
Chapter 28

Shannon Entropy and
Kullback-Leibler
Divergence

Section 28.1 introduces Shannon entropy and its most basic prop-
erties, including the way it measures how close a random variable is
to being uniformly distributed.

Section 28.2 describes relative entropy, or Kullback-Leibler di-
vergence, which measures the discrepancy between two probability
distributions, and from which Shannon entropy can be constructed.
Section 28.2.1 describes some statistical aspects of relative entropy,
especially its relationship to expected log-likelihood and to Fisher
information.

Section 28.3 introduces the idea of the mutual information shared
by two random variables, and shows how to use it as a measure of
serial dependence, like a nonlinear version of autocovariance (Section
28.3.1).

Information theory studies stochastic processes as sources of information,
or as models of communication channels. It appeared in essentially its modern
form with Shannon (1948), and rapidly proved to be an extremely useful mathe-
matical tool, not only for the study of “communication and control in the animal
and the machine” (Wiener, 1961), but more technically as a vital part of prob-
ability theory, with deep connections to statistical inference (Kullback, 1968),
to ergodic theory, and to large deviations theory. In an introduction that’s so
limited it’s almost a crime, we will do little more than build enough theory to
see how it can fit in with the theory of inference, and then get what we need
to progress to large deviations. If you want to learn more (and you should!),
the deservedly-standard modern textbook is Cover and Thomas (1991), and a
good treatment, at something more like our level of mathematical rigor, is Gray
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(1990).1

28.1 Shannon Entropy

The most basic concept of information theory is that of the entropy of a random
variable, or its distribution, often called Shannon entropy to distinguish it from
the many other sorts. This is a measure of the uncertainty or variability asso-
ciated with the random variable. Let’s start with the discrete case, where the
variable takes on only a finite or countable number of values, and everything is
easier.

Definition 356 (Shannon Entropy (Discrete Case)) The Shannon entropy,
or just entropy, of a discrete random variable X is

H[X] ≡ −
∑

x

P (X = x) log P (X = x) = −E [log P (X)] (28.1)

when the sum exists. Entropy has units of bits when the logarithm has base 2,
and nats when it has base e.

The joint entropy of two random variables, H[X, Y ], is the entropy of their
joint distribution.

The conditional entropy of X given Y , H[X|Y ] is

H[X|Y ] ≡
∑

y

P (Y = y)
∑

x

P (X = x|Y = y) log P (X = x|Y = y)(28.2)

= −E [log P (X|Y )] (28.3)
= H[X, Y ]−H[Y ] (28.4)

Here are some important properties of the Shannon entropy, presented with-
out proofs (which are not hard).

1. H[X] ≥ 0

2. H[X] = 0 iff ∃x0 : X = x0 a.s.

3. If X can take on n < ∞ different values (with positive probability), then
H[X] ≤ log n. H[X] = log n iff X is uniformly distributed.

4. H[X]+H[Y ] ≥ H[X, Y ], with equality iff X and Y are independent. (This
comes from the logarithm in the definition.)

1Remarkably, almost all of the post-1948 development has been either amplifying or refining
themes first sounded by Shannon. For example, one of the fundamental results, which we
will see in the next chapter, is the “Shannon-Macmillan-Breiman theorem”, or “asymptotic
equipartition property”, which says roughly that the log-likelihood per unit time of a random
sequence converges to a constant, characteristic of the data-generating process. Shannon’s
original version was convergence in probability for ergodic Markov chains; the modern form
is almost sure convergence for any stationary and ergodic process. Pessimistically, this says
something about the decadence of modern mathematical science; optimistically, something
about the value of getting it right the first time.
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5. H[X, Y ] ≥ H[X].

