
Chapter 26

Decomposition of
Stationary Processes into
Ergodic Components

This chapter is concerned with the decomposition of asymptotically-
mean-stationary processes into ergodic components.

Section 26.1 shows how to write the stationary distribution as a
mixture of distributions, each of which is stationary and ergodic, and
each of which is supported on a distinct part of the state space. This
is connected to ideas in nonlinear dynamics, each ergodic component
being a different basin of attraction.

Section 26.2 lays out some connections to statistical inference:
ergodic components can be seen as minimal sufficient statistics, and
lead to powerful tests.

26.1 Construction of the Ergodic Decomposi-
tion

In the last lecture, we saw that the stationary distributions of a given dynamical
system form a convex set, with the ergodic distributions as the extremal points.
A standard result in convex analysis is that any point in a convex set can
be represented as a convex combination of the extremal points. Thus, any
stationary distribution can be represented as a mixture of stationary and ergodic
distributions. We would like to be able to determine the weights used in the
mixture, and even more to give them some meaningful stochastic interpretation.

Let’s begin by thinking about the effective distribution we get from taking
time-averages starting from a given point. For every measurable set B, and
every finite t, At1B(x) is a well-defined measurable function. As B ranges over
the σ-field X , holding x and t fixed, we get a set function, and one which,
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moreover, meets the requirements for being a probability measure. Suppose we
go further and pass to the limit.

Definition 316 (Long-Run Distribution) The long-run distribution start-
ing from the point x is the set function λ(x), defined through λ(x, B) = limt At1B(x),
when the limit exists for all B ∈ X . If λ(x) exists, x is an ergodic point. The
set of all ergodic points is E.

Notice that whether or not λ(x) exists depends only on x (and T and X );
the initial distribution has nothing to do with it. Let’s look at some properties
of the long-run distributions. (The name “ergodic point” is justified by one of
them, Proposition 318.)

Proposition 317 If x ∈ E, then λ(x) is a probability distribution.

Proof: For every t, the set function given by At1B(x) is clearly a probability
measure. Since λ(x) is defined by passage to the limit, the Vitali-Hahn Theorem
(285) says λ(x) must be as well. !

Proposition 318 If x ∈ E, then λ(x) is ergodic.

Proof: For every invariant set I, 1I(Tnx) = 1I(x) for all n. Hence A1I(x)
exists and is either 0 or 1. This means λ(x) assigns every invariant set either
probability 0 or probability 1, so by Definition 300 it is ergodic. !

Proposition 319 If x ∈ E, then λ(x) is an invariant function of x, i.e., λ(x) =
λ(Tx).

Proof: By Lemma 275, A1B(x) = A1B(Tx), when the appropriate limit exists.
Since, by assumption, it does in this case, for every measurable set λ(x,B) =
λ(Tx,B), and the set functions are thus equal. !

Proposition 320 If x ∈ E, then λ(x) is a stationary distribution.

Proof: For all B and x, 1T−1B(x) = 1B(Tx). So λ(x, T−1B) = λ(Tx,B).
Since, by Proposition 319, λ(Tx,B) = λ(x, B), it finally follows that λ(x,B) =
λ(x, T−1B), which proves that λ(x) is an invariant distribution. !

Proposition 321 If x ∈ E and f ∈ L1(λ(x)), then limt Atf(x) exists, and is
equal to Eλ(x) [f ].

Proof: This is true, by the definition of λ(x), for the indicator functions of
all measurable sets. Thus, by linearity of At and of expectation, it is true for
all simple functions. Standard arguments then let us pass to all the functions
integrable with respect to the long-run distribution. !

At this point, you should be tempted to argue as follows. If µ is an AMS
distribution with stationary mean m, then Af(x) = Em [f |I] for almost all x.
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So, it’s reasonable to hope that m is a combination of the λ(x), and yet further
that

Af(x) = Eλ(x) [f ]

for µ-almost-all x. This is basically true, but will take some extra assumptions
to get it to work.

Definition 322 (Ergodic Component) Two ergodic points x, y ∈ E belong
to the same ergodic component when λ(x) = λ(y). We will write the ergodic
components as Ci, and the function mapping x to its ergodic component as φ(x).
φ(x) is not defined if x is not an ergodic point. By a slight abuse of notation,
we will write λ(Ci, B) for the common long-run distribution of all points in Ci.

