
Chapter 20

More on Stochastic
Differential Equations

Section 20.1 shows that the solutions of SDEs are diffusions, and
how to find their generators. Our previous work on Feller processes
and martingale problems pays off here. Some other basic properties
of solutions are sketched, too.

Section 20.2 explains the “forward” and “backward” equations
associated with a diffusion (or other Feller process). We get our
first taste of finding invariant distributions by looking for stationary
solutions of the forward equation.

Section 20.3 makes sense of the idea of white noise. This topic
will be continued in the next lecture, forming one of the bridges to
ergodic theory.

For the rest of this lecture, whenever I say “an SDE”, I mean “an SDE
satisfying the requirements of the existence and uniqueness theorem”, either
Theorem 215 (in one dimension) or Theorem 216 (in multiple dimensions). And
when I say “a solution”, I mean “a strong solution”. If you are really curious
about what has to be changed to accommodate weak solutions, see Rogers and
Williams (2000, ch. V, sec. 16–18).

20.1 Solutions of SDEs are Diffusions

Solutions of SDEs are diffusions: i.e., continuous, homogeneous strong Markov
processes.

Theorem 217 The solution of an SDE is non-anticipating, and has a version
with continuous sample paths. If X(0) = x is fixed, then X(t) is FW

t -adapted.

Proof: Every solution is an Itô process, so it is non-anticipating by Lemma
198. The adaptation for non-random initial conditions follows similarly. (Infor-
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mally: there’s nothing else for it to depend on.) In the proof of the existence
of solutions, each of the successive approximations is continuous, and we bound
the maximum deviation over time, so the solution must be continuous too. !

Theorem 218 Let Xx be the process solving a one-dimensional SDE with non-
random initial condition X(0) = x. Then Xx forms a homogeneous strong
Markov family.

Proof: By Exercise 19.4, for every C2 function f ,

f(X(t))−f(X(0))−
∫ t

0

[
a(X(s))

∂f

∂x
(X(s)) +

1
2
b2(X(s))

∂2f

∂x2
(X(s))

]
ds (20.1)

is a martingale. Hence, for every x0, there is a unique, continuous solution to
the martingale problem with operator G = a(x) ∂

∂x + 1
2b2(x) ∂2

∂x2 and function
class D = C2. Since the process is continuous, it is also cadlag. Therefore,
by Theorem 137, X is a homogeneous strong Markov family, whose generator
equals G on C2. !

Similarly, for a multi-dimensional SDE, where a is a vector and b is a matrix,
the generator extends1 ai(x)∂i + 1

2 (bbT )ij(x)∂2
ij . Notice that the coefficients are

outside the differential operators.

Corollary 219 Solutions of SDEs are diffusions.

Proof: Obvious from Theorem 218, continuity, and Definition 177. !
Remark: To see what it is like to try to prove this without using our more

general approach, read pp. 103–114 in Øksendal (1995).

Theorem 220 Solutions of SDEs are Feller processes.

Proof: We need to show that (i) for every t > 0, Xy(t) d→ Xx(t) as y → x, and
(ii) Xx(t) P→ x as t → 0. But, since solutions are a.s. continuous, Xx(t) → x
with probability 1, automatically implying convergence in probability, so (ii) is
automatic.

1Here, and elsewhere, I am going to freely use the Einstein conventions for vector calculus:
repeated indices in a term indicate that you should sum over those indices, ∂i abbreviates

∂
∂xi

, ∂2
ij means ∂2

∂xi∂xj
, etc. Also, ∂t ≡ ∂

∂t .
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To get (i), prove convergence in mean square (i.e. in L2), which implies
convergence in distribution.

