
Chapter 23

Ergodicity

Section 23.1 gives a general orientation to ergodic theory, which
we will study in discrete time.

Section 23.2 introduces dynamical systems and their invariants,
the setting in which we will prove our ergodic theorems.

Section 23.3 considers time averages, defines what we mean for
a function to have an ergodic property (its time average converges),
and derives some consequences.

Section 23.4 defines asymptotic mean stationarity, and shows
that, with AMS dynamics, the limiting time average is equivalent to
conditioning on the invariant sets.

23.1 General Remarks

To begin our study of ergodic theory, let us consider a famous1 line from Gne-
denko and Kolmogorov (1954, p. 1):

In fact, all epistemological value of the theory of probability is
based on this: that large-scale random phenomena in their collective
action create strict, nonrandom regularity.

Now, this is how Gnedenko and Kolmogorov introduced their classic study of the
limit laws for independent random variables, but most of the random phenomena
we encounter around us are not independent. Ergodic theory is a study of
how large-scale dependent random phenomena nonetheless create nonrandom
regularity. The classical limit laws for IID variables X1, X2, . . . assert that,
under the right conditions, sample averages converge on expectations,

Xn ≡
1
n

n∑

i=1

Xi → E [Xi]

1Among mathematical scientists, anyway.
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where the sense of convergence can be “almost sure” (strong law of large num-
bers), “Lp” (pth mean), “in probability” (weak law), etc., depending on the
hypotheses we put on the Xi. One meaning of this convergence is that suffi-
ciently large random samples are representative of the entire population — that
Xn makes a good estimate of E [X].

The ergodic theorems, likewise, assert that for dependent sequences X1, X2, . . .,
time averages converge on expectations

Xt ≡
1
t

t∑

i=1

Xi → E [X∞]

where X∞ is some limiting random variable, or in the most useful cases a non-
random variable. Once again, the mode of convergence will depend on the kind
of hypotheses we make about the random sequence X. Once again, the inter-
pretation is that a single sample path is representative of the entire distribution
over sample paths, if it goes on long enough.

Chapter 21 proved a mean-square (L2) ergodic theorem for weakly stationary
continuous-parameter processes. The next few chapters, by contrast, will de-
velop ergodic theorems for non-stationary discrete-parameter processes.2 This
is a little unusual, compared to most probability books, so let me say a word or
two about why. (1) Results we get will include stationary processes as special
cases, but stationarity fails for many applications where ergodicity (in a suit-
able sense) holds. So this is more general and more broadly applicable. (2) Our
results will all have continuous-time analogs, but the algebra is a lot cleaner
in discrete time. (3) Some of the most important applications (for people like
you!) are to statistical inference and learning with dependent samples, and to
Markov chain Monte Carlo, and both of those are naturally discrete-parameter
processes. We will, however, stick to continuous state spaces.

23.2 Dynamical Systems and Their Invariants

It is a very remarkable fact — but one with deep historical roots (von Plato,
1994, ch. 3) — that the way to get regular limits for stochastic processes is
to first turn them into irregular deterministic dynamical systems, and then let
averaging smooth away the irregularity. This section will begin by laying out
dynamical systems, and their invariant sets and functions, which will be the
foundation for what follows.

Definition 257 (Dynamical System) A dynamical system consists of a mea-
surable space Ξ, a σ-field X on Ξ, a probability measure µ defined on X , and a
mapping T : Ξ #→ Ξ which is X/X -measurable.

Remark: Measure-preserving transformations (Definition 53) are special cases
of dynamical systems. Since (Theorem 52) every strongly stationary process can

2In doing so, I’m ripping off Gray (1988), especially chapters 6 and 7.
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be represented by a measure-preserving transformation, namely the shift (Def-
inition 48), the theory of ergodicity for dynamical systems which we’ll develop
is easily seen to include the usual ergodic theory of strictly-stationary processes
as a special case. Thus, at the cost of going to the infinite-dimensional space of
sample paths, we can always make it the case that the time-evolution is com-
pletely deterministic, and the only stochastic component to the process is its
initial condition.

Lemma 258 (Dynamical Systems are Markov Processes) Let Ξ,X , µ, T
be a dynamical system. Let L (X1) = µ, and define Xt = T t−1X1. Then the
Xt form a Markov process, with evolution operator K defined through Kf(x) =
f(Tx).

Proof: For every x ∈ Ξ and B ∈ X , define κ(x,B) ≡ 1B(Tx). For fixed x, this
is clearly a probability measure (specifically, the δ measure at Tx). For fixed B,
this is a measurable function of x, because T is a measurable mapping. Hence,
κ(x, B) is a probability kernel. So, by Theorem 103, the Xt form a Markov
process. By definition, E [f(X1)|X0 = x] = Kf(x). But the expectation is in
this case just f(Tx). !

