
Chapter 27

Mixing

A stochastic process is mixing if its values at widely-separated
times are asymptotically independent.

Section 27.1 defines mixing, and shows that it implies ergodicity.
Section 27.2 gives some examples of mixing processes, both de-

terministic and non-deterministic.
Section 27.3 looks at the weak convergence of distributions pro-

duced by mixing, and the resulting decay of correlations.
Section 27.4 defines strong mixing, and the “mixing coefficient”

which measures it. It then states, but does not prove, a central limit
theorem for strongly mixing sequences. (The proof would demand
first working through the central limit theorem for martingales.)

For stochastic processes, “mixing” means “asymptotically independent”:
that is, the statistical dependence between X(t1) and X(t2) goes to zero as
|t1− t2| increases. To make this precise, we need to specify how we measure the
dependence between X(t1) and X(t2). The most common and natural choice
(first used by Rosenblatt, 1956) is the total variation distance between their
joint distribution and the product of their marginal distributions, but there are
other ways of measuring such “decay of correlations”1. Under all reasonable
choices, IID processes are, naturally enough, special cases of mixing processes.
This suggests that many of the properties of IID processes, such as laws of
large numbers and central limit theorems, should continue to hold for mixing
processes, at least if the approach to independence is sufficiently rapid. This in
turn means that many statistical methods originally developed for the IID case
will continue to work when the data-generating process is mixing; this is true
both of parametric methods, such as linear regression, ARMA models being
mixing (Doukhan, 1995, sec. 2.4.1), and of nonparametric methods like kernel
prediction (Bosq, 1998). Considerations of time will prevent us from going into

1The term is common, but slightly misleading: lack of correlation, in the ordinary
covariance-normalized-by-standard-deviations sense, implies independence only in special
cases, like Gaussian processes. Nonetheless, see Theorem 350.

182



CHAPTER 27. MIXING 183

the purely statistical aspects of mixing processes, but the central limit theorem
at the end of this chapter will give some idea of the flavor of results in this area:
much like IID results, only with the true sample size replaced by an effective
sample size, with a smaller discount the faster the rate of decay of correlations.

27.1 Definition and Measurement of Mixing

Definition 338 (Mixing) A dynamical system Ξ,X , µ, T is mixing when, for
any A,B ∈ X ,

lim
t→∞

|µ(A ∩ T−tB)− µ(A)µ(T−tB)| = 0 (27.1)

Lemma 339 If µ is T -invariant, mixing is equivalent to

lim
t→∞

µ(A ∩ T−tB) = µ(A)µ(B) (27.2)

Proof: By stationarity, µ(T−tB) = µ(B), so µ(A)µ(T−tB) = µ(A)µ(B). The
result follows. !

Theorem 340 Mixing implies ergodicity.

Proof: Let A be any invariant set. By mixing, limt µ(T−tA ∩A) = µ(T−tA)µ(A).
But T−tA = A for every t, so we have lim µ(A) = µ2(A), or µ(A) = µ2(A). This
can only be true if µ(A) = 0 or
mu(A) = 1, i.e., only if µ is T -ergodic. !

Everything we have established about ergodic processes, then, applies to
mixing processes.

Definition 341 A dynamical system is asymptotically stationary, with station-
ary limit m, when limt µ(T−tA) = m(A) for all A ∈ X .

Lemma 342 An asymptotically stationary system is mixing iff

lim
t→∞

µ(A ∩ T−tB) = µ(A)m(B) (27.3)

for all A,B ∈ X .

Proof: Directly from the fact that in this case m(B) = limt T−tB. !

Theorem 343 Suppose G is a π-system, and µ is an asymptotically stationary
measure. If

lim
t

∣∣µ(A ∩ T−tB)− µ(A)µ(T−tB)
∣∣ = 0 (27.4)

for all A,B ∈ G, then it holds for all pairs of sets in σ(G). If σ(G) = X , then
the process is mixing.
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Proof(after Durrett, 1991, Lemma 6.4.3): Via the π-λ theorem, of course. Let
ΛA be the class of all B such that the equation holds, for a given A ∈ G. We
need to show that ΛA really is a λ-system.

