
Chapter 21

Spectral Analysis and L2
Ergodicity

Section 21.1 introduces the spectral representation of weakly sta-
tionary processes, and the central Wiener-Khinchin theorem con-
necting autocovariance to the power spectrum. Subsection 21.1.1
explains why white noise is “white”.

Section 21.2 gives our first classical ergodic result, the “mean
square” (L2) ergodic theorem for weakly stationary processes. Sub-
section 21.2.1 gives an easy proof of a sufficient condition, just using
the autocovariance. Subsection 21.2.2 gives a necessary and suffi-
cient condition, using the spectral representation.

Any reasonable real-valued function x(t) of time, t ∈ R, has a Fourier trans-
form, that is, we can write

x̃(ν) =
1
2π

∫ ∞

−∞
dteiνtx(t)

which can usually be inverted to recover the original function,

x(t) =
∫ ∞

−∞
dνe−iνtx̃(ν)

This one example of an “analysis”, in the original sense of resolving into parts,
of a function into a collection of orthogonal basis functions. (You can find the
details in any book on Fourier analysis, as well as the varying conventions on
where the 2π goes, the constraints on x̃ which arise from the fact that x is real,
etc.)

There are various reasons to prefer the trigonometric basis functions eiνt

over other possible choices. One is that they are invariant under translation
in time, which just changes phases1. This suggests that the Fourier basis will

1If t !→ t + τ , then x̃(ν) !→ eiντ x̃(ν).
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be particularly useful when dealing with time-invariant systems. For stochas-
tic processes, however, time-invariance is stationarity. This suggests that there
should be some useful way of doing Fourier analysis on stationary random func-
tions. In fact, it turns out that stationary and even weakly-stationary processes
can be productively Fourier-transformed. This is potentially a huge topic, es-
pecially when it’s expanded to include representing random functions in terms
of (countable) series of orthogonal functions. The spectral theory of random
functions connects Fourier analysis, disintegration of measures, Hilbert spaces
and ergodicity. This lecture will do no more than scratch the surface, cover-
ing, in succession, the basics of the spectral representation of weakly-stationary
random functions and the fundamental Wiener-Khinchin theorem linking co-
variance functions to power spectra, why white noise is called “white”, and the
mean-square ergodic theorem.

Good sources, if you want to go further, are the books of Bartlett (1955,
ch. 6) (from whom I’ve stolen shamelessly), the historically important and in-
spiring Wiener (1949, 1961), and of course Doob (1953). Loève (1955, ch. X) is
highly edifying, particular his discussion of Karhunen-Loève transforms, and the
associated construction of the Wiener process as a Fourier series with random
phases.

21.1 Spectral Representation of Weakly Station-
ary Procesess

This section will only handle spectral representations of real-valued one-parameter
processes in continuous time. Generalizations to vector-valued and multi-parameter
processes are straightforward; handling discrete time is actually in some ways
more irritating, because of limitations on allowable frequencies of Fourier com-
ponents (to the range from −π to π).

Definition 230 (Autocovariance Function) Suppose that, for all t ∈ T , X
is real and E

[
X2(t)

]
is finite. Then Γ(t1, t2) ≡ E [X(t1)X(t2)] is the auto-

covariance function of the process. If the process is weakly stationary, so that
Γ(t, t + τ) = Γ(0, τ) for all t, τ , write Γ(τ). If X(t) ∈ C, then Γ(t1, t2) ≡
E

[
X†(t1)X(t2)

]
, where † is complex conjugation.

Proposition 231 If X is real and weakly stationary, then Γ(τ) = Γ(−τ); if X
is complex and weakly stationary, then Γ(τ) = Γ†(−τ).

Proof: Direct substitution into the definitions. !
Remarks on terminology. It is common, when only dealing with one stochas-

tic process, to drop the qualifying “auto” and just speak of the covariance func-
tion; I probably will myself. It is also common (especially in the time series
literature) to switch to the (auto)correlation function, i.e., to normalize by the
standard deviations. Finally, be warned that the statistical physics literature
(e.g. Forster, 1975) uses “correlation function” to mean E [X(t1)X(t2)], i.e., the
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uncentered mixed second moment. This is a matter of tradition, not (despite
appearances) ignorance.