Notice that, as a consequence, there is a corresponding operator, call it U ,
which takes signed measures (defined over X ) to signed measures, and specifi-
cally takes probability measures to probability measures.

Definition 259 (Observable) A function f : Ξ #→ R which is B/X measur-
able is an observable of the dynamical system Ξ,X , µ, T .

Pretty much all of what follows would work if the observables took values in
any real or complex vector space, but that situation can be built up from this
one.

Definition 260 (Invariant Function, Invariant Set, Invariant Measure)
A function is invariant, under the action of a dynamical system, if f(Tx) = f(x)
for all x ∈ Ξ, or equivalently if Kf = f everywhere. An event B ∈ X is invari-
ant if its indicator function is an invariant function. A measure ν is invariant
if it is preserved by T , i.e. if ν(C) = ν(T−1C) for all C ∈ X , equivalently if
Uν = ν.

Lemma 261 The class I of all measurable invariant sets in Ξ is a σ-algebra.

Proof: Clearly, Ξ is invariant. The other properties of a σ-algebra follow
because set-theoretic operations (union, complementation, etc.) commute with
taking inverse images. !

Lemma 262 An observable is invariant if and only if it is I-measurable. Con-
sequently, I is the σ-field generated by the invariant observables.
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Proof: “If”: Pick any Borel set B. Since f = f ◦T , f−1(B) = (f ◦ T )−1(B) =
T−1f−1B. Hence f−1(B) ∈ I. Since the inverse image of every Borel set is in
I, f is I-measurable. “Only if”: Again, pick any Borel set B. By assumption,
f−1(B) ∈ I, so f−1(B) = T−1f−1(B) = (f ◦ T )−1(B), so the inverse image of
under Tf of any Borel set is an invariant set, implying that f◦T is I-measurable.
Since, for every B, f−1(B) = (f ◦ T )−1(B), we must have f ◦ T = f . The
consequence follows. !

Definition 263 (Infinitely Often, i.o.) For any set C ∈ X , the set C in-
finitely often, Ci.o., consists of all those points in Ξ whose trajectories visit C
infinitely often, Ci.o. ≡ lim supt T−tC.

Lemma 264 For every C ∈ X , Ci.o. is invariant.

Proof: Exercise. !

Definition 265 (Invariance Almost Everywhere) A measurable function
is invariant µ-a.e., or almost invariant, when

µ {x ∈ Ξ|∀n, f(x) = Knf(x)} = 1 (23.1)

A measurable set is invariant µ-a.e., when its indicator function is almost in-
variant.

Remark 1: Some of the older literature annoyingly calls these objects totally
invariant.

Remark 2: Invariance implies invariance µ-almost everywhere, for any µ.

Lemma 266 The almost-invariant sets form a σ-field, I ′, and an observable
is almost invariant if and only if it is measurable with respect to this field.

Proof: Entirely parallel to that for the strict invariants. !
Let’s close this section with a simple lemma, which will however be useful

in approximation-by-simple-function arguments in building up expectations.

Lemma 267 A simple function, f(x) =
∑m

k=1 am1Ck(x), is invariant if and
only if all the sets Ck ∈ I. Similarly, a
simple function is almost invariant iff all the defining sets are almost invariant.

Proof: Exercise. !

23.3 Time Averages and Ergodic Properties

For convenience, let’s re-iterate the definition of a time average. (The notation
differs here a little from that given earlier.)
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Definition 268 (Time Average) The time-average of an observable f is the
real-valued function

f t(x) ≡ 1
t

t−1∑

i=0

f(T ix) (23.2)

The operator taking functions to their time-averages will be written Atf :

Atf(x) ≡ f t(x) (23.3)

Lemma 269 For every t, the time-average of an observable is an observable.

Proof: The class of measurable functions is closed under finite iterations of
arithmetic operations. !

Definition 270 (Ergodic Property) An observable f has the ergodic prop-
erty when f t(x) converges as t →∞ for µ-almost-all x. An observable has the
mean ergodic property when f t(x) converges in L1(µ), and similarly for the
other Lp ergodic properties. If for some class of functions D, every f ∈ D has
an ergodic property, then the class D has that ergodic property.

