
Chapter 29

Entropy Rates and
Asymptotic Equipartition

Section 29.1 introduces the entropy rate — the asymptotic en-
tropy per time-step of a stochastic process — and shows that it is
well-defined; and similarly for information, divergence, etc. rates.

Section 29.2 proves the Shannon-MacMillan-Breiman theorem,
a.k.a. the asymptotic equipartition property, a.k.a. the entropy
ergodic theorem: asymptotically, almost all sample paths of a sta-
tionary ergodic process have the same log-probability per time-step,
namely the entropy rate. This leads to the idea of “typical” se-
quences, in Section 29.2.1.

Section 29.3 discusses some aspects of asymptotic likelihood, us-
ing the asymptotic equipartition property, and allied results for the
divergence rate.

29.1 Information-Theoretic Rates

Definition 376 (Entropy Rate) The entropy rate of a random sequence X
is

h(X) ≡ lim
n

Hρ[Xn
1 ]n (29.1)

when the limit exists.

Definition 377 (Limiting Conditional Entropy) The limiting conditional
entropy of a random sequence X is

h′(X) ≡ lim
n

Hρ[Xn|Xn−1
1 ] (29.2)

when the limit exists.
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Lemma 378 For a stationary sequence, Hρ[Xn|Xn−1
1 ] is non-increasing in n.

Moreover, its limit exists if X takes values in a discrete space.

Proof: Because “conditioning reduces entropy”, Hρ[Xn+1|Xn
1 ] ≤ H[Xn+1|Xn

2 ].
By stationarity, Hρ[Xn+1|Xn

2 ] = Hρ[Xn|Xn−1
1 ]. If X takes discrete values,

then conditional entropy is non-negative, and a non-increasing sequence of non-
negative real numbers always has a limit. !

Remark: Discrete values are a sufficient condition for the existence of the
limit, not a necessary one.

We now need a natural-looking, but slightly technical, result from real anal-
ysis.

Theorem 379 (Cesàro) For any sequence of real numbers an → a, the se-
quence bn = n−1

∑n
i=1 an also converges to a.

Proof: For every ε > 0, there is an N(ε) such that |an − a| < ε whenever
n > N(ε). Now take bn and break it up into two parts, one summing the terms
below N(ε), and the other the terms above.

lim
n

|bn − a| = lim
n

∣∣∣∣∣n
−1

n∑

i=1

ai − a

∣∣∣∣∣ (29.3)

≤ lim
n

n−1
n∑

i=1

|ai − a| (29.4)

≤ lim
n

n−1




N(ε)∑

i=1

|ai − a| + (n−N(ε))ε



 (29.5)

≤ lim
n

n−1




N(ε)∑

i=1

|ai − a| + nε



 (29.6)

= ε + lim
n

n−1
N(ε)∑

i=1

|ai − a| (29.7)

= ε (29.8)

Since ε was arbitrary, lim bn = a. !

Theorem 380 (Entropy Rate) For a stationary sequence, if the limiting con-
ditional entropy exists, then it is equal to the entropy rate, h(X) = h′(X).

Proof: Start with the chain rule to break the joint entropy into a sum of
conditional entropies, use Lemma 378 to identify their limit as h]prime(X), and
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then use Cesàro’s theorem:

h(X) = lim
n

1
n

Hρ[Xn
1 ] (29.9)

= lim
n

1
n

n∑

i=1

Hρ[Xi|Xi−1
1 ] (29.10)

= h′(X) (29.11)

as required. !
Because h(X) = h′(X) for stationary processes (when both limits exist), it is

not uncommon to find what I’ve called the limiting conditional entropy referred
to as the entropy rate.

Lemma 381 For a stationary sequence h(X) ≤ H[X1], with equality iff the
sequence is IID.

Proof: Conditioning reduces entropy, unless the variables are independent, so
H[Xn|Xn−1

1 ] < H[Xn], unless Xn |= Xn−1
1 . For this to be true of all n, which

is what’s needed for h(X) = H[X1], all the values of the sequence must be
independent of each other; since the sequence is stationary, this would imply
that it’s IID. !

