
Chapter 30

General Theory of Large
Deviations

A family of random variables follows the large deviations princi-
ple if the probability of the variables falling into “bad” sets, repre-
senting large deviations from expectations, declines exponentially in
some appropriate limit. Section 30.1 makes this precise, using some
associated technical machinery, and explores a few consequences.
The central one is Varadhan’s Lemma, for the asymptotic evalua-
tion of exponential integrals in infinite-dimensional spaces.

Having found one family of random variables which satisfy the
large deviations principle, many other, related families do too. Sec-
tion 30.2 lays out some ways in which this can happen.

As the great forensic statistician C. Chan once remarked, “Improbable events
permit themselves the luxury of occurring” (reported in Biggers, 1928). Large
deviations theory, as I have said, studies these little luxuries.

30.1 Large Deviation Principles: Main Defini-
tions and Generalities

Some technicalities:

Definition 397 (Level Sets) For any real-valued function f : Ξ !→ R, the
level sets are the inverse images of intervals from −∞ to c inclusive, i.e., all
sets of the form {x ∈ Ξ : f(x) ≤ c}.

Definition 398 (Lower Semi-Continuity) A real-valued function f : Ξ !→
R is lower semi-continuous if xn → x implies lim inf f(xn) ≥ f(x).
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Lemma 399 A function is lower semi-continuous iff either of the following
equivalent properties hold.

i For all x ∈ Ξ, the infimum of f over increasingly small open balls centered
at x approaches f(x):

lim
δ→0

inf
y: d(y,x)<δ

f(y) = f(x) (30.1)

ii f has closed level sets.

Proof: A character-building exercise in real analysis, left to the reader. !

Lemma 400 A lower semi-continuous function attains its minimum on every
non-empty compact set, i.e., if C is compact and (= ∅, there is an x ∈ C such
that f(x) = infy∈C f(y).

Proof: Another character-building exercise in real analysis. !

Definition 401 (Logarithmic Equivalence) Two sequences of positive real
numbers an and bn are logarithmically equivalent, an * bn, when

lim
n→∞

1
n

(log an − log bn) = 0 (30.2)

Similarly, for continuous parameterizations by ε > 0, aε * bε when

lim
ε→0

ε (log aε − log bε) = 0 (30.3)

Lemma 402 (“Fastest rate wins”) For any two sequences of positive num-
bers, (an + bn) * an ∨ bn.

Proof: A character-building exercise in elementary analysis. !

Definition 403 (Large Deviation Principle) A parameterized family of ran-
dom variables, Xε, ε > 0, taking values in a metric space Ξ with Borel σ-field
X , obeys a large deviation principle with rate 1/ε, or just obeys an LDP, when,
for any set B ∈ X ,

− inf
x∈intB

J(x) ≤ lim inf
ε→0

ε log P (Xε ∈ B) ≤ lim sup
ε→0

ε log P (Xε ∈ B) ≤ − inf
x∈clB

J(x)

(30.4)
for some non-negative function J : Ξ !→ [0,∞], its raw rate function. If J is
lower semi-continuous, it is just a rate function. If J is lower semi-continuous
and has compact level sets, it is a good rate function.1 By a slight abuse of
notation, we will write J(B) = infx∈B J(x).

1Sometimes what Kallenberg and I are calling a “good rate function” is just “a rate func-
tion”, and our “rate function” gets demoted to “weak rate function”.
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Remark: The most common choices of ε are 1/n, in sample-size or discrete
sequence problems, or ε2, in small-noise problems (as in Chapter 22).

Lemma 404 (Uniqueness of Rate Functions) If Xε obeys the LDP with
raw rate function J , then it obeys the LDP with a unique rate function J ′.

Proof: First, show that a raw rate function can always be replaced by a lower
semi-continuous function, i.e. a non-raw (cooked?) rate function. Then, show
that non-raw rate functions are unique.

For any raw rate function J , define J ′(x) = lim infy→x J(x). This is clearly
lower semi-continuous, and J ′(x) ≤ J(x). However, for any open set B, infx∈B J ′(x) =
infx∈B J(x), so J and J ′ are equivalent for purposes of the LDP.

