
Chapter 31

Large Deviations for IID
Sequences: The Return of
Relative Entropy

Section 31.1 introduces the exponential version of the Markov in-
equality, which will be our major calculating device, and shows how
it naturally leads to both the cumulant generating function and the
Legendre transform, which we should suspect (correctly) of being the
large deviations rate function. We also see the reappearance of rela-
tive entropy, as the Legendre transform of the cumulant generating
functional of distributions.

Section 31.2 proves the large deviations principle for the empir-
ical mean of IID sequences in finite-dimensional Euclidean spaces
(Cramér’s Theorem).

Section 31.3 proves the large deviations principle for the empiri-
cal distribution of IID sequences in Polish spaces (Sanov’s Theorem),
using Cramér’s Theorem for a well-chosen collection of bounded con-
tinuous functions on the Polish space, and the tools of Section 30.2.
Here the rate function is the relative entropy.

Section 31.4 proves that even the infinite-dimensional empirical
process distribution of an IID sequence in a Polish space obeys the
LDP, with the rate function given by the relative entropy rate.

The usual approach in large deviations theory is to establish an LDP for
some comparatively tractable basic case through explicit calculations, and then
use the machinery of Section 30.2 to extend it to LDPs for more complicated
cases. This chapter applies this strategy to IID sequences.
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31.1 Cumulant Generating Functions and Rela-
tive Entropy

Suppose the only inequality we knew in probability theory was Markov’s inequal-
ity, P (X ≥ a) ≤ E [X] /a when X ≥ 0. How might we extract an exponential
probability bound from it? Well, for any real-valued variable, etX is positive, so
we can say that P (X ≥ a) = P

(
etX ≥ eta

)
≤ E

[
etX

]
/eta. E

[
etX

]
is of course

the moment generating function of X. It has the nice property that addition of
independent random variables leads to multiplication of their moment generat-
ing functions, as E

[
et(X1+X2)

]
= E

[
etX1etX2

]
= E

[
etX1

]
E

[
etX2

]
if X1 |= X2.

If X1, X2, . . . are IID, then we can get a deviation bound for their sample mean
Xn through the moment generating function:

P
(
Xn ≥ a

)
= P

(
n∑

i=1

Xi ≥ na

)

P
(
Xn ≥ a

)
≤ e−nta

(
E

[
etX1

])n

1
n

log P
(
Xn ≥ a

)
≤ −ta + log E

[
etX1

]

≤ inf
t
−ta + log E

[
etX1

]

≤ − sup
t

ta− log E
[
etX1

]

This suggests that the functions log E
[
etX

]
and sup ta− log E

[
etX

]
will be

useful to us. Accordingly, we encapsulate them in a pair of definitions.

Definition 423 (Cumulant Generating Function) The cumulant generat-
ing function of a random variable X in Rd is a function Λ : Rd $→ R,

Λ(t) ≡ log E
[
et·X]

(31.1)

Definition 424 (Legendre Transform) The Legendre transform of a real-
valued function f on Rd is another real-valued function on Rd,

f∗(x) ≡ sup
t∈Rd

t · x− f(t) (31.2)

The definition of cumulant generating functions and their Legendre trans-
forms can be extended to arbitrary spaces where some equivalent of the inner
product (a real-valued form, bilinear in its two arguments) makes sense; f and
f∗ then must take arguments from the complementary spaces.

Legendre transforms are particularly important in convex analysis1, since
convexity is preserved by taking Legendre transforms. If f is not convex initially,
then f∗∗ is (in one dimension) something like the greatest convex lower bound
on f ; made precise, this statement even remains true in higher dimensions. I
make these remarks because of the following fact:

1See Rockafellar (1970), or, more concisely, Ellis (1985, ch. VI).
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Lemma 425 The cumulant generating function Λ(t) is convex.

Proof: Simple calculation, using Hölder’s inequality in one step:

Λ(at + bu) = log E
[
e(at+bu)X

]
(31.3)

= log E
[
eatXebuX

]
(31.4)

= log E
[(

etX
)a(

euX
)b

]
(31.5)

≤ log
(
E

[
etX

])a(
E

[
ebuX

])b
(31.6)

= aΛ(t) + bΛ(u) (31.7)

which proves convexity. !
Our previous result, then, is easily stated: if the Xi are IID in R, then

P
(
Xn ≥ a

)
≤ Λ∗(a) (31.8)

where Λ∗(a) is the Legendre transform of the cumulant generating function of
the Xi. This elementary fact is, surprisingly enough, the foundation of the large
deviations principle for empirical means.