Remark. Notice that what is required for f to have the ergodic property is
that almost every initial point has some limit for its time average,

µ
{

x ∈ Ξ
∣∣∣∃r ∈ R : lim

t→∞
f t(x) = r

}
= 1 (23.4)

Not that there is some common limit for almost every initial point,

∃r ∈ R : µ
{

x ∈ Ξ
∣∣∣ lim
t→∞

f t(x) = r
}

= 1 (23.5)

Similarly, a class of functions has the ergodic property if all of their time averages
converge; they do not have to converge uniformly.

Definition 271 If an observable f has the ergodic property, define f(x) to be
the limit of f t(x) where that exists, and 0 elsewhere. The corresponding operator
will be written A:

Af(x) = f(x) (23.6)

The domain of A consists of all and only the functions with ergodic properties.

Observe that

Af(x) = lim
t→∞

1
t

t∑

n=0

Knf(x) (23.7)

That is, A is the limit of an arithmetic mean of conditional expectations. This
suggests that it should itself have many of the properties of conditional expec-
tations. In fact, under a reasonable condition, we will see that Af = E [f |I],
expectation conditional on the σ-algebra of invariant sets. We’ll check first that
A has the properties we’d want from a conditional expectation.
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Lemma 272 A is a linear operator, and its domain is a linear space.

Proof: If c is any real number, then Atcf(x) = cAtf(x), and so clearly, if the
limit exists, Acf(x) = cAf(x). Similarly, At(f + g)(x) = Atf(x) + Atg(x), so
if f and g both have ergodic properties, then so does f + g, and A(f + g)(x) =
Af(x) + Ag(x). !

Lemma 273 If f ∈ DomA, and, for all n ≥ 0, fTn ≥ 0 a.e., then Af(x) ≥ 0
a.e.

Proof: The event Af(x) < 0 is a sub-event of
⋃

n {f(Tn(x)) < 0}. Since
the union of a countable collection of measure zero events has measure zero,
Af(x) ≥ 0 almost everywhere. !

We can’t just say f ≥ 0 a.e., because the effect of the transformation T
might be to map every point to the bad set of f ; the lemma guards against
that. Of course, if f(x) ≥ 0 for all, and not just almost all, x, then the bad set
is non-existent, and Af ≥ 0 follows automatically.

Lemma 274 The constant function 1 has the ergodic property. Consequently,
so does every other constant function.

Proof: For every n, 1(Tnx) = 1. Hence At1(x) = 1 for all t, and so A1(x) = 1.
Extension to other constants follows by linearity. !

Remember that for any Markov operator K, K1 = 1.

Lemma 275 If f ∈ Dom(A), then, for all n, f ◦ Tn is too, and Af(x) =
Af ◦ Tn(x). Or, AKnf(x) = Af(x).

Proof: Start with n = 1, and show that the discrepancy goes to zero.

AKf(x)−Af(x) = lim
t

1
t

t∑

i=0

(
Ki+1f(x)−Kif(x)

)
(23.8)

= lim
t

1
t

(
Ktf(x)− f(x)

)
(23.9)

Since Af(x) exists a.e., we know that the series t−1
∑t−1

i=0 Kif(x) converges
a.e., implying that (t + 1)−1Ktf(x) → 0 a.e.. But t−1 = t+1

t (t + 1)−1, and for
large t, t + 1/t < 2. Hence (t + 1)−1Ktf(x) ≤ t−1Ktf(x) ≤ 2(t + 1)−1Ktf(x),
implying that t−1Ktf(x) itself goes to zero (a.e.). Similarly, t−1f(x) must go
to zero. Thus, overall, we have AKf(x) = Af(x) a.e., and Kf(x) ∈ Dom(A).
!

Lemma 276 If f ∈ Dom(A), then Af is an invariant, and I-measurable.

Proof: Af exists, so (previous lemma) AKf exists and is equal to Af (almost
everywhere). But AKf(x) = Af(Tx), by definition, hence Af is invariant, i.e.,
KAf = AKf = Af . Measurability follows from Lemma 262. !
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Lemma 277 If f ∈ Dom(A), and B is any set in I, then A(1B(x)f(x)) =
1B(x)Af(x).

Proof: For every n, 1B(Tnx)f(Tnx) = 1B(x)f(Tnx), since x ∈ B iff Tnx ∈ B.
So, for all finite t, At(1B(x)f(x)) = 1B(x)Atf(x), and the lemma follows by
taking the limit. !

Lemma 278 All indicator functions of measurable sets have ergodic properties
if and only if all bounded observables have ergodic properties.

Proof: A standard approximation-by-simple-functions argument, as in the
construction of Lebesgue integrals. !

Lemma 279 Let f be bounded and have the ergodic property. Then Af is µ-
integrable, and E [Af(X)] = E [f(X)], where L (X) = µ.