Definition 232 (Second-Order Process) A real-valued process X is second
order when E

[
X2(t)

]
<∞ for all t.

Definition 233 (Spectral Representation, Power Spectrum) A real-valued
process X on T has a complex-valued spectral process X̃, if it has a spectral
representation:

X(t) ≡
∫ ∞

−∞
e−iνtdX̃ν (21.1)

The power spectrum V (ν) ≡ E
[∣∣∣X̃(ν)

∣∣∣
2
]
.

Remark. The name “power spectrum” arises because this is proportional to
the amount of power (energy per unit time) carried by oscillations of frequency
≤ ν, at least in a linear system.

Notice that if a process has a spectral representation, then, roughly speaking,
for a fixed ω the amplitudes of the different Fourier components in X(t, ω) are
fixed, and shifting forward in time just involves changing their phases. (Making
this simple is why we have to allow X̃ to have complex values.)

Proposition 234 When it exists, X̃(ν) has right and left limits at every point
ν, and limits as ν → ±∞.

Proof: See Loève (1955, §34.4). You can prove this yourself, however, using
the material on characteristic functions in 36-752. !

Definition 235 The jump of the spectral process at ν, ∆X̃(ν) ≡ X̃(ν + 0) −
X̃(ν − 0).

Remark 1: As usual, X̃(ν+0) ≡ limh↓0 X̃(ν + h), and X̃(ν−0) ≡ limh↓0 X̃(ν − h).
The jump at ν is the difference between the right and left-hand limits at ν.

Remark 2: Some people call the set of points at which the jump is non-
zero the “spectrum”. This usage comes from functional analysis, but seems
needlessly confusing in the present context.

Proposition 236 Every weakly-stationary process has a spectral representa-
tion.

Proof: See Loève (1955, §34.4), or Bartlett (1955, §6.2). !
The spectral representation is another stochastic integral, and it can be made

sense of in the same way that we made sense of integrals with respect to the
Wiener process, by starting with elementary functions and building up from
there. Crucial in this development is the following property.
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Definition 237 (Orthogonal Increments) A one-parameter random func-
tion (real or complex) has orthogonal increments if, for t1 ≤ t2 ≤ t3 ≤ t4 ∈ T ,
the covariance of the increment from t1 to t2 and the increment from t3 to t4 is
always zero:

E
[(

X̃(ν4)− X̃(ν3)
) (

X̃(ν2)− X̃(ν1)
)†

]
= 0 (21.2)

Proposition 238 The spectral process of a second-order process has orthogonal
increments if and only if the process is weakly stationary.

Sketch Proof: Assume, without loss of generality, that E [X(t)] = 0, so
E

[
X̃(ν)

]
= 0. “If”: We can write, using the fact that X(t) = X†(t) for real-

valued processes,

Γ(τ) = Γ(t, t + τ) (21.3)
= E

[
X†(t)X(t + τ)

]
(21.4)

= E
[∫ ∞

−∞

∫ ∞

−∞
eiν1te−iν2t+τdX̃†

ν1
dX̃ν2

]
(21.5)

=
∫ ∞

−∞

∫ ∞

−∞
ei(ν1−ν2)te−iν2τE

[
dX̃†

ν1
dX̃ν2

]
(21.6)

Since t is arbitrary, every term on the right must be independent of t, which im-
plies the orthogonality of the increments of X̃. “Only if”: if the increments are
orthogonal, then clearly the steps of the argument can be reversed to conclude
that Γ(t1, t2) depends only on t2 − t1. !

Definition 239 (Spectral Function, Spectral Density) The spectral func-
tion of a weakly stationary process is the function S(ν) appearing in the spectral
representation of its autocovariance:

Γ(τ) =
∫ ∞

−∞
e−iντdSν (21.7)

Remark. Some people prefer to talk about the spectral function as the
Fourier transform of the autocorrelation function, rather than of the autoco-
variance. This has the advantage that the spectral function turns out to be
a normalized cumulative distribution function (see Theorem 240 immediately
below), but is otherwise inconsequential.

Theorem 240 The spectral function exists for every weakly stationary process,
if Γ(τ) is continuous. Moreover, S(ν) ≥ 0, S is non-decreasing, S(−∞) = 0,
S(∞) = Γ(0), and limh↓0S(ν + h) and limh↓0 S(ν − h) exist for every ν.