The notion of cumulant generating functions can be extended to probability
measures, and this will be useful when dealing with large deviations of empiri-
cal distributions. The definitions follow the pattern one would expect from the
complementarity between probability measures and bounded continuous func-
tions.

Definition 426 (Cumulant Generating Functional) Let X be a random
variable on a metric space Ξ, with distribution µ, and let Cb(Ξ) be the class of all
bounded, continuous, real-valued functions on Ξ. Then the cumulant-generating
functional Λ : Cb(Ξ) $→ R is

Λ(f) ≡ log E
[
ef(X)

]
(31.9)

Definition 427 The Legendre transform of a real-valued functional F on Cb(Ξ)
is

F ∗(ν) ≡ sup
f∈Cb(Ξ)

Eν [f ]− Λ(f) (31.10)

where ν ∈ P (Ξ), the set of all probability measures on Ξ.

Lemma 428 (Donsker and Varadhan) The Legendre transform of the cu-
mulant generating functional is the relative entropy:

Λ∗(ν) = D (ν‖µ) (31.11)
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Proof: First of all, notice that the supremum in Eq. 31.10 can be taken over
all bounded measurable functions, not just functions in Cb, since Cb is dense.
This will let us use indicator functions and simple functions in the subsequent
argument.

If ν )* µ, then D (ν‖µ) = ∞. But then there is also a set, call it B, with
µ(B) = 0, ν(B) > 0. Take fn = n1B . Then Eν [fn]−Λ(fn) = nν(B)−0, which
can be made arbitrarily large by taking n arbitrarily large, hence the supremum
in Eq. 31.10 is ∞.

If ν * µ, then show that D (ν‖µ) ≤ Λ∗(ν) and D (ν‖µ) ≥ Λ∗(ν), so they
must be equal. To get the first inequality, start with the observation then
dν
dµ exists, so set f = log dν

dµ , which is measurable. Then D (ν‖µ) is Eν [f ] −
log Eµ

[
ef

]
. If f is bounded, this shows that D (ν‖µ) ≤ Λ∗(ν). If f is not

bounded, approximate it by a sequence of bounded, measurable functions fn

with Eµ

[
efn

]
→ 1 and Eν [fn] → Eν [fn], again concluding that D (ν‖µ) ≤

Λ∗(ν).
To go the other way, first consider the special case where X is finite, and so

generated by a partition, with cells B1, . . . Bn. Then all measurable functions
are simple functions, and Eν [f ]− Λ(f) is

g(f) =
n∑

i=1

fiν(Bi)− log
n∑

i=1

efiµ(Bi) (31.12)

Now, g(f) is concave on all the fi, and

∂g(f)
∂fi

= ν(Bi)−
1∑n

i=1 efiµ(Bi)
µ(Bi)efi (31.13)

Setting this equal to zero,

ν(Bi)
µ(Bi)

=
1∑n

i=1 µ(Bi)efi
efi (31.14)

log
ν(Bi)
µ(Bi)

= fi (31.15)

gives the maximum value of g(f). (Remember that 0 log 0 = 0.) But then
g(f) = D (ν‖µ). So Λ∗(ν) ≤ D (ν‖µ) when the σ-algebra is finite. In the
general case, consider the case where f is a simple function. Then σ(f) is finite,
and Eν [f ] − log Eµ

[
ef

]
≤ D (ν‖µ) follows by the finite case and smoothing.

Finally, if f is not simple, but is bounded and measurable, there is a simple h
such that Eν [f ]− log Eµ

[
ef

]
≤ Eν [h]− log Eµ

[
eh

]
, so

sup
f∈Cb(Ξ)

Eν [f ]− log Eµ

[
ef

]
≤ D (ν‖µ) (31.16)

which completes the proof. !



CHAPTER 31. IID LARGE DEVIATIONS 220

31.2 Large Deviations of the Empirical Mean in
Rd

Historically, the oldest and most important result in large deviations is that the
empirical mean of an IID sequence of real-valued random variables obeys a large
deviations principle with rate n; the oldest version of this proposition goes back
to Harald Cramér in the 1930s, and so it is known as Cramér’s theorem, even
though the modern version, which is both more refined technically and works in
arbitrary finite-dimensional Euclidean spaces, is due to Varadhan in the 1960s.

Theorem 429 (Cramér’s Theorem) If Xi are IID random variables in Rd,
and Λ(t) <∞ for all t ∈ Rd, then their empirical mean obeys an LDP with rate
n and good rate function Λ∗(x).

