
Chapter 18

Stochastic Integrals with
the Wiener Process

Section 18.1 addresses an issue which came up in the last lecture,
namely the martingale characterization of the Wiener process.

Section 18.2 gives a heuristic introduction to stochastic integrals,
via Euler’s method for approximating ordinary integrals.

Section 18.3 gives a rigorous construction for the integral of a
function with respect to a Wiener process.

18.1 Martingale Characterization of the Wiener
Process

Last time in lecture, I mentioned (without remembering much of the details)
that there is a way of characterizing the Wiener process in terms of some mar-
tingale properties. Here it is.

Theorem 183 If M(t) is a continuous martingale, and M2(t) − t is also a
martingale, then M(t) is a Wiener process.

There are some very clean proofs of this theorem1 — but they require us to
use stochastic calculus! Doob (1953, pp. 384ff) gives a proof which does not,
however. The details of his proof are messy, but the basic idea is to get the
central limit theorem to apply, using the martingale property of M2(t) − t to
get the variance to grow linearly with time and to get independent increments,
and then seeing that between any two times t1 and t2, we can fit arbitrarily
many little increments so we can use the CLT.

We will return to this result as an illustration of the stochastic calculus.
1See especially Ethier and Kurtz (1986, Theorem 5.2.12, p. 290).
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18.2 A Heuristic Introduction to Stochastic In-
tegrals

Euler’s method is perhaps the most basic method for numerically approximating
integrals. If we want to evaluate I(x) ≡

∫ b
a x(t)dt, then we pick n intervals of

time, with boundaries a = t0 < t1 < . . . tn = b, and set

In(x) =
n∑

i=1

x (ti−1) (ti − ti−1)

Then In(x) → I(x), if x is well-behaved and the length of the largest interval
→ 0. If we want to evaluate

∫ t=b
t=a x(t)dw, where w is another function of t, the

natural thing to do is to get the derivative of w, w′, replace the integrand by
x(t)w′(t), and perform the integral with respect to t. The approximating sums
are then

n∑

i=1

x (ti−1) w′ (ti−1) (ti − ti−1) (18.1)

Alternately, we could, if w(t) is nice enough, approximate the integral by

n∑

i=1

x (ti−1) (w (ti)− w (ti−1)) (18.2)

(You may be more familiar with using Euler’s method to solve ODEs, dx/dt =
f(x). Then one generally picks a ∆t, and iterates

x(t + ∆t) = x(t) + f(x)∆t (18.3)

from the initial condition x(t0) = x0, and uses linear interpolation to get a
continuous, almost-everywhere-differentiable curve. Remarkably enough, this
converges on the actual solution as ∆t shrinks (Arnol’d, 1973).)

Let’s try to carry all this over to random functions of time X(t) and W (t).
The integral

∫
X(t)dt is generally not a problem — we just find a version of X

with measurable sample paths (Section 8.2).
∫

X(t)dW is also comprehensible
if dW/dt exists (almost surely). Unfortunately, we’ve seen that this is not the
case for the Wiener process, which (as you can tell from the W ) is what we’d
really like to use here. So we can’t approximate the integral with a sum like Eq.
18.1. But there’s nothing preventing us from using one like Eq. 18.2, since that
only demands increments of W . So what we would like to say is that

∫ t=b

t=a
X(t)dW ≡ lim

n→∞

n∑

i=1

X (ti−1) (W (ti)−W (ti−1)) (18.4)

This is a crude-but-workable approach to numerically evaluating stochastic in-
tegrals, and apparently how the first stochastic integrals were defined, back in
the 1920s. Notice that it is going to make the integral a random variable, i.e.,
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a measurable function of ω. Notice also that I haven’t said anything yet which
should lead you to believe that the limit on the right-hand side exists, in any
sense, or that it is independent of the choice of partitions a = t0 < t1 < . . . tn b.
The next section will attempt to rectify this.

(When it comes to the SDE dX = f(X)dt + g(X)dW , the counterpart of
Eq. 18.3 is

X(t + ∆t) = X(t) + f(X(t))∆t + g(X(t))∆W (18.5)

where ∆W = W (t+∆t)−W (t), and again we use linear interpolation in between
the points, starting from X(t0) = x0.)