Proof: Usually, by an otherwise-obscure result in Fourier analysis called Bochner’s
theorem. A more direct proof is due to Loève. Assume, without loss of gener-
ality, that E [X(t)] = 0.
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Start by defining

HT (ν) ≡ 1√
T

∫ T/2

−T/2
eiνtX(t)dt (21.8)

and define fT (ν) through H:

2πfT (ν) ≡ E
[
HT (ν)H†

T (ν)
]

(21.9)

= E

[
1
T

∫ T/2

−T/2

∫ T/2

−T/2
eiνt1X(t1)e−iνt2X†(t2)dt1dt2

]
(21.10)

=
1
T

∫ T/2

−T/2

∫ T/2

−T/2
eiν(t1−t2)E [X(t1)X(t2)] dt1dt2 (21.11)

=
1
T

∫ T/2

−T/2

∫ T/2

−T/2
eiν(t1−t2)Γ(t1 − t2)dt1dt2 (21.12)

=
∫ T

−T

(
1− |τ |

T

)
Γ(τ)eiντdτ (21.13)

Recall that Γ(τ) defines a non-negative quadratic form, meaning that
∑

s,t

a†
satΓ(t− s) ≥ 0

for any sets of times and any complex numbers at. This will in particular work if
the complex numbers lie on the unit circle and can be written eiνt. This means
that integrals ∫ ∫

eiν(t1−t2)Γ(t1 − t2)dt1dt2 ≥ 0 (21.14)

so fT (ν) ≥ 0.
Define φT (τ) as the integrand in Eq. 21.13, so that

fT (ν) =
1
2π

∫ ∞

−∞
φT (τ)eiντdτ (21.15)

which is recognizable as a proper Fourier transform. Now pick some N > 0 and
massage the equation so it starts to look like an inverse transform.

fT (ν)e−iνt =
1
2π

∫ ∞

−∞
φT (τ)eiντe−iνtdτ (21.16)

(
1− |ν|

N

)
fT (ν)e−iνt =

1
2π

∫ ∞

−∞
φT (τ)eiντe−iνt

(
1− |ν|

N

)
dτ (21.17)
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Integrating over frequencies,
∫ N

−N

(
1− |ν|

N

)
fT (ν)e−iνtdν (21.18)

=
∫ N

−N

1
2π

∫ ∞

−∞
φT (τ)eiντe−iνt

(
1− |ν|

N

)
dτdν

=
1
2π

∫ ∞

−∞
φT (τ)

(
sinN(τ − t)/2

N(τ − t)/2

)2

Ndτ (21.19)

(
1− |ν|

N

)
fT (ν) ≥ 0, so the left-hand side of the final equation is like a charac-

teristic function of a distribution, up to, perhaps, an over-all normalizing factor,
which will be φT (0) = Γ(0) > 0. Since Γ(τ) is continuous, φT (τ) is too, and so,
as N → ∞, the right-hand side converges uniformly on φT (t), but a uniform
limit of characteristic functions is still a characteristic function. Thus φT (t), too,
can be obtained from a characteristic function. Finally, since Γ(t) is the uniform
limit of φT (t) on every bounded interval, Γ(t) has a characteristic-function rep-
resentation of the stated form. This allows us to further conclude that S(ν) is
real-valued, non-decreasing, S(−∞) = 0 and S(∞) = Γ(0), and has both right
and left limits everywhere. !

There is a converse, with a cute constructive proof.

Theorem 241 Let S(ν) be any function with the properties described at the end
of Theorem 240. Then there is a weakly stationary process whose autocovariance
is of the form given in Eq. 21.7.

Proof: Define σ2 = Γ(0), F (ν) = S(ν)/σ2. Now F (ν) is a properly normal-
ized cumulative distribution function. Let N be a random variable distributed
according to F , and Φ ∼ U(0, 2π) be independent of A. Set X(t) ≡ σei(Φ−Nt).
Then E [X(t)] = σE

[
eiΦ

]
E

[
e−iNt

]
= 0. Moreover,

E
[
X†(t1)X(t2)

]
= σ2E

[
e−i(Φ−Nt1)ei(Φ−Nt2)

]
(21.20)

= σ2E
[
e−iN(t1−t2)

]
(21.21)

= σ2

∫ ∞

−∞
e−iν(t1−t2)dFnu (21.22)

= Γ(t1 − t2) (21.23)

!