Proof: The proof has three parts. First, the upper bound for closed sets;
second, the lower bound for open sets, under an additional assumption on Λ(t);
third and finally, lifting of the assumption on Λ by means of a perturbation
argument (related to Lemma 422).

To prove the upper bound for closed sets, we first prove the upper bound
for sufficiently small balls around arbitrary points. Then, we take our favorite
closed set, and divide it into a compact part close to the origin, which we can
cover by a finite number of closed balls, and a remainder which is far from the
origin and of low probability.

First the small balls of low probability. Because Λ∗(x) = supu u · x− Λ(u),
for any ε > 0, we can find some u such that u · x − Λ(x) > min 1/ε,Λ∗(x)− ε.
(Otherwise, Λ∗(x) would not be the least upper bound.) Since u · x is contin-
uous in x, it follows that there exists some open ball B of positive radius,
centered on x, within which u · y − Λ(x) > min 1/ε,Λ∗(x)− ε, or u · y >
Λ(x) + min 1/ε,Λ∗(x)− ε. Now use the exponential Markov inequality to get

P
(
Xn ∈ B

)
≤ E

[
eu·nXn−n infy∈B u·y

]
(31.17)

≤ e−n(min 1
ε ,Λ∗(x)−ε) (31.18)

which is small. To get the the compact set near the origin of high probability,
use the exponential decay of the probability at large ‖x‖. Since Λ(t) < ∞ for
all t, Λ∗(x) → ∞ as ‖x‖ → ∞. So, using (once again) the exponential Markov
inequality, for every ε > 0, there must exist an r > 0 such that

1
n

log P
(∥∥Xn

∥∥ > r
)
≤ −1

ε
(31.19)

for all n.
Now pick your favorite closed measurable set C ∈ Bd. Then C∩{x : ‖x‖ ≤ r}

is compact, and I can cover it by m balls B1, . . . Bm, with centers x1, . . . xm,
of the sort built in the previous paragraph. So I can apply a union bound to
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P
(
Xn ∈ C

)
, as follows.

P
(
Xn ∈ C

)
(31.20)

= P
(
Xn ∈ C ∩ {x : ‖x‖ ≤ r}

)
+ P

(
Xn ∈ C ∩ {x : ‖x‖ > r}

)

≤ P
(

Xn ∈
m⋃

i=1

Bi

)
+ P

(∥∥Xn

∥∥ > r
)

(31.21)

≤
(

m∑

i=1

P
(
Xn ∈ Bi

)
)

+ P
(∥∥Xn

∥∥ > r
)

(31.22)

≤
(

m∑

i=1

e−n(min 1
ε ,Λ∗(xi)−ε)

)
+ e−n 1

ε (31.23)

≤ (m + 1)e−n(min 1
ε ,Λ∗(C)−ε) (31.24)

with Λ∗(C) = infx∈C Λ∗(x), as usual. So if I take the log, normalize, and go to
the limit, I have

lim sup
n

1
n

log P
(
Xn ∈ C

)
≤ −min

1
ε
,Λ∗(C)− ε (31.25)

≤ −Λ∗(C) (31.26)

since ε was arbitrary to start with, and I’ve got the upper bound for closed sets.
To get the lower bound for open sets, pick your favorite open set O ∈ Bd,

and your favorite x ∈ O. Suppose, for the moment, that Λ(t)/‖t‖ → ∞ as
‖t‖ → ∞. (This is the growth condition mentioned earlier, which we will left at
the end of the proof.) Then, because Λ(t) is smooth, there is some u such that
∇Λ(u) = x. (You will find it instructive to draw the geometry here.) Now let
Yi be a sequence of IID random variables, whose probability law is given by

P (Yi ∈ B) =
E

[
euX1B(X)

]

E [euX ]
= e−Λ(u)E

[
euX1B(X)

]
(31.27)

It is not hard to show, by manipulating the cumulant generating functions, that
ΛY (t) = ΛX(t+u)−ΛX(u), and consequently that E [Yi] = x. I construct these
Y to allow me to pull the following trick, which works if ε > 0 is sufficiently
small that the first inequality holds (and I can always chose small enough ε):

P
(
Xn ∈ O

)
≥ P

(∥∥Xn − x
∥∥ < ε

)
(31.28)

= enΛ(u)E
[
e−nuY n1{y : ‖y − x‖ < ε}(Y n)

]
(31.29)

