
Chapter 32

Large Deviations for
Markov Sequences

This chapter establishes large deviations principles for Markov
sequences as natural consequences of the large deviations principles
for IID sequences in Chapter 31. (LDPs for continuous-time Markov
processes will be treated in the chapter on Freidlin-Wentzell theory.)

Section 32.1 uses the exponential-family representation of Markov
sequences to establish an LDP for the two-dimensional empirical dis-
tribution (“pair measure”). The rate function is a relative entropy.

Section 32.2 extends the results of Section 32.1 to other observ-
ables for Markov sequences, such as the empirical process and time
averages of functions of the state.

For the whole of this chapter, let X1, X2, . . . be a homogeneous Markov se-
quence, taking values in a Polish space Ξ, with transition probability kernel µ,
and initial distribution ν and invariant distribution ρ. If Ξ is not discrete, we
will assume that ν and ρ have densities n and r with respect to some reference
measure, and that µ(x, dy) has density m(x, y) with respect to that same ref-
erence measure, for all x. (LDPs can be proved for Markov sequences without
such density assumptions — see, e.g., Ellis (1988) — but the argument is more
complicated.)

32.1 Large Deviations for Pair Measure of Markov
Sequences

It is perhaps not sufficiently appreciated that Markov sequences form expo-
nential families (Billingsley, 1961; Küchler and Sørensen, 1997). Suppose Ξ is
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discrete. Then

P
(
Xn

1 = xt
1

)
= ν(x1)

t−1∏

i=1

µ(xi, xi+1) (32.1)

= ν(x1)e
Pt−1

i=1 log µ(xi,xi+1) (32.2)

= ν(x1)e
P

x,y∈Ξ2 Tx,y(xt
1) log µ(x,y) (32.3)

where Tx,y(xt
1) counts the number of times the state y follows the state x in the

sequence xt
1, i.e., it gives the transition counts. What we have just established is

that the Markov chains on Ξ with a given initial distribution form an exponential
family, whose natural sufficient statistics are the transition counts, and whose
natural parameters are the logarithms of the transition probabilities.

(If Ξ is not continuous, but we make the density assumptions mentioned at
the beginning of this chapter, we can write

pXt
1
(xt

1) = n(x1)
t−1∏

i=1

m(xi, xi+1) (32.4)

= n(x1)e
R
Ξ2 dT (xt

1) log m(x,y) (32.5)

where now T (xt
1) puts probability mass 1

n−1 at x, y for every i such that xi = x,
xi+1 = y.)

We can use this exponential family representation to establish the following
basic theorem.

Theorem 437 Let Xi be a Markov sequence obeying the assumptions set out
at the beginning of this chapter, and furthermore that µ(x, y)/ρ(y) is bounded
above (in the discrete-state case) or that m(x, y)/r(y) is bounded above (in
the continuous-state case). Then the two-dimensional empirical distribution
(“pair measure”) P̂ 2

t obeys an LDP with rate n and with rate function J2(ψ) =
D (ψ‖π1ψ × µ) if ν is shift-invariant, J(ν) = ∞ otherwise.

Proof: I will just give the proof for the discrete case, since the modifications
for the continuous case are straightforward (given the assumptions made about
densities), largely a matter of substituting Roman letters for Greek ones.

First, modify the representation of the probabilities in Eq. 32.3 slightly, so
that it refers directly to P̂ 2

t (as laid down in Definition 413), rather than to the
transition counts.

P
(
Xt

1 = xt
1

)
=

ν(x1)
µ(xt, x1)

et
P

x,y∈Ξ P̂ 2
t (x,y) log µ(x,y) (32.6)

=
ν(x1)

µ(xt, x1)
e
nEP̂2

t
[log µ(X,Y )] (32.7)

Now construct a sequence of IID variables Yi, all distributed according to ρ, the
invariant measure of the Markov chain:

P
(
Y t

1 = yt
1

)
= e

nEP̂2
t
[log ρ(Y )] (32.8)
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The ratio of these probabilities is the Radon-Nikodym derivative:

dPX

dPY
(xt

1) =
ν(x1)

µ(xt, x1)
e
tEP̂2

n
[t log µ(X,Y )

ρ(Y ) ] (32.9)

(In the continuous-Ξ case, the derivative is the ratio of the densities with respect
to the common reference measure, and the principle is the same.) Introducing
the functional F (ν) = Eν

[
log µ(X,Y )

ρ(Y )

]
, the derivative is equal to O(1)etF (P̂ 2

t ),
and our initial assumption amounts to saying that F is not just continuous
(which it must be) but bounded from above.

Now introduce Qt,X , the distribution of the empirical pair measure P̂ 2
t un-

der the Markov process, and Qt,Y , the distribution of P̂ 2
t for the IID samples

produced by Yi. From Eq. 32.9,

1
t

log P
(
P̂ 2

t ∈ B
)

=
1
t

log
∫

B
dQt,X(ψ) (32.10)

=
1
t

log
∫

B

dQt,X

dQt,Y
dQt,Y (ψ) (32.11)

= O

(
1
t

)
+

1
t

log
∫

B
etF (ψ)dQt,Y (ψ) (32.12)

It is thus clear that

lim inf
1
t

log P
(
P̂ 2

t ∈ B
)

= lim inf
1
t

log
∫

B
etF (ψ)dQt,Y (ψ) (32.13)

lim sup
1
t

log P
(
P̂ 2

t ∈ B
)

= lim sup
1
t

log
∫

B
etF (ψ)dQt,Y (ψ) (32.14)