Definition 242 The jump of the spectral function at ν, ∆S(ν), is S(ν + 0)−
S(ν − 0).

Proposition 243 ∆S(ν) ≥ 0.

Proof: Obvious from the fact that S(ν) is non-decreasing. !
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Theorem 244 (Wiener-Khinchin Theorem) If X is a weakly stationary
process, then its power spectrum is equal to its spectral function.

V (ν) ≡ E
[∣∣∣X̃(ν)

∣∣∣
2
]

= S(ν) (21.24)

Proof: Assume, without loss of generality, that E [X(t)] = 0. Substitute the
spectral representation of X into the autocovariance, using Fubini’s theorem to
turn a product of integrals into a double integral.

Γ(τ) = E [X(t)X(t + τ)] (21.25)
= E

[
X†(t)X(t + τ)

]
(21.26)

= E
[∫ ∞

−∞

∫ ∞

−∞
e−i(t+τ)ν1eitν2dX̃ν1dX̃ν2

]
(21.27)

= E
[∫ ∞

−∞

∫ ∞

−∞
e−it(ν1−ν2)e−iτν2dX̃ν1dX̃ν2

]
(21.28)

=
∫ ∞

−∞

∫ ∞

−∞
e−it(ν1−ν2)e−iτν2E

[
dX̃ν1dX̃ν2

]
(21.29)

using the fact that integration and expectation commute to (formally) bring the
expectation inside the integral. Since X̃ has orthogonal increments, E

[
dX̃†

ν1
dX̃ν2

]
=

0 unless ν1 = ν2. This turns the double integral into a single integral, and kills
the e−it(ν1−ν2) factor, which had to go away because t was arbitrary.

Γ(τ) =
∫ ∞

−∞
e−iτνE

[
d(X̃†

νX̃ν)
]

(21.30)

=
∫ ∞

−∞
e−iτνdVν (21.31)

using the definition of the power spectrum. Since Γ(τ) =
∫∞
−∞ e−iτνdVnu, it

follows that Sν and Vν differ by a constant, namely the value of V (−∞), which
can be chosen to be zero without affecting the spectral representation of X. !

21.1.1 How the White Noise Lost Its Color

Why is white noise, as defined in Section 20.3, called “white”? The answer is
easy, given the Wiener-Khinchin relation in Theorem 244.

Recall from Proposition 227 that the autocovariance function of white noise
is δ(t1 − t2). Recall from general analysis that one representation of the delta
function is the following Fourier integral:

δ(t) =
1
2π

∫ ∞

−∞
dνeiνt
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(This can be “derived” from inserting the definition of the Fourier transform
into the inverse Fourier transform, among other, more respectable routes.) Ap-
pealing then to the theorem, S(ν) = 1

2π for all ν. That is, there is equal power at
all frequencies, just as white light is composed of light of all colors (frequencies),
mixed with equal intensity.

Relying on this analogy, there is an elaborate taxonomy red, pink, black,
brown, and other variously-colored noises, depending on the shape of their power
spectra. The value of this terminology has honestly never been very clear to
me, but the curious reader is referred to the (very fun) book of Schroeder (1991)
and references therein.

21.2 The Mean-Square Ergodic Theorem

Ergodic theorems relate functionals calculated along individual sample paths
(say, the time average, T−1

∫ T
0 dtX(t), or the maximum attained value) to func-

tionals calculated over the whole distribution (say, the expectation, E [X(t)], or
the expected maximum). The basic idea is that the two should be close, and they
should get closer the longer the trajectory we use, because in some sense any
one sample path, carried far enough, is representative of the whole distribution.
Since there are many different kinds of functionals, and many different modes of
stochastic convergence, there are many different kinds of ergodic theorem. The
classical ergodic theorems say that time averages converge on expectations2, ei-
ther in Lp or a.s. (both implying convergence in distribution or in probability).
The traditional centerpiece of ergodic theorem is Birkhoff’s “individual” ergodic
theorem, asserting a.s. convergence. We will see its proof, but it will need a lot
of preparatory work, and it requires strict stationarity. By contrast, the L2, or
“mean square”, ergodic theorem, attributed to von Neumann3 is already in our
grasp, and holds for weakly stationary processes.