Example 382 (Markov Sequences) If X is a stationary Markov sequence,
then h(X) = Hρ[X2|X1], because, by the chain rule, Hρ[Xn

1 ] = Hρ[X1] +∑n
t=2 Hρ[Xt|Xt−1

1 ]. By the Markov property, however, Hρ[Xt|Xt−1
1 ] = Hρ[Xt|Xt−1],

which by stationarity is Hρ[X2|X1]. Thus, Hρ[Xn
1 ] = Hρ[X1]+(n−1)Hρ[X2|X1].

Dividing by n and taking the limit, we get Hρ[Xn
1 ] = Hρ[X2|X1].

Example 383 (Higher-Order Markov Sequences) If X is a kth order Markov
sequence, then the same reasoning as before shows that h(X) = Hρ[Xk+1|Xk

1 ]
when X is stationary.

Definition 384 (Divergence Rate) The divergence rate or relative entropy
rate of the infinite-dimensional distribution Q from the infinite-dimensional dis-
tribution P , d(P‖Q), is

d(P‖Q) = lim
n

EP

[
log

(
dP

dQ

∣∣∣∣
σ(X0

−n)

)]
(29.12)

if all the finite-dimensional distributions of Q dominate all the finite-dimensional
distributions of P . If P and Q have densities, respectively p and q, with respect
to a common reference measure, then

d(P‖Q) = lim
n

EP

[
log

p(X0|X−1
−n)

q(X0|X−1
−n)

]
(29.13)



CHAPTER 29. RATES AND EQUIPARTITION 200

29.2 The Shannon-McMillan-Breiman Theorem
or Asymptotic Equipartition Property

This is a central result in information theory, acting as a kind of ergodic theorem
for the entropy. That is, we want to say that, for almost all ω,

− 1
n

log P (Xn
1 (ω)) → lim

n

1
n
E [− log P (Xn

1 )] = h(X)

At first, it looks like we should be able to make a nice time-averaging argument.
We can always factor the joint probability,

1
n

log P (Xn
1 ) =

1
n

n∑

t=1

log P
(
Xt|Xt−1

1

)

with the understanding that P
(
X1|X0

1

)
= P (X1). This looks rather like the

sort of Cesàro average that we became familiar with in ergodic theory. The
problem is, there we were averaging f(T tω) for a fixed function f . This is not
the case here, because we are conditioning on long and longer stretches of the
past. There’s no problem if the sequence is Markovian, because then the remote
past is irrelevant, by the Markov property, and we can just condition on a fixed-
length stretch of the past, so we’re averaging a fixed function shifted in time.
(This is why Shannon’s original argument was for Markov chains.) The result
nonetheless more broadly, but requires more subtlety than might otherwise be
thought. Breiman’s original proof of the general case was fairly involved1, re-
quiring both martingale theory, and a sort of dominated convergence theorem
for ergodic time averages. (You can find a simplified version of his argument
in Kallenberg, at the end of chapter 11.) We will go over the “sandwiching”
argument of Algoet and Cover (1988), which is, to my mind, more transparent.

The idea of the sandwich argument is to show that, for large n, −n−1 log P (Xn
1 )

must lie between an upper bound, hk, obtained by approximating the sequence
by a Markov process of order k, and a lower bound, which will be shown to be
h. Once we establish that hk ↓ h, we will be done.

Definition 385 (Markov Approximation) For each k, define the order k
Markov approximation to X by

µk(Xn
1 ) = P

(
Xk

1

) n∏

t=k+1

P
(
Xt|Xt−1

t−k

)
(29.14)

µk is the distribution of a stationary Markov process of order k, where the
distribution of Xk+1

1 matches that of the original process.
1Notoriously, the proof in his original paper was actually invalid, forcing him to publish a

correction.
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Lemma 386 For each k, the entropy rate of the order k Markov approximation
is is equal to H[Xk+1|Xk

1 ].

Proof: Under the approximation (but not under the original distribution of X),
H[Xn

1 ] = H[Xk
1 ]+(n−k)H[Xk+1|Xk

1 ], by the Markov property and stationarity
(as in Examples 382 and 383). Dividing by n and taking the limit as n → ∞
gives the result. !

Lemma 387 If X is a stationary two-sided sequence, then Yt = f(Xt
−∞) de-

fines a stationary sequence, for any measurable f . If X is also ergodic, then Y
is ergodic too.