Obviously, the ergodic components partition the set of ergodic points. (The
partition is not necessarily countable, and in some important cases, such as
that of Hamiltonian dynamical systems in statistical mechanics, it must be
uncountable (Khinchin, 1949).) Intuitively, they form the coarsest partition
which is still fully informative about the long-run distribution. It’s also pretty
clear that the partition is left alone with the dynamics.

Proposition 323 For all ergodic points x, φ(x) = φ(Tx).

Proof: By Lemma 319, λ(x) = λ(Tx), and the result follows. !
Notice that I have been careful not to say that the ergodic components are

invariant sets, because we’ve been using that to mean sets which are both left
along by the dynamics and are measurable, i.e. members of the σ-field X , and
we have not established that any ergodic component is measurable, which in
turn is because we have not established that λ(x) is a measurable function.

Let’s look a little more closely at the difficulty. If B is a measurable set,
then At1B(x) is a measurable function. If the limit exists, then A1B(x) is also
a measurable function, and consequently the set {y : A1B(y) = A1B(x)} is a
measurable set. Then

φ(x) =
⋂

B∈X
{y : A1B(x) = A1B(y)} (26.1)

gives the ergodic component to which x belongs. The difficulty is that the
intersection is over all measurable sets B, and there are generally an uncountable
number of them (even if Ξ is countable!), so we have no guarantee that the
intersection of uncountably many measurable sets is measurable. Consequently,
we can’t say that any of the ergodic components is measurable.

The way out, as so often in mathematics, is to cheat; or, more politely,
to make an assumption which is strong enough to force open an exit, but not
so strong that we can’t support it or verify it1 What we will assume is that

1For instance, we could just assume that uncountable intersections of measurable sets
are measurable, but you will find it instructive to try to work out the consequences of this
assumption, and to examine whether it holds for the Borel σ-field B — say on the unit interval,
to keep things easy.
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there is a countable collection of sets G such that λ(x) = λ(y) if and only if
λ(x,G) = λ(y, G) for every G ∈ G. Then the intersection in Eq. 26.1 need only
run over the countable class G, rather than all of X , which will be enough to
reassure us that φ(x) is a measurable set.

Definition 324 (Countable Extension Space) A measurable space Ω,F is
a countable extension space when there is a countable field G of sets in Ω such
that F = σ(G), i.e., G is the generating field of the σ-field, and any normalized,
non-negative, finitely-additive set function on G has a unique extension to a
probability measure on F .

The reason the countable extension property is important is that it lets us
get away with just checking properties of measures on a countable class (the
generating field G). Here are a few important facts about countable extension
spaces; proofs, along with a much more detailed treatment of the general theory,
are given by Gray (1988, chs. 2 and 3), who however calls them “standard”
spaces.

Proposition 325 Every countable space is a countable extension space.

Proposition 326 Every Borel space is a countable extension space.

Remember that finite-dimensional Euclidean spaces are Borel spaces.

Proposition 327 A countable product of countable extension spaces is a count-
able extension space.

The last proposition is important for us: if Σ is a countable extension space,
it means that Ξ ≡ ΣN is too. So if we have a discrete- or Euclidean- valued
random sequence, we can switch to the sequence space, and still appeal to
generating-class arguments based on countable fields. Without further ado,
then, let’s assume that Ξ, the state space of our dynamical system, is a countable
extension space, with countable generating field G.

Lemma 328 x ∈ E iff limt At1G(x) converges for every G ∈ G.

Proof: “If”: A direct consequence of Definition 324, since the set function
A1G(x) extends to a unique measure. “Only if”: a direct consequence of Defi-
nition 316, since every member of the generating field is a measurable set. !

Lemma 329 The set of ergodic points is measurable: E ∈ X .

Proof: For each G ∈ G, the set of x where At1G(x) converges is measurable,
because G is a measurable set. The set where those relative frequencies converge
for all G ∈ G is the intersection of countably many measurable sets, hence itself
measurable. This set is, exactly, the set of ergodic points (Lemma 328). !
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Lemma 330 All the ergodic components are measurable sets, and φ(x) is a
measurable function. Thus, all Ci ∈ I.

Proof: For each G, the set {y : λ(y, G) = λ(x,G)} is measurable. So their
intersection over all G ∈ G is also measurable. But, by the countable extension
property, this intersection is precisely the set {y : λ(y) = λ(x)}. So the ergodic
components are measurable sets, and, since φ−1(Ci) = Ci, φ is measurable.
Since we have already seen that T−1Ci = Ci, and now that Ci ∈ X , we may
say that Ci ∈ I. !