Proof: Since f is bounded, it is integrable. Hence Atf is bounded, too, for
all t, and Atf(X) is an integrable random variable. A sequence of bounded,
integrable random variables is uniformly integrable. Uniform integrability, plus
the convergence Atf(x) → Af(x) for µ-almost-all x, gives us that E [Af(X)]
exists and is equal to limE [Atf(X)] via Fatou’s lemma. (See e.g., Theorem 117
in the notes to 36-752.)

Now use the invariance of Af , i.e., the fact that Af(X) = Af(TX) µ-a.s.

0 = E [Af(TX)]−E [Af(X)] (23.10)

= lim
1
t

t−1∑

n=0

E [Knf(TX)]− lim
1
t

t−1∑

n=0

E [Knf(X)] (23.11)

= lim
1
t

t−1∑

n=0

E [Knf(TX)]−E [Knf(X)] (23.12)

= lim
1
t

t−1∑

n=0

E
[
Kn+1f(X)

]
−E [Knf(X)] (23.13)

= lim
1
t

(
E

[
Ktf(X)

]
−E [f(X))

]
(23.14)

Hence

E [Af ] = lim
1
t

t−1∑

n=0

E [Knf(X)] = E [f(X)] (23.15)

as was to be shown. !

Lemma 280 If f is as in Lemma 279, then Atf → f in L1(µ).

Proof: From Lemma 279, limE [Atf(X)] = E [f(X)]. Since the variables
Atf(X) are uniformly integrable (as we saw in the proof of that lemma), it
follows (Proposition 4.12 in Kallenberg, p. 68) that they also converge in L1(µ).
!
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Lemma 281 Let f be as in Lemmas 279 and 280, and B ∈ X be an arbitrary
measurable set. Then

lim
t→∞

1
t

t−1∑

n=0

E [1B(X)Knf(X)] = E [1B(X)f(X)] (23.16)

where L (X) = µ.

Proof: Let’s write out the expectations explicitly as integrals.
∣∣∣∣∣

∫

B
f(x)dµ− 1

t

t−1∑

n=0

∫

B
Knf(x)dµ

∣∣∣∣∣ (23.17)

=

∣∣∣∣∣

∫

B
f(x)− 1

t

t−1∑

n=0

Knf(x)dµ

∣∣∣∣∣

=
∣∣∣∣
∫

B
f(x)−Atf(x)dµ

∣∣∣∣ (23.18)

≤
∫

B
|f(x)−Atf(x)| dµ (23.19)

≤
∫

|f(x)−Atf(x)| dµ (23.20)

= ‖f −Atf‖L1(µ) (23.21)

But (previous lemma) these functions converge in L1(µ), so the limit of the
norm of their difference is zero. !

Boundedness is not essential.

Corollary 282 Lemmas 279, 280 and 281 hold for any integrable observable
f ∈ Dom(A), bounded or not, provided that Atf is a uniformly integrable se-
quence.

Proof: Examining the proofs shows that the boundedness of f was important
only to establish the uniform integrability of Atf . !

23.4 Asymptotic Mean Stationarity

Next, we come to an important concept which will prove to be necessary and
sufficient for the most important ergodic properties to hold.

Definition 283 (Asymptotically Mean Stationary) A dynamical system is
asymptotically mean stationary when, for every C ∈ X , the limit

m(C) ≡ lim
t→∞

1
t

t−1∑

n=0

µ(T−nC) (23.22)

exists, and the set function m is its stationary mean.
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Remark 1: It might’ve been more logical to call this “asymptotically measure
stationary”, or something, but I didn’t make up the names...

Remark 2: Symbolically, we can write

m = lim
t→∞

1
t

t−1∑

n=0

Unµ

where U is the operator taking measures to measures. This leads us to the next
proposition.

Proposition 284 If a dynamical system is stationary, i.e., T is preserves the
measure µ, then it is asymptotically mean stationary, with stationary mean µ.

Proof: If T preserves µ, then for every measurable set, µ(C) = µ(T−1C).
Hence every term in the sum in Eq. 23.22 is µ(C), and consequently the limit
exists and is equal to µ(C). !

Theorem 285 (Vitali-Hahn Theorem) If mt are a sequence of probability
measures on a common σ-algebra X , and m(C) is a set function such that
limt mt(C) = m(C) for all C ∈ X , then m is a probability measure on X .

Proof: This is a standard result from measure theory. !

Theorem 286 If a dynamical system is asymptotically mean stationary, then
its stationary mean is an invariant probability measure.