Now assume that J is a lower semi-continuous rate function, and suppose
that K (= J was too; without loss of generality, assume that J(x) > K(x) at
some point x. We can use semi-continuity to find an open neighborhood B
of x such that J(clB) > K(x). But, substituting into Eq. 30.4, we obtain a
contradiction:

−K(x) ≤ −K(B) (30.5)
≤ lim inf

ε→0
ε log P (Xε ∈ B) (30.6)

≤ −J(clB) (30.7)
≤ −K(x) (30.8)

Hence there can be no such rate function K, and J is the unique rate function.
!
Lemma 405 If Xε obeys an LDP with rate function J , then J(x) = 0 for some
x.

Proof: Because P (Xε ∈ Ξ) = 1, we must have J(Ξ) = 0, and rate functions
attain their infima. !
Definition 406 A Borel set B is J-continuous, for some rate function J , when
J(intB) = J(clB).

Lemma 407 If Xε satisfies the LDP with rate function J , then for every J-
continuous set B,

lim
ε→0

ε log P (Xε ∈ B) = −J(B) (30.9)

Proof: By J-continuity, the right and left hand extremes of Eq. 30.4 are equal,
so the limsup and the liminf sandwiched between them are equal; consequently
the limit exists. !

Remark: The obvious implication is that, for small ε, P (Xε ∈ B) ≈ ce−J(B)/ε,
which explains why we say that the LDP has rate 1/ε. (Actually, c need not be
constant, but it must be at least o(ε), i.e., it must go to zero faster than ε itself
does.)

There are several equivalent ways of defining the large deviation principle.
The following is especially important, because it is often simplifies proofs.
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Lemma 408 Xε obeys the LDP with rate 1/ε and rate function J(x) if and
only if

lim sup
ε→0

ε log P (Xε ∈ C) ≤ −J(C) (30.10)

lim inf
ε→0

ε log P (Xε ∈ O) ≥ −J(O) (30.11)

for every closed Borel set C and every open Borel set O ⊂ Ξ.

Proof: “If”: The closure of any set is closed, and the interior of any set is
open, so Eqs. 30.10 and 30.11 imply

lim sup
ε→0

ε log P (Xε ∈ clB) ≤ −J(clB) (30.12)

lim inf
ε→0

ε log P (Xε ∈ intB) ≥ −J(intB) (30.13)

but P (Xε ∈ B) ≤ P (Xε ∈ clB) and P (Xε ∈ B) ≥ P (Xε ∈ intB), so the LDP
holds. “Only if”: every closed set is equal to its own closure, and every open set
is equal to its own interior, so the upper bound in Eq. 30.4 implies Eq. 30.10,
and the lower bound Eq. 30.11. !

A deeply important consequence of the LDP is the following, which can be
thought of as a version of Laplace’s method for infinite-dimensional spaces.

Theorem 409 (Varadhan’s Lemma) If Xε are random variables in a metric
space Ξ, obeying an LDP with rate 1/ε and rate function J , and f : Ξ !→ R is
continuous and bounded from above, then

Λf ≡ lim
ε→0

ε log E
[
ef(Xε)/ε

]
= sup

x∈Ξ
f(x)− J(x) (30.14)

Proof: We’ll find the limsup and the liminf, and show that they are both
sup f(x)− J(x).

First the limsup. Pick an arbitrary positive integer n. Because f is contin-
uous and bounded above, there exist finitely closed sets, call them B1, . . . Bm,
such that f ≤ −n on the complement of

⋃
i Bi, and within each Bi, f varies by

at most 1/n. Now

lim sup ε log E
[
ef(Xε)/ε

]
(30.15)

≤ (−n) ∨max
i≤m

lim sup ε log E
[
ef(Xε)/ε1Bi(Xε)

]

≤ (−n) ∨max
i≤m

sup
x∈Bi

f(x)− inf
x∈Bi

J(x) (30.16)

≤ (−n) ∨max
i≤m

sup
x∈Bi

f(x)− J(x) + 1/n (30.17)

≤ (−n) ∨ sup
x∈Ξ

f(x)− J(x) + 1/n (30.18)
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Letting n →∞, we get lim sup ε log E
[
ef(Xε)/ε

]
= sup f(x)− J(x).