Ξ ∈ ΛA is obvious. T−tΞ = Ξ so µ(A ∩ Ξ) = µ(A) = µ(A)µ(Ξ).
Closure under complements. Let B1 and B2 be two sets in ΛA, and assume

B1 ⊂ B2. Because set-theoretic operations commute with taking inverse images,
T−t (B2 \B1) = T−tB2 \ T−tB1. Thus

0 ≤ |µ
(
A ∩ T−t (B2 \B1)

)
− µ(A)µ(T−t (B2 \B1))| (27.5)

= |µ(A ∩ T−tB2)− µ(A ∩ T−tB1)− µ(A)µ(T−tB2) + µ(A)µ(T−tB1)|
≤ |µ(A ∩ T−tB2)− µ(A)µ(T−tB2)| (27.6)

+|µ(A ∩ T−tB1)− µ(A)µ(T−tB1)|

Taking limits of both sides, we get that lim |µ (A ∩ T−t (B2 \B1))− µ(A)µ(T−t (B2 \B1))| =
0, so that B2 \B1 ∈ ΛA.

Closure under monotone limits: Let Bn be any monotone increasing sequence
in ΛA, with limit B. Thus, µ(Bn) ↑ µ(B), and at the same time m(Bn) ↑ m(B),
where m is the stationary limit of µ. Using Lemma 342, it is enough to show
that

lim
t

µ(A ∩ T−tB) = µ(A)m(B) (27.7)

Since Bn ⊂ B, we can always use the following trick:

µ(A ∩ T−tB) = µ(A ∩ T−tBn) + µ(A ∩ T−t(B \Bn)) (27.8)
lim

t
µ(A ∩ T−tB) = µ(A)m(Bn) + lim

t
µ(A ∩ T−t(B \Bn)) (27.9)

For any ε > 0, µ(A)m(Bn) can be made to come within ε of µ(A)m(B) by
taking n sufficiently large. Let us now turn our attention to the second term.

0 ≤ lim
t

µ(A ∩ T−t(B \Bn)) = lim
t

µ(T−t(B \Bn)) (27.10)

= lim
t

µ(T−tB \ T−tBn) (27.11)

= lim
t

µ(T−tB)− lim
t

µ(T−tBn) (27.12)

= m(B)−m(Bn) (27.13)

which again can be made less than any positive ε by taking n large. So, for
sufficiently large n, limt µ(A ∩ T−tB) is always within 2ε of µ(A)m(B). Since ε
can be made arbitrarily small, we conclude that limt µ(A ∩ T−tB) = µ(A)m(B).
Hence, B ∈ ΛA.

We conclude, from the π− λ theorem, that Eq. 27.4 holds for all A ∈ G and
all B ∈ σ(G). The same argument can be turned around for A, to show that
Eq. 27.4 holds for all pairs A,B ∈ σ(G). If G generates the whole σ-field X ,
then clearly Definition 338 is satisfied and the process is mixing. !
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27.2 Examples of Mixing Processes

Example 344 (IID Sequences) IID sequences are mixing from Theorem 343,
applied to finite-dimensional cylinder sets.

Example 345 (Ergodic Markov Chains) Another application of Theorem
343 shows that ergodic Markov chains are mixing.

Example 346 (Irrational Rotations of the Circle are Not Mixing) Irrational
rotations of the circle, Tx = x + φ mod 1, φ irrational, are ergodic (Example
310), and stationary under the Lebesgue measure. They are not, however, mix-
ing. Recall that T tx is dense in the unit interval, for arbitrary initial x. Because
it is dense, there is a sequence tn such that tnφ mod 1 goes to 1/2. Now let
A = [0, 1/4]. Because T maps intervals to intervals (of equal length), it follows
that T−tnA becomes an interval disjoint from A, i.e., µ(A ∩ T−tnA) = 0. But
mixing would imply that µ(A∩T−tnA)→ 1/16 > 0, so the process is not mixing.