18.3 Integrals with Respect to the Wiener Pro-
cess

The drill by now should be familiar: first we define integrals of step functions,
then we approximate more general classes of functions by these elementary
functions. We need some preliminary technicalities.

Definition 184 (Progressive Process) A continuous-parameter stochastic pro-
cess X adapted to a filtration G is progressively measurable or progressive when
X(s,ω), 0 ≤ s ≤ t, is always measurable with respect to Bt×Gt, where Bt is the
Borel σ-field on [0, t].

If X has continuous sample paths, for instance, then it is progressive.

Definition 185 (Non-anticipating filtrations, processes) Let W be a stan-
dard Wiener process, {Ft} the right-continuous completion of the natural filtra-
tion of W , and G any σ-field independent of {Ft}. Then the non-anticipating
filtrations are the ones of the form σ(Ft ∩ G), 0 ≤ t < ∞. A stochastic process
X is non-anticipating if it is adapted to some non-anticipating filtration.

The idea of the definition is that if X is non-anticipating, we allow it to
depend on the history of W , and possibly some extra, independent random
stuff, but none of that extra information is of any use in predicting the future
development of W , since it’s independent.

Definition 186 (Elementary non-anticipating process) A progressive, non-
anticipating process X is elementary if there exist an increasing sequence of
times ti, starting at zero and tending to infinity, such that X(t) = X(tn) if
t ∈ [tn, tn+1), i.e., if X is a step-function of time.

Definition 187 (Square-integrable in the mean) A random process X is
square-integrable from a to b if E

[∫ b
a X2(t)dt

]
is finite.

Notice that if X is bounded on [a, b], in the sense that |X(t)| ≤M with proba-
bility 1 for all a ≤ t ≤ b, then X is square-integrable from a to b.
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Definition 188 (Itô integral of an elementary process) If X is an ele-
mentary, progressive, non-anticipative process, square-integrable from a to b,
then its Itô integral from a to b is

∫ b

a
X(t)dW ≡

∑

i≥0

X(ti) (W (ti+1)−W (ti)) (18.6)

where the ti are as in Definition 186, truncated below by a and above by b.

Notice that this is basically a Riemann-Stieltjes integral. It’s a random
variable, but we don’t have to worry about the existence of a limit. Now we set
about approximating more general sorts of processes by elementary processes.

Lemma 189 Suppose X is progressive, non-anticipative, bounded on [a, b], and
has continuous sample paths. Then there exist bounded elementary processes Xn,
Itô-integrable on [a, b], such that

lim
n→∞

E

[∫ b

a
(X −Xn)2dt

]
= 0 (18.7)

Proof: Set

Xn(t) ≡
∞∑

i=0

X(ti)1[i/2n,(i+1)/2n)(t) (18.8)

This is clearly elementary, bounded and square-integrable on [a, b]. Moreover,
for fixed ω,

∫ b
a (X(t, ω)−Xn(t, ω))2dt → 0, since X(t, ω) is continuous. So the

expectation of the time-integral goes to zero by bounded convergence. !

Lemma 190 Suppose X is progressive, non-anticipative, and bounded on [a, b].
Then there exist progressive, non-anticipative processes Xn which are bounded
and continuous on [a, b] such that

lim
n→∞

E

[∫ b

a
(X −Xn)2dt

]
= 0 (18.9)

Proof: Let M be the bound on the absolute value of X. For each n, pick a prob-
ability density fn(t) on R whose support is confined to the interval (−1/n, 0).
Set

Xn(t) ≡
∫ t

0
fn(s− t)X(s)ds (18.10)

Xn(t) is then a sort of moving average of X, over the interval (t−1/n, t). Clearly,
it’s continuous, bounded, progressively measurable, and non-anticipative. More-
over, for each ω,

lim
n→∞

∫ b

a
(Xn(t,ω)−X(t, ω))2dt = 0 (18.11)

because of the way we’ve set up fn and Xn. By bounded convergence, Eq. 18.9
follows. !
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Lemma 191 Suppose X is progressive, non-anticipative, and square-integrable
on [a, b]. Then there exist a sequence of random processes Xn which are pro-
gressive, non-anticipative and bounded on [a, b], such that

lim
n→∞

E

[∫ b

a
(X −Xn)2dt

]
= 0 (18.12)

Proof: Set Xn(t) = (−n∨X(t))∧ n. This has the desired properties, and the
result follows from dominated (not bounded!) convergence. !
Lemma 192 Suppose X is progressive, non-anticipative, and square-integrable
on [a, b]. Then there exist a sequence of bounded elementary processes Xn such
that

lim
n→∞

E

[∫ b

a
(X −Xn)2dt

]
= 0 (18.13)

Proof: Combine the preceding three lemmas. !
This lemma gets its force from the following result.