6. H[X|Y ] ≥ 0, with equality iff X is a.s. constant given Y , for almost all
Y .

7. H[X|Y ] ≤ H[X], with equality iff X is independent of Y . (“Conditioning
reduces entropy”.)

8. H[f(X)] ≤ H[X], for any measurable function f , with equality iff f is
invertible.

The first three properties can be summarized by saying that H[X] is max-
imized by a uniform distribution, and minimized, to zero, by a degenerate one
which is a.s. constant. We can then think of H[X] as the variability of X,
something like the log of the effective number of values it can take on. We can
also think of it as how uncertain we are about X’s value.2 H[X, Y ] is then how
much variability or uncertainty is associated with the pair variable X, Y , and
H[Y |X] is how much uncertainty remains about Y once X is known, averag-
ing over Y . Similarly interpretations follow for the other properties. The fact
that H[f(X)] = H[X] if f is invertible is nice, because then f just relabels the
possible values, meshing nicely with this interpretation.

A simple consequence of the above results is particularly important for later
use.

Lemma 357 (Chain Rule for Shannon Entropy) Let X1, X2, . . . Xn be discrete-
valued random variables on a common probability space. Then

H[X1, X2, . . . Xn] = H[X1] +
n∑

i=2

H[Xn|X1, . . . Xn−1] (28.5)

Proof: From the definitions, it is easily seen that H[X2|X1] = H[X2, X1] −
H[X1]. This establishes the chain rule for n = 2. A simple argument by
induction does the rest. !

For non-discrete random variables, it is necessary to introduce a reference
measure, and many of the nice properties go away.

Definition 358 (Shannon Entropy (General Case)) The Shannon entropy
of a random variable X with distribution µ, with respect to a reference measure
ρ, is

Hρ[X] ≡ −Eµ

[
log

dµ

dρ

]
(28.6)

2This line of reasoning is sometimes supplemented by saying that we are more “surprised”
to find that X = x the less probable that event is, supposing that surprise should go as the
log of one over that probability, and defining entropy as expected surprise. The choice of
the logarithm, rather than any other increasing function, is of course retroactive, though one
might cobble together some kind of psychophysical justification, since the perceived intensity
of a sensation often grows logarithmically with the physical magnitude of the stimulus. More
dubious, to my mind, is the idea that there is any surprise at all when a fair coin coming up
heads.
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when µ << ρ. Joint and conditional entropies are defined similarly. We will
also write Hρ[µ], with the same meaning. This is sometimes called differential
entropy when ρ is Lebesgue measure on Euclidean space, especially R, and then
is written h(X) or h[X].

It remains true, in the general case, that Hρ[X|Y ] = Hρ[X, Y ]−Hρ[Y ], pro-
vided all of the entropies are finite. The chain rule remains valid, conditioning
still reduces entropy, and the joint entropy is still ≤ the sum of the marginal
entropies, with equality iff the variables are independent. However, depending
on the reference measure, Hρ[X] can be negative; e.g., if ρ is Lebesgue measure
and L (X) = δ(x), then Hρ[X] = −∞.

28.2 Relative Entropy or Kullback-Leibler Di-
vergence

Some of the difficulties associated with Shannon entropy, in the general case,
can be evaded by using relative entropy.

Definition 359 (Relative Entropy, Kullback-Leibler Divergence) Given
two probability distributions, ν << µ, the relative entropy of ν with respect to
µ, or the Kullback-Leibler divergence of ν from µ, is

D(µ‖ν) = −Eµ

[
log

dν

dµ

]
(28.7)

If ν is not absolutely continuous with respect to µ, then D(µ‖ν) = ∞.

Lemma 360 D(µ‖ν) ≥ 0, with equality iff ν = µ almost everywhere (µ).

Proof: From Jensen’s inequality, Eµ

[
log dν

dµ

]
≤ log Eµ

[
dν
dµ

]
= log 1 = 0. The

second part follows from the conditions for equality in Jensen’s inequality. !

Lemma 361 (Divergence and Total Variation) For any two distributions,
D(µ‖ν) ≥ 1

2 ln 2‖µ− ν‖21.

Proof: Algebra. See, e.g., Cover and Thomas (1991, Lemma 12.6.1, pp. 300–
301). !

