
Chapter 25

Ergodicity

This lecture explains what it means for a process to be ergodic
or metrically transitive, gives a few characterizes of these proper-
ties (especially for AMS processes), and deduces some consequences.
The most important one is that sample averages have deterministic
limits.

25.1 Ergodicity and Metric Transitivity

Definition 300 A dynamical system Ξ,X , µ, T is ergodic, or an ergodic system
or an ergodic process when µ(C) = 0 or µ(C) = 1 for every T -invariant set C.
µ is called a T -ergodic measure, and T is called a µ-ergodic transformation, or
just an ergodic measure and ergodic transformation, respectively.

Remark: Most authorities require a µ-ergodic transformation to also be
measure-preserving for µ. But (Corollary 54) measure-preserving transforma-
tions are necessarily stationary, and we want to minimize our stationarity as-
sumptions. So what most books call “ergodic”, we have to qualify as “stationary
and ergodic”. (Conversely, when other people talk about processes being “sta-
tionary and ergodic”, they mean “stationary with only one ergodic component”;
but of that, more later.

Definition 301 A dynamical system is metrically transitive, metrically inde-
composable, or irreducible when, for any two sets A,B ∈ X , if µ(A), µ(B) > 0,
there exists an n such that µ(T−nA ∩B) > 0.

Remark: In dynamical systems theory, metric transitivity is contrasted with
topological transitivity: T is topologically transitive on a domain D if for any
two open sets U, V ⊆ D, the images of U and V remain in D, and there is
an n such that TnU ∩ V $= ∅. (See, e.g., Devaney (1992).) The “metric”
in “metric transitivity” refers not to a distance function, but to the fact that
a measure is involved. Under certain conditions, metric transitivity in fact
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implies topological transitivity: e.g., if D is a subset of a Euclidean space and
µ has a positive density with respect to Lebesgue measure. The converse is not
generally true, however: there are systems which are transitive topologically but
not metrically.

A dynamical system is chaotic if it is topologically transitive, and it contains
dense periodic orbits (Banks et al., 1992). The two facts together imply that a
trajectory can start out arbitrarily close to a periodic orbit, and so remain near
it for some time, only to eventually find itself arbitrarily close to a different
periodic orbit. This is the source of the fabled “sensitive dependence on ini-
tial conditions”, which paradoxically manifests itself in the fact that all typical
trajectories look pretty much the same, at least in the long run. Since metric
transitivity generally implies topological transitivity, there is a close connection
between ergodicity and chaos; in fact, most of the well-studied chaotic systems
are also ergodic (Eckmann and Ruelle, 1985), including the logistic map. How-
ever, it is possible to be ergodic without being chaotic: the one-dimensional
rotations with irrational shifts are, because there periodic orbits do not exist,
and a fortiori are not dense.

Proposition 302 A dynamical system is ergodic if it is metrically transitive.

Proof: By contradiction. Suppose there was an invariant set A whose µ-
measure was neither 0 nor 1; then Ac is also invariant, and has strictly positive
measure. By metric transitivity, for some n, µ(T−nA∩Ac) > 0. But T−nA = A,
and µ(A ∩Ac) = 0. So metrically transitive systems are ergodic. !

There is a partial converse.

Proposition 303 If a dynamical systems is ergodic and stationary, then it is
metrically transitive.

Proof: Take any µ(A), µ(B) > 0. Let Aever ≡
⋃∞

n=0 T−nA — the union of
A with all its pre-images. This set contains its pre-images, T−1Aever ⊆ Aever,
since if x ∈ T−nA, T−1x ∈ T−n−1A. The sequence of pre-images is thus non-
increasing, and so tends to a limiting set,

⋂∞
n=1

⋃∞
k=n T−kA = Ai.o., the set of

points which not only visit A eventually, but visit A infinitely often. This is an
invariant set (Lemma 264), so by ergodicity it has either measure 0 or measure
1. By the Poincaré recurrence theorem (Corollaries 66 and 67), since µ(A) > 0,
µ(Ai.o.) = 1. Hence, for any B, µ(Ai.o. ∩ B) = µ(B). But this means that, for
some n, µ(T−nA ∩B) > 0, and the process is metrically transitive. !

Theorem 304 A T transformation is µ-ergodic if and only if all T -invariant
observables are constant µ-almost-everywhere.

Proof: “Only if”: Because invariant observables are I-measurable (Lemma
262), the pre-image under an invariant observable f of any Borel set B is an
invariant set. Since every invariant set has µ-probability 0 or 1, the probability
that f(x) ∈ B is either 0 or 1, hence f is constant with probability 1. “If”: The
indicator function of an invariant set is an invariant function. If all invariant
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functions are constant µ-a.s., then for any A ∈ I, either 1A(x) = 0 or 1A(x) = 1
for µ-almost all x, which is the same as saying that either µ(A) = 0 or µ(A) = 1,
as required. !

Lemma 305 If µ is T -ergodic, and µ is AMS with stationary mean m, then

lim
t→∞

1
t

t−1∑

n=0

µ(B ∩ T−nC) = µ(B)m(C) (25.1)

for any measurable events B,C.