We will actually prove it twice, once with a fairly transparent sufficient condi-
tion, and then again with a more complicated necessary-and-sufficient condition.
The more complicated proof will wait until next lecture.

21.2.1 Mean-Square Ergodicity Based on the Autocovari-
ance

First, the easy version, which gives an estimate of the rate of convergence.
(What I say here is ripped off from the illuminating discussion in (Frisch, 1995,
sec. 4.4, especially pp. 49–50).)

Definition 245 (Time Averages) When X is a one-sided, continuous-parameter
random process, we say that its time average between times T1 and T2 is X(T1, T2) ≡

2Proverbially: “time averages converge on space averages”, the space in question being
the state space Ξ; or “converge on phase averages”, since physicists call certain kinds of state
space “phase space”.

3See von Plato (1994, ch. 3) for a fascinating history of the development of ergodic theory
through the 1930s, and its place in the history of mathematical probability.
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(T2 − T1)
−1 ∫ T2

T1
dtX(t). When we only mention one time argument, by default

the time average is from 0 to T , X(T ) ≡ X(0, T ).

(Only considering time averages starting from zero involves no loss of generality
for weakly stationary processes: why?)

Theorem 246 Let X(t) be a weakly stationary process, E [X(t)] = 0. If
∫∞
0 dτ |Γ(τ)| <

∞, then X(T ) L2→ 0 as T →∞.

Proof: Use Fubini’s theorem to to the square of the integral into a double
integral, and then bring the expectation inside it:

E




(

1
T

∫ T

0
dtX(t)

)2


 = E

[
1

T 2

∫ T

0

∫ T

0
dt1dt2X(t1)X(t2)

]
(21.32)

=
1

T 2

∫ T

0

∫ T

0
dt1dt2E [X(t1)X(t2)] (21.33)

=
1

T 2

∫ T

0

∫ T

0
dt1dt2Γ(t1 − t2) (21.34)

=
2

T 2

∫ T

0
dt1

∫ t1

0
dτΓ(τ) (21.35)

≤ 2
T 2

∫ T

0
dt1

∫ ∞

0
dτ |Γ(τ)| (21.36)

=
2
T

∫ ∞

0
dτ |Γ(τ)| (21.37)

As T →∞, this → 0. !
Remark. From the proof, we can see that the rate of convergence of the

mean-square of
∥∥X(T )

∥∥
2

2 is (at least) O(1/T ). This would give a root-mean-
square (rms) convergence rate of O(1/

√
T ), which is what the naive statistician

who ignored inter-temporal dependence would expect from the central limit
theorem. (This ergodic theorem says nothing about the form of the distribution
of X(T ) for large T . We will see that, under some circumstances, it is Gaussian,
but that needs stronger assumptions [forms of “mixing”] than we have imposed.)
The naive statistician would expect that the mean-square time average would go
like Γ(0)/T , since Γ(0) = E

[
X2(t)

]
= Var [X(t)]. The proportionality constant

is instead
∫∞
0 dτ |Γ(τ)|. This is equal to the naive guess for white noise, and for

other collections of IID variables, but not in the general case. This leads to the
following

Definition 247 (Integral Time Scale) The integral time scale of a weakly-
stationary random process, E [X(t)] = 0, is

τint ≡
∫∞
0 dτ |Γ(τ)|

Γ(0)
(21.38)
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Notice that τint does, indeed, have units of time.

Corollary 248 Under the conditions of Theorem 246,

Var
[
X(T )

]
≤ 2Var [X(0)]

τint

T
(21.39)

Proof: Since X(t) is centered, E
[
X(T )

]
= 0, and

∥∥X(T )
∥∥

2

2 = Var
[
X(T )

]
.

Everything else follows from re-arranging the bound in the proof of Theorem
246, Definition 247, and the fact that Γ(0) = Var [X(0)]. !

As a consequence of the corollary, if T * τint, then the variance of the time
average is negigible compared to the variance at any one time.

21.2.2 Mean-Square Ergodicity Based on the Spectrum

Let’s warm up with some lemmas of a technical nature. The first relates the
jumps of the spectral process X̃(ν) to the jumps of the spectral function S(ν).

Lemma 249 For a weakly stationary process, E
[∣∣∣∆X̃(ν)

∣∣∣
2
]

= ∆S(ν).