Remark: Because Ci is a (measurable) invariant set, λ(x, Ci) = 1 for every
x ∈ Ci. However, it does not follow that there might not be a smaller set, also
with long-run measure 1, i.e., there might be a B ⊂ Ci such that λ(x, B) = 1.
For an extreme example, consider the uniform contraction on R, with Tx = ax
for some 0 ≤ a ≤ 1. Every trajectory converges on the origin. The only ergodic
invariant measure the the Dirac delta function. Every point belongs to a single
ergodic component.

More generally, if a little roughly2, the ergodic components correspond to
the dynamical systems idea of basins of attraction, while the support of the
long-run distributions corresponds to the actual attractors. Basins of attraction
typically contain points which are not actually parts of the attractor.

Theorem 331 (Ergodic Decomposition of AMS Processes) Suppose Ξ,X
is a countable extension space. If µ is an asymptotically mean stationary mea-
sure on Ξ, with stationary mean m, then µ(E) = m(E) = 1, and, for any
f ∈ L1(m), and µ- and m- almost all x,

Af(x) = Eλ(x) [f ] = Em [f |I] (26.2)

so that
m(B) =

∫
λ(x,B)dµ(x) (26.3)

Proof: For every set G ∈ G, At1G(x) converges for µ- and m- almost all
x (Theorem 298). Since there are only countably many G, the set on which
they all converge also has probability 1; this set is E. Since (Proposition 321)
Af(x) = Eλ(x) [f ], and (Theorem 298 again) Af(x) = Em [f |I] a.s., we have
that Eλ(x) [f ] = Em [f |I] a.s.

Now let f = 1B . As we know (Lemma 289), Eµ [A1B(X)] = Em [1B(X)] =
m(B). But, for each x, A1B(x) = λ(x, B), so m(B) = Eµ [λ(X, B)]. !

In words, we have decomposed the stationary mean m into the long-run
distributions of the ergodic components, with weights given by the fraction of
the initial measure µ falling into each component. Because of Propositions 313
and 315, we may be sure that by mixing stationary ergodic measures, we obtain
an ergodic measure, and that our decomposition is unique.

2I don’t want to get into subtleties arising from the dynamicists tendency to define things
topologically, rather than measure-theoretically.
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26.2 Statistical Aspects

26.2.1 Ergodic Components as Minimal Sufficient Statis-
tics

The connection between sufficient statistics and ergodic decompositions is a very
pretty one. First, recall the idea of parametric statistical sufficiency.3

Definition 332 (Sufficiency, Necessity) Let P be a class of probability mea-
sures on a common measurable space Ω,F , indexed by a parameter θ. A σ-field
S ⊆ F is parametrically sufficient for θ, or just sufficient, when Pθ (A|S) =
Pθ′ (A|S) for all θ, θ′. That is, all the distributions in P have the same distri-
bution, conditional on S. A random variable such that S = σ(S) is called a
sufficient statistic. A σ-field is necessary (for the parameter θ) if it is a sub-
σ-field of every sufficient σ-field; a necessary statistic is defined similarly. A
σ-field which is both necessary and sufficient is minimal sufficient.

Remark: The idea of sufficiency originates with Fisher; that of necessity, so
far as I can work out, with Dynkin. This definition (after Dynkin (1978)) is
based on what ordinary theoretical statistics texts call the “Neyman factoriza-
tion criterion” for sufficiency. We will see all these concepts again when we do
information theory.

Lemma 333 S is sufficient for θ if and only if there exists an F-measurable
function λ(ω, A) such that

Pθ (A|S) = λ(ω, A) (26.4)

almost surely, for all θ.

Proof: Nearly obvious. “Only if”: since the conditional probability exists,
there must be some such function (it’s a version of the conditional probabil-
ity), and since all the conditional probabilities are versions of one another, the
function cannot depend on θ. “If”: In this case, we have a single function
which is a version of all the conditional probabilities, so it must be true that
Pθ (A|S) = Pθ′ (A|S). !

Theorem 334 If a process on a countable extension space is asymptotically
mean stationary, then φ is a minimal sufficient statistic for its long-run distri-
bution.

Proof: The set of distributions P is now the set of all long-run distributions
generated by the dynamics, and θ is an index which tracks them all unambigu-
ously. We need to show both sufficiency and necessity. Sufficiency: The σ-field

3There is also a related idea of predictive statistical sufficiency, which we unfortunately
will not be able to get to. Also, note that most textbooks on theoretical statistics state things
in terms of random variables and measurable functions thereof, rather than σ-fields, but this
is the more general case (Blackwell and Girshick, 1954).
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generated by φ is the one generated by the ergodic components, σ({Ci}). (Be-
cause the Ci are mutually exclusive, this is a particularly simple σ-field.) Clearly,
Pθ (A|σ({Ci})) = λ(φ(x), A) for all x and θ, so (Lemma 333), φ is a sufficient
statistic. Necessity: Follows from the fact that a given ergodic component con-
tains all the points with a given long-run distribution. Coarser σ-fields will not,
therefore, preserve conditional probabilities. !