Proof: Exercise. !

Theorem 306 Suppose X is generated by a field F . Then an AMS measure µ,
with stationary mean m, is ergodic if and only if, for all F ∈ F ,

lim
t→∞

1
t

t−1∑

n=0

µ(F ∩ T−nF ) = µ(F )m(F ) (25.2)

i.e., iff Eq. 25.1 holds, taking B = C = F ∈ F .

Proof: “Only if”: Lemma 305. “If”: Exercise. !

25.1.1 Examples of Ergodicity

Example 307 (IID Sequences, Strong Law of Large Numbers) Every IID
sequence is ergodic. This is because the Kolmogorov 0-1 law states that every
tail event has either probability 0 or 1, and (exercise!) every invariant event is
a tail event. The strong law of large numbers is thus a two-line corollary of the
Birkhoff ergodic theorem.

Example 308 (Markov Chains) In the elementary theory of Markov chains,
an ergodic chain is one which is irreducible, aperiodic and positive recurrent.
To see that such a chain corresponds to an ergodic process in the present sense,
look at the shift operator on the sequence space. For consistency of notation, let
S1, S2, . . . be the values of the Markov chain in Σ, and X be the semi-infinite
sequence in sequence space Ξ, with shift operator T , and distribution µ over
sequences. µ is the product of an initial distribution ν ∼ S1 and the Markov-
family kernel. Now, “irreducible” means that one goes from every state to every
other state with positive probability at some lag, i.e., for every s1, s2 ∈ Σ, there
is an n such that P (Sn = s2|S1 = s1) > 0. But, writing [s] for the cylinder set in
Ξ with base s, this means that, for every [s1], [s2], µ(T−n[s2]∩[s1]) > 0, provided
µ([s1]) > 0. The Markov property of the S chain, along with positive recurrence,
can be used to extend this to all finite-dimensional cylinder sets (exercise!), and
so, by a generating-class argument, to all measurable sets.
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Example 309 (Deterministic Ergodicity: The Logistic Map) We have seen
that the logistic map, Tx = 4x(1− x), has an invariant density (with respect to
Lebesgue measure). It has an infinite collection of invariant sets, but the only
invariant interval is the whole state space [0, 1] — any smaller interval is not
invariant. From this, it is easy to show that all the invariant sets either have
measure 0 or measure 1 — they differ from ∅ or from [0, 1] by only a countable
collection of points. Hence, the invariant measure is ergodic. Notice, too, that
the Lebesgue measure on [0, 1] is ergodic, but not invariant.

Example 310 (Invertible Ergodicity: Rotations) Let Ξ = [0, 1), Tx =
x + φ mod 1, and let µ be the Lebesgue measure on Ξ. (This corresponds to
a rotation, where the angle advances by 2πφ radians per unit time.) Clearly,
T preserve µ. If φ is rational, then, for any x, the sequence of iterates will
visit only finitely many points, and the process is not ergodic, because one can
construct invariant sets whose measure is neither 0 nor 1. (You may construct
such a set by taking any one of the periodic orbits, and surrounding its points
by internals of sufficiently small, yet positive, width.) If, on the other hand, φ
is irrational, then Tnx never repeats, and it is easy to show that the process is
ergodic, because it is metrically transitive. Nonetheless, T is invertible.

This example (suitably generalized to multiple coordinates) is very important
in physics, because many mechanical systems can be represented in terms of
“action-angle” variables, the speed of rotation of the angular variables being set
by the actions, which are conserved, energy-like quantities. See Mackey (1992);
Arnol’d and Avez (1968) for the ergodicity of rotations and its limitations, and
Arnol’d (1978) for action-angle variables. Astonishingly, the result for the one-
dimensional case was proved by Nicholas Oresme in the 14th century (von Plato,
1994).

Example 311 Ergodicity does not ensure a uni-directional evolution of the den-
sity. (Some people (Mackey, 1992) believe this has great bearing on the foun-
dations of thermodynamics.) For a particularly extreme example, which also
illustrates why elementary Markov chain theory insists on aperiodicity, consider
the period-two deterministic chain, where state A goes to stae B with probability
1, and vice versa. Every sample path spends just much time in state A as in
state B, so every time average will converge on Em [f ], where m puts equal prob-
ability on both states. It doesn’t matter what initial distribution we use, because
they are all ergodic (the only invariant sets are the whole space and the empty
set, and every distribution gives them probability 1 and 0, respectively). The
uniform distribution is the unique stationary distribution, but other distribu-
tions do not approch it, since U2nν = ν for every integer n. So, Atf → Em [f ]
a.s., but L (Xn) $→ m. We will see later that aperiodicity of Markov chains con-
nects to “mixing” properties, which do guarantee stronger forms of distributional
convergence.



CHAPTER 25. ERGODICITY 171

25.1.2 Consequences of Ergodicity

The most basic consequence of ergodicity is that time-averages converge to
deterministic, rather than random, limits.