Proof: For every t, let mt(C) = 1
t

∑t−1
n=0 µ(T−n(C)). Then mt is a linear

combination of probability measures, hence a probability measure itself. Since,
for every C ∈ X , lim mt(C) = m(C), by Definition 283, Proposition 285 says
that m(C) is also a probability measure. It remains to check invariance.

m(C)−m(T−1C) (23.23)

= lim
1
t

t−1∑

n=0

µ(T−n(C))− lim
1
t

t−1∑

n=0

µ(T−n(T−1C))

= lim
1
t

t−1∑

n=0

µ(T−n−1C)− µ(T−nC) (23.24)

= lim
1
t

(
µ(T−tC)− µ(C)

)
(23.25)

Since the probability measure of any set is at most 1, the difference between
two probabilities is at most 1, and so m(C) = m(T−1C), for all C ∈ X . But
this means that m is invariant under T (Definition 53). !

Remark: Returning to the symbolic manipulations, if µ is AMS with sta-
tionary mean m, then Um = m (because m is invariant), and so we can write
µ = m + (µ−m), knowing that µ−m goes to zero under averaging. Speaking
loosely (this can be made precise, at the cost of a fairly long excursion) m is



CHAPTER 23. ERGODICITY 159

an eigenvector of U (with eigenvalue 1), and µ − m lies in an orthogonal di-
rection, along which U is contracting, so that, under averaging, it goes away,
leaving only m, which is like the projection of the original measure µ on to the
invariant manifold of U .

The relationship between an AMS measure µ and its stationary mean m
is particularly simple on invariant sets: they are equal there. A slightly more
general theorem is actually just as easy to prove, however, so we’ll do that.

Lemma 287 If µ is AMS with limit m, and f is an observable which is invari-
ant µ-a.e., then Eµ [f ] = Em [f ].

Proof: Let C be any almost invariant set. Then, for any t, C and T−tC differ
by, at most, a set of µ-measure 0, so that µ(C) = µ(T−tC). The definition of
the stationary mean (Equation 23.22) then gives µ(C) = m(C), or Eµ [1C ] =
Em [1C ], i.e., the result holds for indicator functions. By Lemma 267, this then
extends to simple functions. The usual arguments then take us to all functions
which are measurable with respect to I ′, the σ-field of almost-invariant sets,
but this (Lemma 266) is the class of all almost-invariant functions. !

Lemma 288 If µ is AMS with stationary mean m, and f is a bounded observ-
able,

lim
t→∞

Eµ [Atf ] = Em [f ] (23.26)

Proof: By Eq. 23.22, this must hold when f is an indicator function. By
the linearity of At and of expectations, it thus holds for simple functions, and
so for general measurable functions, using boundedness to exchange limits and
expectations where necessary. !

Lemma 289 If f is a bounded observable in Dom(A), and µ is AMS with
stationary mean m, then Eµ [Af ] = Em [f ].

Proof: From Lemma 281, Eµ [Af ] = limt→∞Eµ [Atf ]. From Lemma 288, the
latter is Em [f ]. !

Remark: Since Af is invariant, we’ve got Eµ [Af ] = Em [Af ], from Lemma
287, but that’s not the same.

Corollary 290 Lemmas 288 and 289 continue to hold if f is not bounded, but
Atf is uniformly integrable (µ).

Proof: As in Corollary 282. !

Theorem 291 If µ is AMS, with stationary mean m, and the dynamics have
ergodic properties for all the indicator functions, then, for any measurable set
C,

A1C = m(C|I) (23.27)

with probability 1 under both µ and m.
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Proof: By Lemma 276, A1C is an invariant function. Pick any set B ∈ I,
so that 1B is also invariant. By Lemma 277, A(1B1C) = 1BA1C , which is
invariant (as a product of invariant functions). So Lemma 287 gives

Eµ [1BA1C ] = Em [1BA1C ] (23.28)

while Lemma 289 says

Eµ [A(1B1C)] = Em [1B1C ] (23.29)

Since the left-hand sides are equal, the right-hand sides must be equal as well,
so

m(B ∩ C) = Em [1B1C ] (23.30)
= Em [1BA1C ] (23.31)

Since this holds for all invariant sets B ∈ I, we conclude that A1C must be a
version of the conditional probability m(C|I). !

Corollary 292 Under the assumptions of Theorem 291, for any bounded ob-
servable f ,

Af = Em [f |I] (23.32)

Proof: From Lemma 278, every bounded observable has the ergodic property.
One can then imitate the proof of the theorem to obtain the desired result. !

Corollary 293 Equation 23.32 continues to hold if Atf are uniformly µ-integrable,
or f is m-integrable.

Proof: Exercise. !