E
[
|Xx(t)−Xy(t)|2

]
(20.2)

= E

[∣∣∣∣x− y +
∫ t

0
a(Xx(s))− a(Xy(s))ds +

∫ t

0
b(Xx(s))− b(Xy(s))dW

∣∣∣∣
2
]

≤ |x− y|2 + E

[∣∣∣∣
∫ t

0
a(Xx(s))− a(Xy(s))ds

∣∣∣∣
2
]

(20.3)

+E

[∣∣∣∣
∫ t

0
b(Xx(s))− b(Xy(s))dW

∣∣∣∣
2
]

= |x− y|2 + E

[∣∣∣∣
∫ t

0
a(Xx(s))− a(Xy(s))ds

∣∣∣∣
2
]

(20.4)

+
∫ t

0
E

[
|b(Xx(s))− b(Xy(s))|2

]
ds

≤ |x− y|2 + K

∫ t

0
E

[
|Xx(s)−Xy(s)|2

]
ds (20.5)

for some K ≥ 0, using the Lipschitz properties of a and b. So, by Gronwall’s
Inequality (Lemma 214),

E
[
|Xx(t)−Xy(t)|2

]
≤ |x− y|2eKt (20.6)

This clearly goes to zero as y → x, so Xy(t) → Xx(t) in L2, which implies
convergence in distribution. !

Corollary 221 For a given SDE, convergence in distribution of the initial con-
dition implies convergence in distribution of the trajectories: if Y

d→ X0, then
XY

d→ XX0 .

Proof: For every initial condition, the generator of the semi-group is the same
(Theorem 218, proof). Since the process is Feller for every initial condition
(Theorem 220), and a Feller semi-group is determined by its generator (Theorem
153), the process has the same evolution operator for every initial condition.
Hence, condition (ii) of Theorem 170 holds. This implies condition (iv) of that
theorem, which is the stated convergence. !

20.2 Forward and Backward Equations

You will often seen probabilists, and applied stochastics people, write about
“forward” and “backward” equations for Markov processes, sometimes with
the eponym “Kolmogorov” attached. We have already seen a version of the
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“backward” equation for Markov processes, with semi-group Kt and generator
G, in Theorem 125:

∂tKtf(x) = GKtf(x) (20.7)

Let’s unpack this a little, which will help see where the “backwards” comes from.
First, remember that the operators Kt are really just conditional expectation:

∂tE [f(Xt)|X0 = x] = GE [f(Xt)|X0 = x] (20.8)

Next, turn the expectations into integrals with respect to the transition proba-
bility kernels:

∂t

∫
µt(x, dy)f(y) = G

∫
µt(x, dy)f(y) (20.9)

Finally, assume that there is some reference measure λ % µt(x, ·), for all t ∈ T
and x ∈ Ξ. Denote the correspond transition densities by κt(x, y).

∂t

∫
dλκt(x, y)f(y) = G

∫
dλκt(x, y)f(y) (20.10)

∫
dλf(y)∂tκt(x, y) =

∫
dλf(y)Gκt(x, y) (20.11)

∫
dλf(y) [∂tκt(x, y)−Gκt(x, y)] = 0 (20.12)

Since this holds for arbitrary nice test functions f ,

∂tκt(x, y) = Gκt(x, y) (20.13)

The operator G alters the way a function depends on x, the initial state. That is,
this equation is about how the transition density κ depends on the starting point,
“backwards” in time. Generally, we’re in a position to know κ0(x, y) = δ(x−y);
what we want, rather, is κt(x, y) for some positive value of t. To get this, we
need the “forward” equation.

We obtain this from Lemma 122, which asserts that GKt = KtG.

∂t

∫
dλκt(x, y)f(y) = KtGf(x) (20.14)

=
∫

dλκt(x, y)Gf(y) (20.15)

Notice that here, G is altering the dependence on the y coordinate, i.e. the state
at time t, not the initial state at time 0. Writing the adjoint2 operator as G†,

∂t

∫
dλκt(x, y)f(y) =

∫
dλG†κt(x, y)f(y) (20.16)

∂tκt(x, y) = G†κt(x, y) (20.17)
2Recall that, in a vector space with an inner product, such as L2, the adjoint of an operator

A is another operator, defined through 〈f, Ag〉 = 〈A†f, g〉. Further recall that L2 is an inner-
product space, where 〈f, g〉 = E [f(X)g(X)].



CHAPTER 20. MORE ON SDES 127

N.B., G† is acting on the y-dependence of the transition density, i.e., it says
how the probability density is going to change going forward from t.