To get the liminf, pick any x ∈ Xi and an arbitrary ball of radius δ around
it, Bδ,x. We have

lim inf ε log E
[
ef(Xε)/ε

]
≥ lim inf ε log E

[
ef(Xε)/ε1Bδ,x(Xε)

]
(30.19)

≥ inf
y∈Bδ,x

f(y)− inf
y∈Bδ,x

J(y) (30.20)

≥ inf
y∈Bδ,x

f(y)− J(x) (30.21)

Since δ was arbitrary, we can let it go to zero, so (by continuity of f) infy∈Bδ,x f(y) →
f(x), or

lim inf ε log E
[
ef(Xε)/ε

]
≥ f(x)− J(x) (30.22)

Since this holds for arbitrary x, we can replace the right-hand side by a supre-
mum over all x. Hence sup f(x)− J(x) is both the liminf and the limsup. !

Remark: The implication of Varadhan’s lemma is that, for small ε, E
[
ef(Xε)/ε

]
≈

c(ε)eε−1(supx∈Ξ f(x)−J(x)), where c(ε) = o(ε). So, we can replace the exponential
integral with its value at the extremal points, at least to within a multiplicative
factor and to first order in the exponent.

An important, if heuristic, consequence of the LDP is that “Highly im-
probable events tend to happen in the least improbable way”. Let us con-
sider two events B ⊂ A, and suppose that P (Xε ∈ A) > 0 for all ε. Then
P (Xε ∈ B|Xε ∈ A) = P (Xε ∈ B) /P (Xε ∈ A). Roughly speaking, then, this
conditional probability will vanish exponentially, with rate J(A)− J(B). That
is, even if we are looking at an exponentially-unlikely large deviation, the vast
majority of the probability is concentrated around the least unlikely part of the
event. More formal statements of this idea are sometimes known as “conditional
limit theorems” or “the Gibbs conditioning principle”.

30.2 Breeding Large Deviations

Often, the easiest way to prove that one family of random variables obeys a
large deviations principle is to prove that another, related family does.

Theorem 410 (Contraction Principle) If Xε, taking values in a metric space
Ξ, obeys an LDP, with rate ε and rate function J , and f : Ξ !→ Υ is a continu-
ous function from that metric space to another, then Yε = f(Xε) also obeys an
LDP, with rate ε and raw rate function K(y) = J(f−1(y)). If J is a good rate
function, then so is K.
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Proof: Since f is continuous, f−1 takes open sets to open sets, and closed sets
to closed sets. Pick any closed C ⊂ Υ. Then

lim sup
ε→0

ε log P (f(Xε) ∈ C) (30.23)

= lim sup
ε→0

ε log P
(
Xε ∈ f−1(C)

)

≤ −J(f−1(C)) (30.24)
= − inf

x∈f−1(C)
J(x) (30.25)

= − inf
y∈C

inf
x∈f−1(y)

J(x) (30.26)

= − inf
y∈C

K(y) (30.27)

as required. The argument for open sets in Υ is entirely parallel, establishing
that K, as defined, is a raw rate function. By Lemma 404, K can be modified
to be lower semi-continuous without affecting the LDP, i.e., we can make a rate
function from it. If J is a good rate function, then it has compact level sets.
But continuous functions take compact sets to compact sets, so K = J ◦ f−1

will also have compact level sets, i.e., it will also be a good rate function. !
There are a bunch of really common applications of the contraction principle,

relating the large deviations at one level of description to those at coarser levels.
To make the most frequent set of implications precise, let’s recall a couple of
definitions.

Definition 411 (Empirical Mean) If X1, . . . Xn are random variables in a
common vector space Ξ, their empirical mean is Xn ≡ 1

n

∑n
i=1 Xi.

We have already encountered this as the sample average or, in ergodic theory,
the finite time average. (Notice that nothing is said about the Xi being IID, or
even having a common expectation.)