Lemma 193 Suppose X is as in Definition 188, and in addition bounded on
[a, b]. Then

E




(∫ b

a
X(t)dW

)2


 = E

[∫ b

a
X2(t)dt

]
(18.14)

Proof: Set ∆Wi = W (ti+1) − W (ti). Notice that ∆Wj is independent of
X(ti)X(tj)∆Wi if i < j, because of the non-anticipation properties of X. On
the other hand, E

[
(∆Wi)

2
]

= ti+1− ti, by the linear variance of the increments
of W . So

E [X(ti)X(tj)∆Wj∆Wi] = E
[
X2(ti)

]
(ti+1 − ti)δij (18.15)

Substituting Eq. 18.6 into the left-hand side of Eq. 18.14,

E




(∫ b

a
X(t)dW

)2


 = E




∑

i,j

X(ti)X(tj)∆Wj∆Wi



 (18.16)

=
∑

i,j

E [X(ti)X(tj)∆Wj∆Wi] (18.17)

=
∑

i

E
[
X2(ti)

]
(ti+1 − ti) (18.18)

= E

[
∑

i

X2(ti)(ti+1 − ti)

]
(18.19)

= E

[∫ b

a
X2(t)dt

]
(18.20)
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where the last step uses the fact that X2 must also be elementary. !

Theorem 194 Let X and Xn be as in Lemma 192. Then the sequence In(X) ≡
∫ b

a
Xn(t)dW (18.21)

has a limit in L2. Moreover, this limit is the same for any such approximating
sequence Xn.

Proof: For each Xn, In(X(ω)) is an L2 function of ω, by the fact that Xn is
square-integrable and Lemma 193. Now, the Xn are converging on X, in the
sense that

E

[∫ b

a
(X(t)−Xn(t))2dt

]
→ 0

i.e., in an L2 sense, but on the interval [a, b] of the real line, and not on Ω.
Nonetheless, because this is a convergent sequence, it must also be a Cauchy
sequence, so, for every ε > 0, there exists an n such that

E

[∫ b

a
(Xn+k(t)−Xn(t))2dt

]
< ε

for every positive k. Since Xn and Xn+k are both elementary processes, their
difference is also elementary, and we can apply Lemma 193 to it. That is, for
every ε > 0, there is an n such that

E




(∫ b

a
(Xn+k(t)−Xn(t))dW

)2


 < ε

for all k. But this is to say that In(X) is a Cauchy sequence in L2(Ω), therefore
it has a limit, which is also in L2(Ω). If Yn is another sequence of approximations
of X by elementary processes, it is also a Cauchy sequence, and so must have
the same limit. !

Definition 195 Let X be progressive, non-anticipative and square-integrable
on [a, b]. Then its Itô integral is

∫ b

a
X(t)dW ≡ lim

n

∫ b

a
Xn(t)dW (18.22)

taking the limit in L2, with Xn as in Lemma 192. We will say that X is Itô-
integrable on [a, b].

Corollary 196 (The Itô isometry) Eq. 18.14 holds for all Itô-integrable X.

Proof: Obvious from the approximation by elementary processes and Lemma
193.
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18.4 Exercises

Exercise 18.1 (Basic Properties of the Itô Integral) Prove the following,
first for elementary Itô-integrable processes, and then in general.

a ∫ c

a
X(t)dW =

∫ b

a
X(t)dW +

∫ c

b
X(t)dW

almost surely.

b If c is any real constant, then, almost surely,
∫ b

a
(cX(t) + Y (t))dW = c

∫ b

a
XdW +

∫ b

a
Y (t)dW

Exercise 18.2 (Martingale Properties of the Itô Integral) Suppose X is
Itô-integrable on [a, b]. Show that

Ix(t) ≡
∫ t

a
X(s)dW

a ≤ t ≤ b, is a martingale. What is E[Ix(t)]?

Exercise 18.3 (Continuity of the Itô Integral) Show that Ix(t) has con-
tinuous sample paths.