In the physics literature, this is called the Fokker-Planck equation, because
Fokker and Planck (independently, so far as I know) discovered it, at least in
the special case of Langevin-type equations, in 1913, about 20 years before
Kolmogorov’s work on Markov processes. Notice that, writing νt for the distri-
bution of Xt, νt = ν0µt. Assuming νt has density ρt w.r.t. λ, one can get, by
integrating the forward equation over space,

∂tρt(x) = G†ρt(x) (20.18)

and this, too, is sometimes called the “Fokker-Planck equation”.
We saw, in the last section, that a diffusion process solving an equation with

drift terms ai(x) and diffusion terms bij(x) has the generator

Gf(x) = ai(x)∂if(x) +
1
2
(bbT )ij(x)∂2

ijf(x) (20.19)

You can show — it’s an exercise in vector calculus, integration by parts, etc. —
that the adjoint to G is the differential operator

G†f(x) = −∂iai(x)f(x) +
1
2
∂2

ij(bb
T )ij(x)f(x) (20.20)

Notice that the space-dependence of the SDE’s coefficients now appears inside
the derivatives. Of course, if a and b are independent of x, then they simply
pull outside the derivatives, giving us, in that special case,

G†f(x) = −ai∂if(x) +
1
2
(bbT )ij∂

2
ijf(x) (20.21)

Let’s interpret this physically, imagining a large population of independent
tracer particles wandering around the state space Ξ, following independent
copies of the diffusion process. The second derivative term is easy: diffusion
tends to smooth out the probability density, taking probability mass away from
maxima (where f ′′ < 0) and adding it to minima. (Remember that bbT is posi-
tive semi-definite.) If ai is positive, then particles tend to move in the positive
direction along the ith axis. If ∂iρ is also positive, this means that, on average,
the point x sends more particles up along the axis than wander down, against
the gradient, so the density at x will tend to decline.

Example 222 (Wiener process, heat equation) Notice that (for diffusions
produced by SDEs) G† = G when a = 0 and b is constant over the state space.
This is the case with Wiener processes, where G = G† = 1

2∇
2. Thus, the heat

equation holds both for the evolution of observable functions of the Wiener pro-
cess, and for the evolution of the Wiener process’s density. You should convince
yourself that there is no non-negative integrable ρ such that Gρ(x) = 0.
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Example 223 (Ornstein-Uhlenbeck process) For the one-dimensional Ornstein-
Uhlenbeck process, the generator may be read off from the Langevin equation,

Gf(p) = −γp∂pf(p) +
1
2
D2∂2

ppf(p)

and the Fokker-Planck equation becomes

∂tρ(p) = γ∂p(pρ(p)) + D2 1
2
∂2

ppf(p)

It’s easily checked that ρ(p) = N (0, D2/2γ) gives ∂tρ = 0. That is, the long-run
invariant distribution can be found as a stationary solution of the Fokker-Planck
equation. See also Exercise 20.1.

20.3 White Noise

Scientists and engineers are often uncomfortable with the SDEs in the way
probabilists write them, because they want to divide through by dt and have
the result mean something. The trouble, of course, is that dW/dt does not,
in any ordinary sense, exist. They, however, are often happier ignoring this
inconvenient fact, and talking about “white noise” as what dW/dt ought to be.
This is not totally crazy. Rather, one can define ξ ≡ dW/dt as a generalized
derivative, one whose value at any given time is a random real linear functional,
rather than a random real number. Consequently, it only really makes sense in
integral expressions (like the solutions of SDEs!), but it can, in many ways, be
formally manipulated like an ordinary function.

One way to begin to make sense of this is to start with a standard Wiener
process W (t), and a C1 non-random function u(t), and to use integration by
parts:

d

dt
(uW ) = u

dW

dt
+

du

dt
W (20.22)

= u(t)ξ(t) + u̇(t)W (t) (20.23)
∫ t

0

d

dt
(uW )ds =

∫ t

0
u̇(s)W (s) + u(s)ξ(s)ds (20.24)

u(t)W (t)− u(0)W (0) =
∫ t

0
u̇(s)W (s)ds +

∫ t

0
u(s)ξ(s)ds (20.25)

∫ t

0
u(s)ξ(s)ds ≡ u(t)W (t)−

∫ t

0
u̇(s)W (s)ds (20.26)

We can take the last line to define ξ, and time-integrals within which it appears.
Notice that the terms on the RHS are well-defined without the Itô calculus: one
is just a product of two measurable random variables, and the other is the time-
integral of a continuous random function. With this definition, we can establish
some properties of ξ.
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Proposition 224 ξ(t) is a linear functional:
∫ t

0
(a1u1(s) + a2u2(s))ξ(s)ds = a1

∫ t

0
u1(s)ξ(s)ds+a2

∫ t

0
u2(s)ξ(s)ds (20.27)

Proof:
∫ t

0
(a1u1(s) + a2u2(s))ξ(s)ds (20.28)

= (a1u1(t) + a2u2(t))W (t)−
∫ t

0
(a1u̇1(s) + a2u̇2(s))W (s)ds

= a1

∫ t

0
u1(s)ξ(s)ds + a2

∫ t

0
u2(s)ξ(s)ds (20.29)

!