Definition 412 (Empirical Distribution) Let X1, . . . Xn be random variables
in a common measurable space Ξ (not necessarily a vector or metric space). The
empirical distribution is P̂n ≡ 1

n

∑n
i=1 δXi , where δx is the probability measure

that puts all its probability on the point x, i.e., δx(B) = 1B(x). P̂n is a ran-
dom variable taking values in P (Ξ), the space of all probability measures on Ξ.
(Cf. Example 10 in chapter 1 and Example 43 in chapter 4.) P (Ξ) is a met-
ric space under any of several distances, and a complete separable metric space
(i.e., Polish) under, for instance, the total variation metric.

Definition 413 (Finite-Dimensional Empirical Distributions) For each
k, the k-dimensional empirical distribution is

P̂ k
n ≡

1
n

n∑

i=1

δ(Xi,Xi+1,...Xi+k) (30.28)

where the addition of indices for the delta function is to be done modulo n, i.e.,
P̂ 2

3 = 1
3

(
δ(X1,X2) + δ(X2,X3) + δ(X3,X1)

)
. P̂ k

n takes values in P
(
Ξk

)
.
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Definition 414 (Empirical Process Distribution) With a finite sequence
of random variables X1, . . . Xn, the empirical process is the periodic, infinite
random sequence X̃n as the repetition of the sample without limit, i.e., X̃n(i) =
Xi mod n. If T is the shift operator on the sequence space, then the empirical
process distribution is

P̂∞n ≡ 1
n

n−1∑

i−0

δT iX̃n
(30.29)

P̂∞n takes values in the space of infinite-dimensional distributions for one-sided
sequences, P

(
ΞN)

. In fact, it is always a stationary distribution, because by
construction it is invariant under the shift T .

Be careful not to confuse this empirical process with the quite distinct empirical
process of Examples 10 and 43.

Corollary 415 The following chain of implications hold:

i If the empirical process distribution obeys an LDP, so do all the finite-
dimensional distributions.

ii If the n-dimensional distribution obeys an LDP, all m < n dimensional
distributions do.

iii If any finite-dimensional distribution obeys an LDP, the empirical distri-
bution does.

iv If the empirical distribution obeys an LDP, the empirical mean does.

Proof: In each case, we obtain the lower-level statistic from the higher-level
one by applying a continuous function, hence the contraction principle applies.
For the distributions, the continuous functions are the projection operators of
Chapter 2. !

Corollary 416 (“Tilted” LDP) In set-up of Theorem 409, let µε = L (Xε).
Define the probability measures µf,ε via

µf,ε(B) ≡
E

[
ef(Xε)/ε1B(Xε)

]

E
[
ef(Xε)/ε

] (30.30)

Then Yε ∼ µf,ε obeys an LDP with rate 1/ε and rate function

JF (x) = −(f(x)− J(x)) + sup
y∈Ξ

f(y)− J(y) (30.31)
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Proof: Define a set function Fε(B) = E
[
ef(Xε)/ε1B(Xε)

]
; then µf,ε(B) =

Fε(B)/Fε(Ξ). From Varadhan’s Lemma, we know that Fε(Ξ) has asymptotic
logarithm supy∈Ξ f(y)− J(y), so it is just necessary to show that

lim sup
ε

ε log Fε(B) ≤ sup
x∈clB

f(x)− J(x) (30.32)

lim inf
ε

ε log Fε(B) ≥ sup
x∈intB

f(x)− J(x) (30.33)

which can be done by imitating the proof of Varadhan’s Lemma itself. !
Remark: “Tilting” here refers to some geometrical analogy which, in all

honesty, has never made any sense to me.
Because the LDP is about exponential decay of probabilities, it is not sur-

prising that several ways of obtaining it require a sort of exponential bound on
the dispersion of the probability measure.

Definition 417 (Exponentially Tight) The parameterized family of random
variables Xε, ε > 0, is exponentially tight if, for every finite real M , there exists
a compact set C ⊂ Ξ such that

lim sup
ε→0

ε log P (Xε (∈ C) ≤ −M (30.34)

The first use of exponential tightness is a converse to the contraction prin-
ciple: a high-level LDP is implied by the combination of a low-level LDP and
high-level exponential tightness.