≥ enΛ(u)−nu·x−nε‖u‖P
(∥∥Y n − x

∥∥ < ε
)

(31.30)
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By the strong law of large numbers, P
(∥∥Y n − x

∥∥ < ε
)
→ 1 for all ε, so

lim inf
1
n

log P
(
Xn ∈ O

)
≥ Λ(u)− u · x− ε‖u‖ (31.31)

≥ −Λ∗(x)− ε‖u‖ (31.32)
≥ −Λ∗(x) (31.33)
≥ − inf

x∈O
Λ∗(x) = −Λ(O) (31.34)

as required. This proves the LDP, as required, if Λ(t)/‖t‖ → ∞ as ‖t‖ → ∞.
Finally, to lift the last-named restriction (which, remember, only affected the

lower bound for open sets), introduce a sequence Zi of IID standard Gaussian
variables, i.e. Zi ∼ N (0, I), which are completely independent of the Xi. It is
easily calculated that the cumulant generating function of the Zi is ‖t‖2/2, so
that Zn satisfies the LDP. Another easy calculation shows that Xi + σZi has
cumulant generating function ΛX(t)+ σ2

2 ‖t‖
2, which again satisfies the previous

condition. Since ΛX+σZ ≥ ΛX , Λ∗X ≥ Λ∗X+σZ . Now, once again pick any open
set O, and any point x ∈ O, and an ε sufficiently small that all points within a
distance 2ε of x are also in O. Since the LDP applies to X + σZ,

P
(∥∥Xn + σZn − x

∥∥ ≤ ε
)
≥ −Λ∗X+σZ(x) (31.35)
≥ −Λ∗X(x) (31.36)

On the other hand, basic probability manipulations give

P
(∥∥Xn + σZn − x

∥∥ ≤ ε
)
≤ P

(
Xn ∈ O

)
+ P

(
σ

∥∥Zn

∥∥ ≥ ε
)

(31.37)

≤ 2 max P
(
Xn ∈ O

)
, P

(
σ

∥∥Zn

∥∥ ≥ ε
)
(31.38)

Taking the liminf of the normalized log of both sides,

lim inf
1
n

log P
(∥∥Xn + σZn − x

∥∥ ≤ ε
)

(31.39)

≤ lim inf
1
n

log
(
max P

(
Xn ∈ O

)
, P

(
σ

∥∥Zn

∥∥ ≥ ε
))

≤ lim inf
1
n

log P
(
Xn ∈ O

)
∨

(
− ε2

2σ2

)
(31.40)

(31.41)

Since σ was arbitrary, we can let it go to zero, and obtain

lim inf
1
n

log P
(
Xn ∈ O

)
≥ −Λ∗X(x) (31.42)

≥ −Λ∗X(O) (31.43)

as required. !
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31.3 Large Deviations of the Empirical Measure
in Polish Spaces

The Polish space setting is, apparently, more general than Rd, but we will
represent distributions on the Polish space in terms of the expectation of a
separating set of functions, and then appeal to the Euclidean result.

Proposition 430 Any Polish space S can be represented as a Borel subset of
a compact metric space, namely [0, 1]N ≡M .

Proof: See, for instance, Appendix A of Kallenberg. !
Strictly speaking, there should be a function mapping points from S to

points in M . However, since this is an embedding, I will silently omit it in what
follows.

Proposition 431 Cb(M) has a countable dense separating set F = f1, f2, . . ..

Proof: See Kallenberg again. !
Because F is separating, to specify a probability distribution on K is equiv-

alent to specifying the expectation value of all the functions in F . Write fd
1 (X)

to abbreviate the d-dimensional vector (f1(X), f2(X), . . . fd(X)), and f∞1 (X)
to abbreviate the corresponding infinite-dimensional vector.

Lemma 432 Empirical means are expectations with respect to empirical mea-
sure. That is, let f be a real-valued measurable function and Yi = f(Xi). Then
Y n = EP̂n

[f(X)].

Proof: Direct calculation.

Y n ≡ 1
n

n∑

i=1

f(Xi) (31.44)

=
1
n

n∑

i=1

EδXi
[f(X)] (31.45)

≡ EP̂n
[f(X)] (31.46)

!

Lemma 433 Let Xi be a sequence of IID random variables in a Polish space
Ξ. For each d, the sequence of vectors (EP̂n

[f1] , . . .EP̂n
[fd]) obeys the LDP

with rate n and good rate function Jd.