Introduce a (final) proxy random sequence, also taking values in P (() Ξ2), call
it Zt, with P (Zt ∈ B) =

∫
B etF (ψ)dQt,Y (ψ). We know (Corollary 435) that,

under Qt,Y , the empirical pair measure satisfies an LDP with rate t and good
rate function JY = D (ψ‖π1ψ ⊗ ρ), so by Corollary 416, Zt satisfies an LDP
with rate t and good rate function

JF (ψ) = −(F (ψ)− JY (ψ)) + sup
ζ∈P(Ξ2)

F (ζ)− JY (ζ) (32.15)

A little manipulation turns this into

JF (ψ) = D (ψ‖π1ψ ⊗ µ)− inf
ζ∈P(Ξ2)

D (ζ‖π1ζ ⊗ µ) (32.16)

and the infimum is clearly zero. Since this is the rate function Zt, in view of
Eqs. 32.13 and 32.14 it is also the rate function for P̂ 2

n , which we have agreed
to call J2. !

Remark 1: The key to making this work is the assumption that F is bounded
from above. This can fail if, for instance, the process is not ergodic, although
usually in that case one can rescue the general idea by some kind of ergodic
decomposition.
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Remark 2: The LDP for the pair measure of an IID sequence can now
be seen to be a special case of the LDP for the pair measure of a Markov
sequence. The same is true, generally speaking, of all the other LDPs for IID
and Markov sequences. Calculations are almost always easier for the IID case,
however, which permits us to give explicit formulae for the rate functions of
empirical means and empirical distributions unavailable (generally speaking) in
the Markovian case.

Corollary 438 The minima of the rate function J2 are the invariant distribu-
tions.

Proof: The rate function is D (ψ‖π1ψ ⊗ µ). Since relative entropy is ≥ 0, and
equal to zero iff the two distributions are equal (Lemma 360), we get a minimum
of zero in the rate function iff ψ = π1ψ⊗ µ, or ψ = ρ2, for some ρ ∈ P (Ξ) such
that ρµ = ρ. Conversely, if ψ is of this form, then J2(ψ) = 0. !

Corollary 439 The empirical distribution P̂t obeys an LDP with rate t and
good rate function

J1(ψ) = inf
ζ∈P(Ξ2):π1ζ=ψ

D (ζ‖π1ζ ⊗ µ) (32.17)

Proof: This is a direct application of the Contraction Principle (Theorem 410),
as in Corollary 415. !

Remark: Observe that if ψ is invariant under the action of the Markov chain,
then J1(ψ) = 0 by a combination of the preceding corollaries. This is good,
because we know from ergodic theory that the empirical distribution converges
on the invariant distribution for an ergodic Markov chain. In fact, in view of
Lemma 361, which says that D (ψ‖ρ) ≥ 1

2 ln 2‖ψ − ρ‖21, the probability that the
empirical distribution differs from the invariant distribution ρ by more than δ,
in total variation distance, goes down like O(e−tδ2/2).

Corollary 440 If Theorem 437 holds, then time averages of observables, Atf ,
obey a large deviations principle with rate function

J0(a) = inf
ζ∈P(Ξ2): Eπ1ζ [f(X)]

D (ζ‖π1ζ ⊗ µ) (32.18)

Proof: Another application the Contraction Principle, as in Corollary 415. !
Remark: Observe that if a = Eρ [f(X)], with ρ invariant, then the J0(a) = 0.

Again, it is reassuring to see that large deviations theory is compatible with
ergodic theory, which tells us to expect the almost-sure convergence of Atf on
Eρ [f(X)].

Corollary 441 If Xi are from a Markov sequence of order k + 1, then, under
conditions analogous to Theorem 437, the k + 1-dimensional empirical distribu-
tion P̂ k+1

t obeys an LDP with rate t and good rate function

D (ν‖πk−1ν ⊗ µ) (32.19)
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Proof: An obvious extension of the argument for Theorem 437, using the
appropriate exponential-family representation of the higher-order process. !

Whether all exponential-family stochastic processes (Küchler and Sørensen,
1997) obey LDPs is an interesting question; I’m not sure if anyone knows the
answer.

32.2 Higher LDPs for Markov Sequences

In this section, I assume without further comment that the Markov sequence X
obeys the LDP of Theorem 437.

Theorem 442 For all k ≥ 2, the finite-dimensional empirical distribution P̂ k
t

obeys an LDP with rate t and good rate function Jk(ψ) = D (ψ‖πk−1ψ ⊗ µ), if
ψ ∈ P

(
Ξk

)
is shift-invariant, and = ∞ otherwise.

Proof: The case k = 2 is just Theorem 437. However, if k ≥ 3, the argument
preceding that theorem shows that P

(
P̂ k

t ∈ B
)

depends only on π2P̂ k
t , the pair

measure implied by the k-dimensional distribution, so the proof of that theorem
can be adapted to apply to P̂ k

t , in conjunction with Corollary 435, establishing
the LDP for finite-dimensional distributions of IID sequences. The identification
of the rate function follows the same argument, too. !

Theorem 443 The empirical process distribution obeys an LDP with rate t
and good rate function J∞(ψ) = d(ψ‖ρ), with ρ here standing for the stationary
process distribution of the Markov sequence.

Proof: Entirely parallel to the proof of Theorem 436, with Theorem 442 sub-
stituting for Corollary 435. !

Consequently, any continuous function of the empirical process distribution
has an LDP.


