
Chapter 24

The Almost-Sure Ergodic
Theorem

This chapter proves Birkhoff’s ergodic theorem, on the almost-
sure convergence of time averages to expectations, under the as-
sumption that the dynamics are asymptotically mean stationary.

This is not the usual proof of the ergodic theorem, as you will find in e.g.
Kallenberg. Rather, it uses the AMS machinery developed in the last lecture,
following Gray (1988, sec. 7.2), in turn following Katznelson and Weiss (1982).
The central idea is that of “blocking”: break the infinite sequence up into non-
overlapping blocks, show that each block is well-behaved, and conclude that
the whole sequence is too. This is a very common technique in modern ergodic
theory, especially among information theorists. In pure probability theory, the
usual proof of the ergodic theorem uses a result called the “maximal ergodic
lemma”, which is clever but somewhat obscure, and doesn’t seem to generalize
well to non-stationary processes: see Kallenberg, ch. 10.

We saw, at the end of the last chapter, that if time-averages converge in the
long run, they converge on conditional expectations. Our work here is showing
that they (almost always) converge. We’ll do this by showing that their lim infs
and lim sups are (almost always) equal. This calls for some preliminary results
about the upper and lower limits of time-averages.

Definition 294 For any observable f , define the lower and upper limits of its
time averages as, respectively,

Af(x) ≡ lim inf
t→∞

Atf(x) (24.1)

Af(x) ≡ lim sup
t→∞

Atf(x) (24.2)

Define Lf as the set of x where the limits coincide:

Lf ≡
{
x

∣∣Af(x) = Af(x)
}

(24.3)
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Lemma 295 Af and Af are invariant functions.

Proof: Use our favorite trick, and write Atf(Tx) = t+1
t At+1f(x) − f(x)/t.

Clearly, the lim sup and lim inf of this expression will equal the lim sup and
lim inf of At+1f(x), which is the same as that of Atf(x). !

Lemma 296 The set of Lf is invariant.

Proof: Since Af and Af are both invariant, they are both measurable with
respect to I (Lemma 262), so the set of x such that Af(x) = Af(x) is in I,
therefore it is invariant (Definition 261). !

Lemma 297 An observable f has the ergodic property with respect to an AMS
measure µ if and only if it has it with respect to the stationary limit m.

Proof: By Lemma 296, Lf is an invariant set. But then, by Lemma 287,
m(Lf ) = µ(Lf ). (Take f = 1Lf in the lemma.) f has the ergodic property with
respect to µ iff µ(Lf ) = 1, so f has the ergodic property with respect to µ iff it
has it with respect to m. !

Theorem 298 (Almost-Sure Ergodic Theorem (Birkhoff)) If a dynam-
ical system is AMS with stationary mean m, then all bounded observables have
the ergodic property, and with probability 1 (under both µ and m),

Af = Em [f |I] (24.4)

for all f ∈ L1(m).

Proof: From Theorem 291 and its corollaries, it is enough to prove that all
L1(m) observables have ergodic properties to get Eq. 24.4. From Lemma 297, it
is enough to show that the observables have ergodic properties in the stationary
system Ξ,X ,m, T . (Accordingly, all expectations in the rest of this proof will
be with respect to m.) Since any observable can be decomposed into its positive
and negative parts, f = f+ − f−, assume, without loss of generality, that f is
positive. Since Af ≥ Af everywhere, it suffices to show that E

[
Af −Af

]
≤ 0.

This in turn will follow from E
[
Af

]
≤ E [f ] ≤ E [Af ]. (Since f is bounded, the

integrals exist.)
We’ll prove that E

[
Af

]
≤ E [f ], by showing that the time average comes

close to its lim sup, but from above (in the mean). Proving that E [Af ] ≥ E [f ]
will be entirely parallel.

Since f is bounded, we may assume that f ≤M everywhere.
For every ε > 0, for every x there exists a finite t such that

Atf(x) ≥ f(x)− ε (24.5)

This is because f is the limit of the least upper bounds. (You can see where
this is going already — the time-average has to be close to its lim sup, but close
from above.)
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Define t(x, ε) to be the smallest t such that f(x) ≤ ε + Atf(x). Then, since
f is invariant, we can add from from time 0 to time t(x, ε)− 1 and get:

t(x,ε)−1∑

n=0

Knf(x) + εt(x, ε) ≥
t(x,ε)−1∑

n=0

Knf(x) (24.6)

Define BN ≡ {x|t(x, ε) ≥ N}, the set of “bad” x, where the sample average fails
to reach a reasonable (ε) distance of the lim sup before time N . Because t(x, ε)
is finite, m(BN ) goes to zero as N →∞. Chose a N such that m(BN ) ≤ ε/M ,
and, for the corresponding bad set, drop the subscript. (We’ll see why this level
is important presently.)

We’ll find it convenient to not deal directly with f , but with a related func-
tion which is better-behaved on the bad set B. Set f̃(x) = M when x ∈ B,
and = f(x) elsewhere. Similarly, define t̃(x, ε) to be 1 if x ∈ B, and t(x, ε)
elsewhere. Notice that t̃(x, ε) ≤ N for all x. Something like Eq. 24.6 still holds
for the nice-ified function f̃ , specifically,

t̃(x,ε)−1∑

n=0

Knf(x) ≤
t̃(x,ε)−1∑

n=0

Knf̃(x) + εt̃(x, ε) (24.7)

If x ∈ B, this reduces to f(x) ≤ M + ε, which is certainly true because f(x) ≤
M . If x (∈ B, it will follow from Eq. 24.6, provided that Tnx (∈ B, for all
n ≤ t̃(x, ε)− 1. To see that this, in turn, must be true, suppose that Tnx ∈ B
for some such n. Because (we’re assuming) n < t(x, ε), it must be the case that

Anf(x) < f(x)− ε (24.8)

Otherwise, t(x, ε) would not be the first time at which Eq. 24.5 held true. Sim-
ilarly, because Tnx ∈ B, while x (∈ B, t(Tnx, ε) > N ≥ t(x, ε), and so

At(x,ε)−nf(Tnx) < f(x)− ε (24.9)

Combining the last two displayed equations,

At(x,ε)f(x) < f(x)− ε (24.10)

contradicting the definition of t(x, ε). Consequently, there can be no n < t(x, ε)
such that Tnx ∈ B.