Proof: Because X is stationary, it can be represented as a measure-preserving
shift on sequence space. Because it is measure-preserving, θXt

−∞
d= Xt

−∞, so
Y (t) d= Y (t + 1), and similarly for all finite-length blocks of Y . Thus, all of the
finite-dimensional distributions of Y are shift-invariant, and these determine the
infinite-dimensional distribution, so Y itself must be stationary.

To see that Y must be ergodic if X is ergodic, recall that a random sequence
is ergodic iff its corresponding shift dynamical system is ergodic. A dynamical
system is ergodic iff all invariant functions are a.e. constant (Theorem 304).
Because the Y sequence is obtained by applying a measurable function to the
X sequence, a shift-invariant function of the Y sequence is a shift-invariant
function of the X sequence. Since the latter are all constant a.e., the former are
too, and Y is ergodic. !

Lemma 388 If X is stationary and ergodic, then, for every k,

P
(

lim
n
− 1

n
log µk(Xn

1 (ω)) = hk

)
= 1 (29.15)

i.e., − 1
n log µk(Xn

1 (ω)) converges a.s. to hk.

Proof: Start by factoring the approximating Markov measure in the way sug-
gested by its definition:

− 1
n

log µk(Xn
1 ) = − 1

n
log P

(
Xk

1

)
− 1

n

n∑

t=k+1

log P
(
Xt|Xt−1

t−k

)
(29.16)

As n grows, 1
n log P

(
Xk

1

)
→ 0, for every fixed k. On the other hand, − log P

(
Xt|Xt−1

t−k

)

is a measurable function of the past of the process, and since X is stationary
and ergodic, it, too, is stationary and ergodic (Lemma 387). So

− 1
n

log µk(Xn
1 ) → − 1

n

n∑

t=k+1

log P
(
Xt|Xt−1

t−k

)
(29.17)

a.s.→ E
[
− log P

(
Xk+1|Xk

1

)]
(29.18)

= hk (29.19)

by Theorem 312. !



CHAPTER 29. RATES AND EQUIPARTITION 202

Definition 389 The infinite-order approximation to the entropy rate of a discrete-
valued stationary process X is

h∞(X) ≡ E
[
− log P

(
X0|X−1

−∞
)]

(29.20)

Lemma 390 If X is stationary and ergodic, then

lim
n
− 1

n
log P

(
Xn

1 |X0
−∞

)
= h∞ (29.21)

almost surely.

Proof: Via Theorem 312 again, as in Lemma 388. !
Lemma 391 For a stationary, ergodic, finite-valued random sequence, hk(X) ↓
h∞(X).

Proof: By the martingale convergence theorem, for every x0 ∈ Ξ,

P
(
X0 = x0|X−1

n

) a.s.→ P
(
X0 = x0|X−1

∞
)

(29.22)

Since Ξ is finite, the probability of any point in Ξ is between 0 and 1 inclusive,
and p log p is bounded and continuous. So we can apply bounded convergence
to get that

hk = E

[
−

∑

x0

P
(
X0 = x0|X−1

−k

)
log P

(
X0 = x0|X−1

−k

)
]

(29.23)

→ E

[
−

∑

x0

P
(
X0 = x0|X−1

−∞
)
log P

(
X0 = x0|X−1

−∞
)
]

(29.24)

= h∞ (29.25)

Lemma 392 h∞(X) is the entropy rate of X, i.e. h∞(X) = h(X).

Proof: Clear from Theorem 380 and the definition of conditional entropy. !
We are almost ready for the proof, but need one technical lemma first.

Lemma 393 If Rn ≥ 0, E [Rn] ≤ 1 for all n, then

lim sup
n

1
n

log Rn ≤ 0 (29.26)

almost surely.

Proof: Pick any ε > 0.

P
(

1
n

log Rn ≥ ε

)
= P (Rn ≥ enε) (29.27)

≤ E [Rn]
enε

(29.28)

≤ e−nε (29.29)

by Markov’s inequality. Since
∑

n e−nε ≤ ∞, by the Borel-Cantelli lemma,
lim supn n−1 log Rn ≤ ε. Since ε was arbitrary, this concludes the proof. !
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Theorem 394 (Asymptotic Equipartition Property) For a stationary, er-
godic, finite-valued random sequence X,

− 1
n

log P (Xn
1 ) → h(X) a.s. (29.30)