Proof: For each d, the sequence of vectors (f1(Xi), . . . fd(Xi)) are IID, so, by
Cramér’s Theorem (429), their empirical mean obeys the LDP with rate n and
good rate function

Jd(x) = sup
t∈Rd

t · x− log E
[
et·fd

1 (X)
]

(31.47)
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But, by Lemma 432, the empirical means are expectations over the empirical
distributions, so the latter must also obey the LDP, with the same rate and rate
function. !

Notice, incidentally, that the fact that the fi ∈ F isn’t relevant for the proof
of the lemma; it will however be relevant for the proof of the theorem.

Theorem 434 (Sanov’s Theorem) Let Xi, i ∈ N, be IID random variables
in a Polish space Ξ, with common probability measure µ. Then the empirical dis-
tributions P̂n obey an LDP with rate n and good rate function J(ν) = D (ν‖µ).

Proof: Combining Lemma 433 and Theorem 420, we see that EP̂n
[f∞1 (X)]

obeys the LDP with rate n and good rate function

J(x) = sup
d

Jd(πdx) (31.48)

= sup
d

sup
t∈Rd

t · πdx− log E
[
et·fd

1 (X)
]

(31.49)

Since P (M) is compact (so all random sequences in it are exponentially
tight), and the mapping from ν ∈ P (M) to Eν [f∞1 ] ∈ RN is continuous, apply
the inverse contraction principle (Theorem 418) to get that P̂n satisfies the LDP
with good rate function

J(ν) = J(Eν [f∞1 ]) (31.50)

= sup
d

sup
t∈Rd

t ·Eν

[
fd
1

]
− log Eµ

[
et·fd

1 (X)
]

(31.51)

= sup
f∈spanF

Eν [f ]− Λ(f) (31.52)

= sup
f∈Cb(M)

Eν [f ]− Λ(f) (31.53)

= D (ν‖µ) (31.54)

Notice however that this is an LDP in the space P (M), not in P (Ξ). However,
the embedding taking P (Ξ) to P (M) is continuous, and it is easily verified (see
Lemma 27.17 in Kallenberg) that P̂n is exponentially tight in P (Ξ), so another
application of the inverse contraction principle says that P̂n must obey the LDP
in the restricted space P (Ξ), and with the same rate. !

31.4 Large Deviations of the Empirical Process
in Polish Spaces

A fairly straightforward modification of the proof for Sanov’s theorem estab-
lishes a large deviations principle for the finite-dimensional empirical distribu-
tions of an IID sequence.

Corollary 435 Let Xi be an IID sequence in a Polish space Ξ, with common
measure µ. Then, for every finite positive integer k, the k-dimensional empirical
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distribution P̂ k
n , obeys an LDP with rate n and good rate function Jk(ν) =

D (ν‖πk−1ν ⊗ µ) if ν ∈ P
(
Ξk

)
is shift invariant, and J(ν) =∞ otherwise.

This leads to the following important generalization.

Theorem 436 If Xi are IID in a Polish space, with a common measure µ, then
the empirical process distribution P̂∞

n obeys an LDP with rate n and good rate
function J∞(ν) = d(ν‖µ∞), the relative entropy rate, if ν is a shift-invariant
probability measure, and =∞ otherwise.

Proof: By Corollary 435 and the projective limit theorem 420, P̂∞
n obeys an

LDP with rate n and good rate function

J∞(ν) = sup
k

Jk(πkν) = sup
k

D (πkν‖πk−1ν ⊗ µ) (31.55)

But, applying the chain rule for relative entropy (Lemma 363),

D (πnν‖µn) = D (πnν‖πn−1ν ⊗ µ) + D
(
πn−1ν‖µn−1

)
(31.56)

=
n∑

k=1

D (πkν‖πk−1ν ⊗ µ) (31.57)

lim
1
n

D (πnν‖µn) = lim
1
n

n∑

k=1

D (πkν‖πk−1ν ⊗ µ) (31.58)

= sup
k

D (πkν‖πk−1ν ⊗ µ) (31.59)

But lim n−1D (πnν‖µn) is the relative entropy rate, d(ν‖µ∞), and we’ve already
identified the right-hand side as the rate function. !

The strength of Theorem 436 lies in the fact that, via the contraction prin-
ciple (Theorem 410), it implies that the LDP holds for any continuous function
of the empirical process distribution. This in particular includes the finite-
dimensional distributions, the empirical mean, functions of finite-length trajec-
tories, etc. Moreover, Theorem 410 also provides a means to calculate the rate
function for all these quantities.