Example 347 (Deterministic, Reversible Mixing: The Cat Map) Here
Ξ = [0, 1)2, X are the appropriate Borel sets, µ is Lebesgue measure on the
square, and Tx = (x1 + x2, x1 + 2x2) mod 1. This is known as the cat map. It
is a deterministic, invertible transformation, but it can be shown that it is actu-
ally mixing. (For a proof, which uses Theorem 349, the Fibonacci numbers and
a clever trick with Fourier transforms, see Lasota and Mackey (1994, example
4.4.3, pp. 77–78).) The origins of the name lie with a figure in Arnol’d and
Avez (1968), illustrating the mixing action of the map by successively distorting
an image of a cat.

27.3 Convergence of Distributions Under Mix-
ing

To show how distributions converge (weakly) under mixing, we need to recall
some properties of Markov operators. Remember that, for a Markov process,
the time-evolution operator for observables, K, was defined through Kf(x) =
E [f(X1)|X0 = x]. Remember also that it induces an adjoint operator for the
evolution of distributions, taking signed measures to signed measures, through
the intermediary of the transition kernel. We can view the measure-updating
operator U as a linear operator on L1(µ), which takes non-negative µ-integrable
functions to non-negative µ-integrable functions, and probability densities to
probability densities. Since dynamical systems are Markov processes, all of this
remains valid; we have K defined through Kf(x) = f(Tx), and U through the
adjoint relationship, Eµ [f(X)Kg(X)] = E [Uf(X)g(X)]µ, where g ∈ L∞ and
f ∈ L1(µ). These relations continue to remain valid for powers of the operators.

Lemma 348 In any Markov process, Und converges weakly to 1, for all initial
probability densities d, if and only if Unf converges weakly to Eµ [f ], for all
initial L1 functions f , i.e. Eµ [Unf(X)g(X)] → Eµ [f(X)]Eµ [g(X)] for all
bounded, measurable g.
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Proof: “If”: If d is a probability density with respect to µ, then Eµ [d] = 1.
“Only if”: Re-write an arbitrary f ∈ L1(µ) as the difference of its positive
and negative parts, f = f+ − f−. A positive f is a re-scaling of some density,
f = cd for constant c = Eµ [f ] and a density d. Through the linearity of U and
its powers,

lim U tf = lim U tf+ − lim U tf− (27.14)
= Eµ

[
f+

]
limU td+ −Eµ

[
f−

]
limU td− (27.15)

= Eµ

[
f+

]
−Eµ

[
f−

]
(27.16)

= Eµ

[
f+ − f−

]
= Eµ [f ] (27.17)

using the linearity of expectations at the last step. !
Theorem 349 A T -invariant probability measure µ is T -mixing if and only if
any initial probability measure ν << µ converges weakly to µ under the action
of T , i.e., iff, for all bounded, measurable f ,

EUtν [f(X)]→ Eµ [f(X)] (27.18)

Proof: Exercise. The way to go is to use the previous lemma, of course. With
that tool, one can prove that the convergence holds for indicator functions, and
then for simple functions, and finally, through the usual arguments, for all L1

densities.

Theorem 350 (Decay of Correlations) A stationary system is mixing if and
only if

lim
t→∞

cov (f(X0), g(Xt)) = 0 (27.19)

for all bounded observables f , g.

Proof: Exercise, from the fact that convergence in distribution implies con-
vergence of expectations of all bounded measurable functions. !

It is natural to ask what happens if U tν → µ not weakly but strongly. This
is known as asymptotic stability or (especially in the nonlinear dynamics liter-
ature) exactness. Remarkably enough, it is equivalent to the requirement that
µ(T tA) → 1 whenever µ(A) > 0. (Notice that for once the expression involves
images rather than pre-images.) There is a kind of hierarchy here, where differ-
ent levels of convergence of distribution (Cesáro, weak, strong) match different
sorts of ergodicity (metric transitivity, mixing, exactness). For more details, see
Lasota and Mackey (1994).

27.4 A Central Limit Theorem for Mixing Se-
quences

Notice that I say “a central limit theorem”, rather than “the central limit the-
orem”. In the IID case, the necessary and sufficient condition for the CLT is
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well-known (you saw it in 36-752) and reasonably comprehensible. In the mixing
case, a necessary and sufficient condition is known2, but not commonly used,
because quite opaque and hard to check. Rather, the common practice is to
rely upon a large set of distinct sufficient conditons. Some of these, it must be
said, are pretty ugly, but they are more susceptible of verification.