Proof: For every k, µk(Xn
1 )/P (Xn

1 ) ≥ 0, and E [µk(Xn
1 )/P (Xn

1 )] ≤ 1. Hence,
by Lemma 393,

lim sup
n

1
n

log
µk(Xn

1 )
P (Xn

1 )
≤ 0 (29.31)

a.s. Manipulating the logarithm,

lim sup
n

1
n

log µk(Xn
1 ) ≤ − lim sup

n
− 1

n
log P (Xn

1 ) (29.32)

From Lemma 388, lim supn
1
n log µk(Xn

1 ) = limn
1
n log µk(Xn

1 ) = −hk(X), a.s.
Hence, for each k,

hk(X) ≥ lim sup
n

− 1
n

log P (Xn
1 ) (29.33)

almost surely.
A similar manipulation of P (Xn

1 ) /P
(
Xn

1 |X0
−∞

)
gives

h∞(X) ≤ lim inf
n

− 1
n

log P (Xn
1 ) (29.34)

a.s.
As hk ↓ h∞, it follows that the liminf and the limsup of the normalized log

likelihood must be equal almost surely, and so equal to h∞, which is to say to
h(X). !

Why is this called the AEP? Because, to within an o(n) term, all sequences
of length n have the same log-likelihood (to within factors of o(n), if they have
positive probability at all. In this sense, the likelihood is “equally partitioned”
over those sequences.

29.2.1 Typical Sequences

Let’s turn the result of the AEP around. For large n, the probability of a
given sequence is either approximately 2−nh or approximately zero2. To get
the total probability to sum up to one, there need to be about 2nh sequences
with positive probability. If the size of the alphabet is s, then the fraction
of sequences which are actually exhibited is 2n(h−log s), an increasingly small
fraction (as h ≤ log s). Roughly speaking, these are the typical sequences, any
one of which, via ergodicity, can act as a representative of the complete process.

2Of course that assumes using base-2 logarithms in the definition of entropy.



CHAPTER 29. RATES AND EQUIPARTITION 204

29.3 Asymptotic Likelihood

29.3.1 Asymptotic Equipartition for Divergence

Using methods analogous to those we employed on the AEP for entropy, it is
possible to prove the following.

Theorem 395 Let P be an asymptotically mean-stationary distribution, with
stationary mean P , with ergodic component function φ. Let M be a homoge-
neous finite-order Markov process, whose finite-dimensional distributions dom-
inate those of P and P ; denote the densities with respect to M by p and p,
respectively. If limn n−1 log p(Xn

1 ) is an invariant function P -a.e., then

− 1
n

log p(Xn
1 (ω)) a.s.→ d(Pφ(ω)‖M) (29.35)

where Pφ(ω) is the stationary, ergodic distribution of the ergodic component.

Proof: See Algoet and Cover (1988, theorem 4), Gray (1990, corollary 8.4.1).
Remark. The usual AEP is in fact a consequence of this result, with the

appropriate reference measure. (Which?)

29.3.2 Likelihood Results

It is left as an exercise for you to obtain the following result, from the AEP for
relative entropy, Lemma 367 and the chain rules.

Theorem 396 Let P be a stationary and ergodic data-generating process, whose
entropy rate, with respect to some reference measure ρ, is h. Further let M be a
finite-order Markov process which dominates P , whose density, with respect to
the reference measure, is m. Then

− 1
n

log m(Xn
1 ) → h + d(P‖M) (29.36)

P -almost surely.

29.4 Exercises

Exercise 29.1 Markov approximations are maximum-entropy approximations.
(You may assume that the process X takes values in a finite set.)

a Prove that µk, as defined in Definition 385, gets the distribution of se-
quences of length k + 1 correct, i.e., for any set A ∈ X k+1, ν(A) =
P

(
Xk+1

1 ∈ A
)
.

b Prove that µk′ , for any any k′ > k, also gets the distribution of length
k + 1 sequences right.
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c In a slight abuse of notation, let H[ν(Xn
1 )] stand for the entropy of a se-

quence of length n when distributed according to ν. Show that H[µk(Xn
1 )] ≥

H[µk′(Xn
1 )] if k′ > k. (Note that the n ≤ k case is easy!)

d Is it true that that if ν is any other measure which gets the distribution
of sequences of length k + 1 right, then H[µk(Xn

1 )] ≥ H[ν(Xn
1 )]? If yes,

prove it; if not, find a counter-example.

Exercise 29.2 Prove Theorem 396.