Proposition 225 For all t, E [ξ(t)] = 0

Proof:
∫ t

0
u(s)E [ξ(s)] ds = E

[∫ t

0
u(s)ξ(s)ds

]
(20.30)

= E
[
u(t)W (t)−

∫ t

0
u̇(s)W (s)ds

]
(20.31)

= E [u(t)W (t)]−
∫ t

0
u̇(s)E [W (t)] ds (20.32)

= 0− 0 = 0 (20.33)

Proposition 226 For all u ∈ C1,
∫ t
0 u(s)ξ(s)ds =

∫ t
0 u(s)dW .

Proof: Apply Itô’s formula to the function f(t, W ) = u(t)W (t):

d(uW ) = W (t)u̇(t)dt + u(t)dW (20.34)

u(t)W (t) =
∫ t

0
u̇(s)W (s)ds +

∫ t

0
u(t)dW (20.35)

∫ t

0
u(t)dW = u(t)W (t)−

∫ t

0
u̇(s)W (s)ds (20.36)

=
∫ t

0
u(s)ξ(s)ds (20.37)

!
This can be used to extend the definition of white-noise integrals to any

Itô-integrable process.

Proposition 227 ξ has delta-function covariance: cov (ξ(t1), ξ(t2)) = δ(t1 −
t2).
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Proof: Since E [ξ(t)] = 0, we just need to show that E [ξ(t1)ξ(t2)] = δ(t1− t2).
Remember (Eq. 17.14 on p. 95) that E [W (t1)W (t2)] = t1 ∧ t2.

∫ t

0

∫ t

0
u(t1)u(t2)E [ξ(t1)ξ(t2)] dt1dt2 (20.38)

= E
[∫ t

0
u(t1)ξ(t1)dt1

∫ t

0
u(t2)ξ(t2)dt2

]
(20.39)

= E

[(∫ t

0
u(t1)ξ(t1)dt1

)2
]

(20.40)

=
∫ t

0
E

[
u2(t1)

]
dt1 =

∫ t

0
u2(t1)dt1 (20.41)

using the preceding proposition, the Itô isometry, and the fact that u is non-
random. But

∫ t

0

∫ t

0
u(t1)u(t2)δ(t1 − t2)dt1dt2 =

∫ t

0
u2(t1)dt1 (20.42)

so δ(t1 − t2) = E [ξ(t1)ξ(t2)] = cov (ξ(t1), ξ(t2)). !

Proposition 228 ξ is weakly stationary.

Proof: Its mean is independent of time, and its covariance depends only on
|t1 − t2|, so it satisfies Definition 50. !

Proposition 229 ξ is Gaussian, and hence strongly stationary.

Proof: To show that it is Gaussian, use Exercise 19.2. Strong stationarity
follows from weak stationarity (Proposition 228) and the fact that it is Gaussian.
!

20.4 Exercises

Exercise 20.1 A conservative force is one derived from an external potential,
i.e., there is a function φ(x) giving energy, and F (x) = −dφ/dx. The equations
of motion for a body subject to a conservative force, drag, and noise read

dx =
p

m
dt (20.43)

dp = −γpdt + F (x)dt + σdW (20.44)

a Find the corresponding forward (Fokker-Planck) equation.

b Find a stationary density for this equation, at least up to normalization
constants. Hint: use separation of variables, i.e., ρ(x, p) = u(x)v(p).
You should be able to find the normalizing constant for the momentum
density v(p), but not for the position density u(x). (Its general form should
however be familiar from theoretical statistics: what is it?)
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c Show that your stationary solution reduces to that of the Ornstein-Uhlenbeck
process, if F (x) = 0.