Recall the notation that X−t consists of the entire past of the process, in-
cluding Xt, and X+

t its entire future.

Definition 351 (Mixing Coefficients) For a stochastic process Xt, define
the strong-, Rosenblatt- or α- mixing coefficients as

α(t1, t2) = sup
{
|P (A ∩B)− P (A) P (B)| : A ∈ σ(X−t1), B ∈ σ(X+

t2)
}

(27.20)

If the system is conditionally stationary, then α(t1, t2) = α(t2, t1) = α(|t1 −
t2|) ≡ α(τ). If α(τ) → 0, then the process is strong-mixing or α-mixing. If
α(τ) = O(e−bτ ) for some b > 0, the process is exponentially mixing, b is the
mixing rate, and 1/b is the mixing time. If α(τ) = O(τ−k) for some k > 0,
then the process is polynomially mixing.

Notice that α(t1, t2) is just the total variation distance between the joint distri-
bution, L

(
X−t1 , X

+
t2

)
, and the product of the marginal distributions, L

(
X−t1

)
×

L
(
X+

t2

)
. Thus, it is a natural measure of the degree to which the future of

the system depends on its past. However, there are at least four other mixing
coefficients (β, φ, ψ and ρ) regularly used in the literature. Since any of these
others going to zero implies that α goes to zero, we will stick with α-mixing, as
in Rosenblatt (1956).

Also notice that if Xt is a Markov process (e.g., a dynamical system) then
the Markov property tells us that we only need to let the supremum run over
measurable sets in σ(Xt1) and σ(Xt2).

Lemma 352 If a dynamical system is α-mixing, then it is mixing.

Proof: α is the supremum of the quantity appearing in the definition of mixing.
!

Notation: For the remainder of this section,

Sn ≡
n∑

k=1

Xn (27.21)

σ2
n ≡ Var [Sn] (27.22)

Yn(t) ≡
S[nt]

σn
(27.23)

where n is any positive integer, and t ∈ [0, 1].
2Doukhan (1995, p. 47) cites Jakubowski and Szewczak (1990) as the source, but I have

not verified the reference.
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Definition 353 Xt obeys the central limit theorem when

Sn

σ
√

n
d→ N (0, 1) (27.24)

for some positive σ.

Definition 354 Xt obeys the functional central limit theorem or the invariance
principle when

Yn
d→W (27.25)

where W is a standard Wiener process on [0, 1], and the convergence is in the
Skorokhod topology of Sec. 15.1.

Theorem 355 (Central Limit Theorem for α-Mixing Sequences) Let Xt

be a stationary sequence with E [Xt] = 0. Suppose X is α-mixing, and that for
some δ > 0

E
[
|Xt|2+δ

]
≤ ∞ (27.26)

∞∑

n=0

α
δ

2+δ (n) ≤ ∞ (27.27)

Then

lim
n→∞

σ2
n

n
= E

[
|X1|2

]
+ 2

∞∑

k=1

E [X1Xk] ≡ σ2 (27.28)

If σ2 > 0, moreover, Xt obeys both the central limit theorem with variance σ2,
and the functional central limit theorem.

Proof: Complicated, and based on a rather technical central limit theorem for
martingale difference arrays. See Doukhan (1995, sec. 1.5), or, for a simplified
presentation, Durrett (1991, sec. 7.7). !

For the rate of convergence of of L (Sn/
√

n) to a Gaussian distribution, in
the total variation metric, see Doukhan (1995, sec. 1.5.2), summarizing sev-
eral works. Polynomially-mixing sequences converge polynomially in n, and
exponentially-mixing sequences converge exponentially.

There are a number of results on central limit theorems and functional cen-
tral limit theorems for deterministic dynamical systems. A particularly strong
one was recently proved by Tyran-Kamińska (2005), in a friendly paper which
should be accessible to anyone who’s followed along this far, but it’s too long
for us to do more than note its existence.


