∣∣

[nhn]∑

i=0

Xi

∣∣∣∣∣∣
(16.24)

To see that this converges in probability to zero, we will appeal to Chebyshev’s
inequality: if Zi have common mean 0 and variance σ2, then, for every positive
ε,

P
(∣∣∣∣∣

m∑

i=1

Zi

∣∣∣∣∣ > ε

)
≤ mσ2

ε2
(16.25)

Here we have Zi = Xi/
√

n, so σ2 = 1/n, and m = [nhn]. Thus

P
(
n−1/2

∣∣S[nhn]

∣∣ > ε
)

≤ [nhn]
nε2

(16.26)

As 0 ≤ [nhn]/n ≤ hn, and hn → 0, the bounding probability must go to zero
for every fixed ε. Hence n−1/2

∣∣S[nhn]

∣∣ P→ 0. !
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Corollary 175 (The Invariance Principle) Let X1, X2, . . . be IID random
variables with mean µ and variance σ2. Then

Yn(t) ≡ 1√
n

[nt]∑

i=0

Xi − µ

σ
d→ W (t) (16.27)

Proof: (Xi − µ)/σ has mean 0 and variance 1, so Theorem 174 applies. !
This result is called “the invariance principle”, because it says that the

limiting distribution of the sequences of sums depends only on the mean and
variance of the individual terms, and is consequently invariant under changes
which leave those alone. Both this result and the previous one are known as the
“functional central limit theorem”, because convergence in distribution is the
same as convergence of all bounded continuous functionals of the sample path.
Another name is “Donsker’s Theorem”, which is sometimes associated however
with the following corollary of Theorem 174.

Corollary 176 (Donsker’s Theorem) Let Yn(t) and W (t) be as before, but
restrict the index set T to the unit interval [0, 1]. Let f be any function from
D([0, 1]) to R which is measurable and a.s. continuous at W . Then f(Yn) d→
f(W ).

Proof: Exercise. !
This version is especially important for statistical purposes, as we’ll see a

bit later.

16.3 Exercises

Exercise 16.1 Go through all the details of Example 138.

a Show that FX
t ⊆ FW

t for all t, and that FX ⊂ FW .

b Show that τ = inft X(t) = (0, 0) is a FX-optional time, and that it is finite
with probability 1.

c Show that X is Markov with respect to both its natural filtration and the
natural filtration of the driving Wiener process.

d Show that X is not strongly Markov at τ .

e Which, if any, of the Feller properties does X have?

Exercise 16.2 Consider a d-dimensional Wiener process, i.e., an Rd-valued
process where each coordinate is an independent Wiener process. Find the gen-
erator.

Exercise 16.3 Prove Donsker’s Theorem (Corollary 176).
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Exercise 16.4 (Diffusion equation) As mentioned in class, the partial dif-
ferential equation

1
2

∂2f(x, t)
∂x2

=
∂f(x, t)

∂t

is called the diffusion equation. From our discussion of initial value problems
in Chapter 12 (Corollary 126 and related material), it is clear that the function
f(x, t) solves the diffusion equation with initial condition f(x, 0) if and only if
f(x, t) = Ktf(x, 0), where Kt is the evolution operator of the Wiener process.

a Take f(x, 0) = (2π10−4)−1/2
e−

x2

2·10−4 . f(x, t) can be found analytically;
do so.

b Estimate f(x, 10) over the interval [−5, 5] stochastically. Use the fact that
Ktf(x) = E [f(W (t))|W (0) = x], and that random walks converge on the
Wiener process. (Be careful that you scale your random walks the right
way!) Give an indication of the error in this estimate.

c Can you find an analytical form for f(x, t) if f(x, 0) = 1[−0.5,0.5](x)?

d Find f(x, 10), with the new initial conditions, by numerical integration on
the domain [−10, 10], and compare it to a stochastic estimate.