Proof: This follows directly from the Wiener-Khinchin relation (Theorem 244).
!

Lemma 250 The jump of the spectral function at ν is given by

∆S(ν) = lim
T→∞

1
T

∫ T

0
Γ(τ)eiντdτ (21.40)

Proof: This is a basic inversion result for characteristic functions. It should
become plausible by thinking of this as getting the Fourier transform of Γ as T
grows. !

Lemma 251 If X is weakly stationary, then for any real f , eiftX(T ) converges
in L2 to ∆X̃(f).

Proof: Start by looking at the squared modulus of the time average for finite
time.

∣∣∣∣∣
1
T

∫ T

0
eiftX(t)dt

∣∣∣∣∣

2

(21.41)

=
1

T 2

∫ T

0

∫ T

0
e−if(t1−t2)X†(t1)X(t2)dt1dt2

=
1

T 2

∫ T

0

∫ T

0
e−if(t1−t2)

∫ ∞

−∞
eiν1t1dX̃ν1

∫ ∞

−∞
e−iν2t2dX̃ν2 (21.42)

=
1

T 2

∫ T

0

∫ ∞

−∞
dt1dX̃ν1e

it1(f−ν1)

∫ T

0

∫ ∞

−∞
dt2dX̃ν2e

−it2(f−ν2) (21.43)
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As T → ∞, these integrals pick out ∆X̃(f) and ∆X̃†(f). So, eiftX(T ) L2→
∆X̃(f). !

Notice that the limit provided by the lemma is a random quantity. What’s
really desired, in most applications, is convergence to a deterministic limit,
which here would mean convergence (in L2) to zero.

Theorem 252 (Mean-Square Ergodic Theorem) If X is weakly station-
ary, and E [X(t)] = 0, then X(t) converges in L2 to 0 iff

limT−1

∫ T

0
dτΓ(τ) = 0 (21.44)

Proof: Taking f = 0 in Lemma 251, X(T ) L2→ ∆X̃(0), the jump in the spectral
function at zero. Let’s show that the (i) expectation of this jump is zero, and
that (ii) its variance is given by the integral expression on the LHS of Eq.
21.44. For (i), because X(T ) L2→ Y , we know that E

[
X(T )

]
→ E [Y ]. But

E
[
X(T )

]
= E [X](T ) = 0. So E

[
∆X̃(0)

]
= 0. For (ii), Lemma 249, plus the

fact that E
[
∆X̃(0)

]
= 0, shows that the variance is equal to the jump in the

spectrum at 0. But, by Lemma 250 with ν = 0, that jump is exactly the LHS
of Eq. 21.44. !

Remark 1: Notice that if the integral time is finite, then the integral condi-
tion on the autocovariance is automatically satisfied, but not vice versa, so the
hypotheses here are strictly weaker than in Theorem 246.

Remark 2: One interpretation of the theorem is that the time-average is
converging on the zero-frequency component of the spectral process. If there is
a jump at 0, then this has finite variance; if not, not.

Remark 3: Lemma 251 establishes the L2 convergence of time-averages of
the form

1
T

∫ T

0
eiftX(t)dt

for any real f . Specifically, from Lemma 249, the mean-square of this variable is
converging on the jump in the spectrum at f . While the ergodic theorem itself
only needs the f = 0 case, this result is useful in connection with estimating
spectra from time series (Doob, 1953, ch. X, §7).

21.3 Exercises

Exercise 21.1 It is often convenient to have a mean-square ergodic theorem for
discrete-time sequences rather than continuous-time processes. If the dt in the
definition of X is re-interpreted as counting measure on N, rather than Lebesgue
measure on R+, does the proof of Theorem 246 remain valid? (If yes, say why;
if no, explain where the argument fails.)
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Exercise 21.2 State and prove a version of Theorem 246 which does not as-
sume that E [X(t)] = 0.

Exercise 21.3 Suppose X is a weakly stationary process, and f is a measurable
function such that ‖f(X0)‖2 <∞. Is f(X) a weakly stationary process? (If yes,
prove it; if not, give a counter-example.)

Exercise 21.4 Suppose the Ornstein-Uhlenbeck process is has its invariant dis-
tribution as its initial distribution, and is therefore weakly stationary. Does
Theorem 246 apply?