Theorem 418 (Inverse Contraction Principle) If Xε are exponentially tight,
f is continuous and injective, and Yε = f(Xε) obeys an LDP with rate function
K, then Xε obeys an LDP with a good rate function J(x) = K(f(x)).

Proof: See Kallenberg, Theorem 27.11 (ii). Notice, by the way, that the proof
of the upper bound on probabilities (i.e. that lim sup ε log P (Xε ∈ B) ≤ −J(B)
for closed B ⊆ Ξ) does not depend on exponential tightness, just the continuity
of f . Exponential tightness is only needed for the lower bound. !

Theorem 419 (Bryc’s Theorem) If Xε are exponentially tight, and, for all
bounded continuous f , the limit

Λf ≡ lim
ε→0

ε log E
[
ef(Xε/ε)

]
(30.35)

exists, then Xε obeys the LDP with good rate function

J(x) ≡ sup
f

f(x)− Λf (30.36)

where the supremum extends over all bounded, continuous functions.

Proof: See Kallenberg, Theorem 27.10, part (ii). !
Remark: This is a converse to Varadhan’s Lemma.
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Theorem 420 (Projective Limit) Let Ξ1,Ξ2, . . . be a countable sequence of
metric spaces, and let Xε be a random sequence from this space. If, for every n,
Xn

ε = πnXε obeys the LDP with good rate function Jn, then Xε obeys the LDP
with good rate function

J(x) ≡ sup
n

Jn(πnx) (30.37)

Proof: See Kallenberg, Theorem 27.12. !

Definition 421 (Exponentially Equivalent Random Variables) Two fam-
ilies of random variables, Xε and Yε, taking values in a common metric space,
are exponentially equivalent when, for all positive δ,

lim
ε→0

ε log P (d(Xε, Yε) > δ) = −∞ (30.38)

Lemma 422 If Xε and Yε are exponentially equivalent, one of them obeys the
LDP with a good rate function J iff the other does as well.

Proof: It is enough to prove that the LDP for Xε implies the LDP for Yε, with
the same rate function. (Draw a truth-table if you don’t believe me!) As usual,
first we’ll get the upper bound, and then the lower.

Pick any closed set C, and let Cδ be its closed δ neighborhood, i.e., Cδ =
{x : ∃y ∈ C, d(x, y) ≤ δ}. Now

P (Yε ∈ Cδ) ≤ P (Xε ∈ Cδ) + P (d(Xε, Yε) > δ) (30.39)

Using Eq. 30.38 from Definition 421, the LDP for Xε, and Lemma 402

lim sup ε log P (Yε ∈ C) (30.40)
≤ lim sup ε log P (Xε ∈ Cδ) + ε log P (d(Xε, Yε) > δ)
≤ lim sup ε log P (Xε ∈ Cδ) ∨ lim sup ε log P (d(Xε, Yε) > δ) (30.41)
≤ −J(Cδ) ∨ −∞ (30.42)
= −J(Cδ) (30.43)

Since J is a good rate function, we have J(Cδ) ↑ J(C) as δ ↓ 0; since δ was
arbitrary to start with,

lim sup ε log P (Yε ∈ C) ≤ −J(C) (30.44)

As usual, to obtain the lower bound on open sets, pick any open set O and any
point x ∈ O. Because O is open, there is a δ > 0 such that, for some open
neighborhood U of x, not only is U ⊂ O, but Uδ ⊂ O. In which case, we can
say that

P (Xε ∈ U) ≤ P (Yε ∈ O) + P (d(Xε, Yε) > h) (30.45)
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Proceeding as for the upper bound,

− J(x) ≤ −J(U) (30.46)
≤ lim inf ε log P (Xε ∈ U) (30.47)
≤ lim inf ε log P (Yε ∈ O) ∨ lim sup ε log P (d(Xε, Yε) > δ)(30.48)
= lim inf ε log P (Yε ∈ O) (30.49)

(Notice that the initial arbitrary choice of δ has dropped out.) Taking the
supremum over all x gives −J(O) ≤ lim inf ε log P (Yε ∈ O), as required. !