Definition 362 The conditional relative entropy, D(µ(Y |X)‖ν(Y |X)) is

D(µ(Y |X)‖ν(Y |X)) ≡ −Eµ

[
log

dν(Y |X)
dµ(Y |X)

]
(28.8)

Lemma 363 (Chain Rule for Relative Entropy) D(µ(X, Y )‖ν(X, Y )) =
D(µ(X)‖ν(X)) + D(µ(Y |X)‖ν(Y |X))

Proof: Algebra. !
Shannon entropy can be constructed from the relative entropy.
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Lemma 364 The Shannon entropy of a discrete-valued random variable X,
with distribution µ, is

H[X] = log n−D(µ‖υ) (28.9)

where n is the number of values X can take on (with positive probability), and
υ is the uniform distribution over those values.

Proof: Algebra. !
A similar result holds for the entropy of a variable which takes values in a

finite subset, of volume V , of a Euclidean space, i.e., Hλ[X] = log V −D(µ‖υ),
where λ is Lebesgue measure and υ is the uniform probability measure on the
range of X.

28.2.1 Statistical Aspects of Relative Entropy

From Lemma 361, “convergence in relative entropy”, D(µ‖νn) → 0 as n →∞,
implies convergence in the total variation (L1) metric. Because of Lemma 360,
we can say that KL divergence has some of the properties of a metric on the
space of probability distribution: it’s non-negative, with equality only when the
two distributions are equal (a.e.). Unfortunately, however, it is not symmetric,
and it does not obey the triangle inequality. (This is why it’s the KL divergence
rather than the KL distance.) Nonetheless, it’s enough like a metric that it can
be used to construct a kind of geometry on the space of probability distributions,
and so of statistical models, which can be extremely useful. While we will not
be able to go very far into this information geometry3, it will be important to
indicate a few of the connections between information-theoretic notions, and
the more usual ones of statistical theory.

Definition 365 (Cross-entropy) The cross-entropy of ν and µ, Q(µ‖ν), is

Qρ(µ‖ν) ≡ −Eµ

[
log

dν

dρ

]
(28.10)

where ν is absolutely continuous with respect to the reference measure ρ. If the
domain is discrete, we will take the reference measure to be uniform and drop
the subscript, unless otherwise noted.

Lemma 366 Suppose ν and µ are the distributions of two probability models,
and ν << µ. Then the cross-entropy is the expected negative log-likelihood of
the model corresponding to ν, when the actual distribution is µ. The actual
or empirical negative log-likelihood of the model corresponding to ν is Qρ(ν‖η),
where η is the empirical distribution.

Proof: Obvious from the definitions. !
3See Kass and Vos (1997) or Amari and Nagaoka (1993/2000). For applications to sta-

tistical inference for stochastic processes, see Taniguchi and Kakizawa (2000). For an easier
general introduction, Kulhavý (1996) is hard to beat.
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Lemma 367 If ν << µ << ρ, then Qρ(µ‖ν) = Hρ[µ] + D(µ‖ν).

Proof: By the chain rule for densities,

dν

dρ
=

dµ

dρ

dν

dµ
(28.11)

log
dν

dρ
= log

dµ

dρ
+ log

dν

dµ
(28.12)

Eµ

[
log

dν

dρ

]
= Eµ

[
log

dµ

dρ

]
+ Eµ

[
log

dν

dµ

]
(28.13)

The result follows by applying the definitions. !

Corollary 368 (Gibbs’s Inequality) Qρ(µ‖ν) ≥ Hρ[µ], with equality iff ν =
µ a.e.