We are now ready to consider the time average ALf over a stretch of time
of some considerable length L. We’ll break the time indices over which we’re
averaging into blocks, each block ending when T tx hits B again. We need to
make sure that L is sufficiently large, and it will turn out that L ≥ N/(ε/M)
suffices, so that NM/L ≤ ε. The end-points of the blocks are defined recursively,
starting with b0 = 0, bk+1 = bk + t̃(T bkx, ε). (Of course the bk are implicitly
dependent on x and ε and N , but suppress that for now, since these are constant
through the argument.) The number of completed blocks, C, is the large k such
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that L−1 ≥ bk. Notice that L−bC ≤ N , because t̃(x, ε) ≤ N , so if L−bC > N ,
we could squeeze in another block after bC , contradicting its definition.

Now let’s examine the sum of the lim sup over the trajectory of length L.

L−1∑

n=0

Knf(x) =
C∑

k=1

bk∑

n=bk−1

Knf(x) +
L−1∑

n=bC

Knf(x) (24.11)

For each term in the inner sum, we may assert that

t̃(T bk x,ε)−1∑

n=0

Knf(T bkx) ≤
t̃(T bk x,ε)−1∑

n=0

Knf̃(T bkx) + εt̃(T bkx, ε) (24.12)

on the strength of Equation 24.7, so, returning to the over-all sum,

L−1∑

n=0

Knf(x) ≤
C∑

k=1

bk−1∑

n=bk−1

Knf̃(x) + ε(bk − bk−1) +
L−1∑

n=bC

Knf(x)(24.13)

= εbC +
bC−1∑

n=0

Knf̃(x) +
L−1∑

n=bC

Knf(x) (24.14)

≤ εbC +
bC−1∑

n=0

Knf̃(x) +
L−1∑

n=bC

M (24.15)

≤ εbC + M(L− 1− bC) +
bC−1∑

n=0

Knf̃(x) (24.16)

≤ εbC + M(N − 1) +
bC−1∑

n=0

Knf̃(x) (24.17)

≤ εL + M(N − 1) +
L−1∑

n=0

Knf̃(x) (24.18)

where the last step, going from bC to L, uses the fact that both ε and f̃ are
non-negative. Taking expectations of both sides,

E

[
L−1∑

n=0

Knf(X)

]
≤ E

[
εL + M(N − 1) +

L−1∑

n=0

Knf̃(X)

]
(24.19)

L−1∑

n=0

E
[
Knf(X)

]
≤ εL + M(N − 1) +

L−1∑

n=0

E
[
Knf̃(X)

]
(24.20)

LE
[
f(x)

]
≤ εL + M(N − 1) + LE

[
f̃(X)

]
(24.21)
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using the fact that f is invariant on the left-hand side, and that m is stationary
on the other. Now divide both sides by L.

E
[
f(x)

]
≤ ε +

M(N − 1)
L

+ E
[
f̃(X)

]
(24.22)

≤ 2ε + E
[
f̃(X)

]
(24.23)

since MN/L ≤ ε. Now let’s bound E
[
f̃(X)

]
in terms of E [f ]:

E
[
f̃
]

=
∫

f̃(x)dm (24.24)

=
∫

Bc

f̃(x)dm +
∫

B
f̃(x)dm (24.25)

=
∫

Bc

f(x)dm +
∫

B
Mdm (24.26)

≤ E [f ] +
∫

B
Mdm (24.27)

= E [f ] + Mm(B) (24.28)

≤ E [f ] + M
ε

M
(24.29)

= E [f ] + ε (24.30)

using the definition of f̃ in Eq. 24.26, the non-negativity of f in Eq. 24.27, and
the bound on m(B) in Eq. 24.29. Substituting into Eq. 24.23,

E
[
f
]
≤ E [f ] + 3ε (24.31)

Since ε can be made arbitrarily small, we conclude that

E
[
f
]
≤ E [f ] (24.32)

as was to be shown.
The proof of E

[
f
]
≥ E [f ] proceeds in parallel, only the nice-ified function

f̃ is set equal to 0 on the bad set.
Since E

[
f
]
≥ E [f ] ≥ E

[
f
]
, we have that E

[
f − f

]
≥ 0. Since however it is

always true that f−f ≥ 0, we may conclude that f−f = 0 m-almost everywhere.
Thus m(Lf ) = 1, i.e., the time average converges m-almost everywhere. Since
this is an invariant event, it has the same measure under µ and its stationary
limit m, and so the time average converges µ-almost-everywhere as well. By
Corollary 292, Af = Em [f |I], as promised. !

Corollary 299 Under the assumptions of Theorem 298, all L1(m) functions
have ergodic properties, and Eq. 24.4 holds a.e. m and µ.

Proof: We need merely show that the ergodic properties hold, and then the
equation follows. To do so, define fM (x) ≡ f(x)∧M , an upper-limited version
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of the lim sup. Reasoning entirely parallel to the proof of Theorem 298 leads to
the conclusion that E

[
fM

]
≤ E [f ]. Then let M →∞, and apply the monotone

convergence theorem to conclude that E
[
f
]
≤ E [f ]; the rest of the proof goes

through as before. !