Theorem 312 Suppose µ is AMS, with stationary mean m, and T -ergodic.
Then, almost surely,

lim
t→∞

Atf(x) = Em [f ] (25.3)

for µ- and m- almost all x, for any L1(m) observable f .

Proof: Because every invariant set has µ-probability 0 or 1, it likewise has m-
probability 0 or 1 (Lemma 287). Hence, Em [f ] is a version of Em [f |I]. Since
Atf is also a version of Em [f |I] (Corollary 299), they are equal almost surely.
!

An important consequence is the following. Suppose St is a strictly sta-
tionary random sequence. Let Φt(S) = f(St+τ1 , St+τ2 , . . . St+τn) for some fixed
collection of shifts τn. Then Φt is another strictly stationary random sequence.
Every strictly stationary random sequence can be represented by a measure-
preserving transformation (Theorem 52), where X is the sequence S1, S2, . . ., the
mapping T is just the shift, and the measure µ is the infinite-dimensional mea-
sure of the original stochastic process. Thus Φt = φ(Xt), for some measurable
function φ. If the measure is ergodic, and E [Φ] is finite, then the time-average
of Φ converges almost surely to its expectation. In particular, let Φt = StSt+τ .
Then, assuming the mixed moments are finite, t−1

∑∞
t=1 StSt+τ → E [StSt+τ ]

almost surely, and so the sample covariance converges on the true covariance.
More generally, for a stationary ergodic process, if the n-point correlation func-
tions exist, the sample correlation functions converge a.s. on the true correlation
functions.

25.2 Preliminaries to Ergodic Decompositions

It is always the case, with a dynamical system, that if x lies within some invariant
set A, then all its future iterates stay within A as well. In general, therefore, one
might expect to be able to make some predictions about the future trajectory
by knowing which invariant sets the initial condition lies within. An ergodic
process is one where this is actually not possible. Because all invariants sets
have probability 0 or 1, they are all independent of each other, and indeed of
every other set. Therefore, knowing which invariant sets x falls into is completely
uninformative about its future behavior. In the more general non-ergodic case,
a limited amount of prediction is however possible on this basis, the limitations
being set by the way the state space breaks up into invariant sets of points with
the same long-run average behavior — the ergodic components. Put slightly
differently, the long-run behavior of an AMS system can be represented as a
mixture of stationary, ergodic distributions, and the ergodic components are, in
a sense, a minimal parametrically sufficient statistic for this distribution. (They
are not in generally predictively sufficient.)
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The idea of an ergodic decomposition goes back to von Neumann, but was
considerably refined subsequently, especially by the Soviet school, who seem to
have introduced most of the talk of predictions, and all of the talk of ergodic
components as minimal sufficient statistics. Our treatment will follow Gray
(1988, ch. 7), and Dynkin (1978). The rest of this lecture will handle some
preliminary propositions about combinations of stationary measures.

Proposition 313 Any convex combination of invariant probability measures is
an invariant probability measure.

Proof: Let µ1 and µ2 be two invariant probability measures. It is elementary
that for every 0 ≤ a ≤ 1, ν ≡ aµ1 + (1 − a)µ2 is a probability measure. Now
consider the measure under ν of the pre-image of an arbitrary measurable set
B ∈ X :

ν(T−1B) = aµ1(T−1B) + (1− a)µ2(T−1B) (25.4)
= aµ1(B) + (1− a)µ2(B) (25.5)
= ν(B) (25.6)

so ν is also invariant. !

Proposition 314 If µ1 and µ2 are invariant ergodic measures, then either µ1 =
µ2, or they are singular, meaning that there is a set B on which µ1(B) = 0,
µ2(B) = 1.

Proof: Suppose µ1 $= µ2. Then there is at least one set C where µ1(C) $=
µ2(C). Because both µi are stationary and ergodic, At1C(x) converges to µi(C)
for µi-almost-all x. So the set

{
x| lim

t
At1C(x) = µ2(C)

}

has a µ2 measure of 1, and a µ1 measure of 0 (since, by hypothesis, µ1(C) $=
µ2(C). !

Proposition 315 Ergodic invariant measures are extremal points of the convex
set of invariant measures, i.e., they cannot be written as combinations of other
invariant measures.

Proof: By contradiction. That is, suppose µ is ergodic and invariant, and
that there were invariant measures ν and λ, and an a ∈ (0, 1), such that µ =
aν + (1 − a)λ. Let C be any invariant set; then µ(C) = 0 or µ(C) = 1.
Suppose µ(C) = 0. Then, because a is strictly positive, it must be the case that
ν(C) = λ(C) = 0. If µ(C) = 1, then Cc is also invariant and has µ-measure 0,
so ν(Cc) = λ(Cc) = 0, i.e., ν(C) = λ(C) = 1. So ν and λ would both have to
be ergodic, with the same support as µ. But then (Proposition 314 preceeding)
λ = ν = µ. !

Remark: The converse is left as an exercise (25.2).
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25.3 Exercises

Exercise 25.1 Prove Lemma 305.

Exercise 25.2 Prove the converse to Proposition 315: every extermal point of
the convex set of invariant measures is an ergodic measure.