Proof: Insert the result of Lemma 360 into the preceding proposition. !
The statistical interpretation of the proposition is this: The log-likelihood

of a model, leading to distribution ν, can be broken into two parts. One is the
divergence of ν from µ; the other just the entropy of µ, i.e., it is the same for all
models. If we are considering the expected log-likelihood, then µ is the actual
data-generating distribution. If we are considering the empirical log-likelihood,
then µ is the empirical distribution. In either case, to maximize the likelihood
is to minimize the relative entropy, or divergence. What we would like to do, as
statisticians, is minimize the divergence from the data-generating distribution,
since that will let us predict future values. What we can do is minimize diver-
gence from the empirical distribution. The consistency of maximum likelihood
methods comes down, then, to finding conditions under which a shrinking di-
vergence from the empirical distribution guarantees a shrinking divergence from
the true distribution.4

Definition 369 Let θ ∈ Rk, k < ∞, be the parameter indexing a set M of
statistical models, where for every θ, νθ << ρ, with densities pθ. Then the
Fisher information matrix is

Iij(θ) ≡ Eνθ

[(
∂ log pθ

dθi

) (
∂ log pθ

dθj

)]
(28.14)

Corollary 370 The Fisher information matrix is equal to the Hessian (second
partial derivative) matrix of the relative entropy:

Iij(θ0) =
∂2

∂θi∂θj
D(νθ0‖νθ) (28.15)

4If we did have a triangle inequality, then we could say D(µ‖ν) ≤ D(µ‖η) + D(η‖ν), and
it would be enough to make sure that both the terms on the RHS went to zero, say by some
combination of maximizing the likelihood in-sample, so D(η‖ν) is small, and ergodicity, so
that D(µ‖η) is small. While, as noted, there is no triangle inequality, under some conditions
this idea is roughly right; there are nice diagrams in Kulhavý (1996).
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Proof: It is a classical result (see, e.g., Lehmann and Casella (1998, sec. 2.6.1))
that Iij(θ) = −Eνθ

[
∂2

∂θi∂θj
log pθ

]
. The present result follows from this, Lemma

366, Lemma 367, and the fact that Hρ[νθ0 ] is independent of θ. !

28.3 Mutual Information

Definition 371 (Mutual Information) The mutual information between two
random variables, X and Y , is the divergence of the product of their marginal
distributions from their actual joint distribution:

I[X;Y ] ≡ D(L (X, Y ) ‖L (X)× L (Y )) (28.16)

Similarly, the mutual information among n random variables X1, X2, . . . Xn is

I[X1;X2; . . . ;Xn] ≡ D(L (X1, X2, . . . Xn) ‖
n∏

i=1

L (Xi)) (28.17)

the divergence of the product distribution from the joint distribution.

Proposition 372 I[X;Y ] ≥ 0, with equality iff X and Y are independent.

Proof: Directly from Lemma 360. !

Proposition 373 If all the entropies involved are finite,

I[X;Y ] = H[X] + H[Y ]−H[X, Y ] (28.18)
= H[X]−H[X|Y ] (28.19)
= H[Y ]−H[Y |X] (28.20)

so I[X;Y ] ≤ H[X] ∧H[Y ].

Proof: Calculation. !
This leads to the interpretation of the mutual information as the reduction

in uncertainty or effective variability of X when Y is known, averaging over their
joint distribution. Notice that in the discrete case, we can say H[X] = I[X;X],
which is why H[X] is sometimes known as the self-information.

28.3.1 Mutual Information Function

Just as with the autocovariance function, we can define a mutual information
function for one-parameter processes, to serve as a measure of serial dependence.

Definition 374 (Mutual Information Function) The mutual information
function of a one-parameter stochastic process X is

ι(t1, t2) ≡ I[Xt1 ;Xt2 ] (28.21)

which is symmetric in its arguments. If the process is stationary, it is a function
of |t1 − t2| alone.
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Notice that, unlike the autocovariance function, ι includes nonlinear depen-
dencies between Xt1 and Xt2 . Also notice that ι(τ) = 0 means that the two
variables are strictly independent, not just uncorrelated.

Theorem 375 A stationary process is mixing if ι(τ) → 0.

Proof: Because then the total variation distance between the joint distribution,
L (Xt1Xt2), and the product of the marginal distributions, L (Xt1)L (Xt2), is
being forced down towards zero, which implies mixing (Definition 338). !