This theorem may not seem particularly exciting, because there isn’t, neces-
sarily, anything whose distribution matches the long-run distribution. However,
it has deeper meaning under two circumstances when λ(x) really is the asymp-
totic distribution of random variables.

1. If Ξ is really a sequence space, so that X = S1, S2, S3, . . ., then λ(x)
really is the asymptotic marginal distribution of the St, conditional on
the starting point.

2. Even if Ξ is not a sequence space, if stronger conditions than ergodicity
known as “mixing”, “asymptotic stability”, etc., hold, there are reason-
able senses in which L (Xt) does converge, and converges on the long-run
distribution.4

In both these cases, knowing the ergodic component thus turns out to be neces-
sary and sufficient for knowing the asymptotic distribution of the observables.
(Cf. Corollary 337 below.)

26.2.2 Testing Ergodic Hypotheses

Finally, let’s close with an application to hypothesis testing, inspired by Badino
(2004).

Theorem 335 Let Ξ,X be a measurable space, and let µ0 and µ1 be two infinite-
dimensional distributions of one-sided, discrete-parameter strictly-stationary Σ-
valued stochastic processes, i.e., µ0 and µ1 are distributions on ΞN,XN, and
they are invariant under the shift operator. If they are also ergodic under the
shift, then there exists a sequence of sets Rt ∈ X t such that µ0(Rt) → 0 while
µ1(Rt) → 1.

Proof: By Proposition 314, there exists a set R ∈ XN such that µ0(R) = 0,
µ1(R) = 1. So we just need to approximate B by sets which are defined on
the first t observations in such a way that µi(Rt) → µi(R). If Rt ↓ R, then
monotone convergence will give us the necessary convergence of probabilities.
Here is a construction with cylinder sets5 that gives us the necessary sequence

4Lemma 305 already gave us a kind of distributional convergence, but it is of a very
weak sort, known as “convergence in Cesàro mean”, which was specially invented to handle
sequences which are not convergent in normal senses! We will see that there is a direct
correspondence between levels of distributional convergence and levels of decay of correlations.

5Introduced in Chapters 2 and 3. It’s possible to give an alternative construction using the
Hilbert space of all square-integrable random variables, and then projecting onto the subspace
of those which are X t measurable.
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of approximations. Let

Rt ≡ R ∪
∞∏

n=t+1

Ξt (26.5)

Clearly, Rt forms a non-increasing sequence, so it converges to a limit, which
equally clearly must be R. Hence µi(Rt) → µi(R) = i. !

Remark: “R” is for “rejection”. Notice that the regions Rt will in general
depend on the actual sequence X1, X2, . . . Xt ≡ Xt

1, and not necessarily be
permutation-invariant. When we come to the asymptotic equipartition theorem
in information theory, we will see a more explicit way of constructing such tests.

Corollary 336 Let H0 be “Xi are IID with distribution p0” and H1 be “Xi are
IID with distribution p1”. Then, as t → ∞, there exists a sequence of tests of
H0 against H1 whose size goes to 0 while their power goes to 1.

Proof: Let µ0 be the product measure induced by p0, and µ1 the product
measure induced p1, and apply the previous theorem. !

Corollary 337 If X is a strictly stationary (one-sided) random sequence whose
shift representation has countably-many ergodic components, then there exists a
sequence of functions φt, each Xt-measurable, such that φt(Xt

1) converges on the
ergodic component with probability 1.

Proof: From Theorem 52, we can write Xt
1 = π1:tU , for a sequence-valued

random variable U , using the projection operators of Chapter 2. For each
ergodic component, by Theorem 335, there exists a sequence of sets Rt,i such
that P (Xt

1 ∈ Rt,i) → 1 if U ∈ Ci, and goes to zero otherwise. Let φ(Xt
1) be the

set of all Ci for which Xt
1 ∈ Rt,i. By Theorem 331, U is in some component with

probability 1, and, since there are only countably many ergodic components,
with probability 1 Xt

1 will eventually leave all but one of the Rt,i. The remaining
one is the ergodic component. !


