
Chapter 34

Large Deviations for
Weakly Dependent
Sequences: The
Gärtner-Ellis Theorem

This chapter proves the Gärtner-Ellis theorem, establishing an
LDP for not-too-dependent processes taking values in topological
vector spaces. Most of our earlier LDP results can be seen as con-
sequences of this theorem.

34.1 The Gärtner-Ellis Theorem

The Gärtner-Ellis theorem is a powerful result which establishes the existence
of a large deviation principle for processes where the cumulant generating func-
tion tends towards a well-behaved limit, implying not-too-strong dependence
between successive values. (Exercise 34.5 clarifies the meaning of “too strong”.)
It will imply our LDPs for IID and Markovian sequences. I could have started
with it, but its proof, as you’ll see, is pretty technical, and so it seemed better
to use the more elementary arguments of the preceding chapters.

To fix notation, Ξ will be a real topological vector space, and Ξ∗ will be its
dual space, of continuous linear functions Ξ !→ R. (If Ξ = Rd, we can identify
Ξ and Ξ∗ by means of the inner product. In differential geometry, on the other
hand, Ξ might be a space of tangent vectors, and Ξ∗ the corresponding one-
forms.) Xε will be a family of Ξ-valued random variables, parameterized by
ε > 0. Refer to Definitions 423 and 424 in Section 31.1 for the definition of the
cumulant generating function and its Legendre transform (respectively), which
I will denote by Λε : Ξ∗ !→ R and Λ∗ε : Ξ !→ R.

The proof of the Gärtner-Ellis theorem goes through a number of lemmas.
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Basically, the upper large deviation bound holds under substantially weaker
conditions than the lower bound does, and it’s worthwhile having the partial
results available to use in estimates even if the full large deviations principle
does not apply.

Definition 444 The upper-limiting cumulant generating function is

Λ (t) ≡ lim sup
ε→0

εΛε(t/ε) (34.1)

and its Legendre transform is written Λ∗ (x).

The point of this is that the limsup always exists, whereas the limit doesn’t,
necessarily. But we can show that the limsup has some reasonable properties,
and in fact it’s enough to give us an upper bound.

Lemma 445 Λ (t) is convex, and Λ∗ (x) is a convex rate function.

Proof: The proof of the convexity of Λε(t) follows the proof in Lemma 425,
and the convexity of Λ (t) by passing to the limit. To etablish Λ∗ (x) as a
rate function, we need it to be non-negative and lower semi-continuous. Since
Λε(0) = 0 for all ε, Λ (0) = 0. This in turn implies that Λ∗ (x) ≥ 0. Since the
latter is the supremum of a class of continuous functions, namely t(x) − Λ (t),
it must be lower semi-continuous. Finally, its convexity is implied by its being
a Legendre transform. !

Lemma 446 (Upper Bound in Gärtner-Ellis Theorem: Compact Sets)
For any compact set K ⊂ Ξ,

lim sup
ε→0

ε log P (Xε ∈ K) ≤ −Λ∗ (K) (34.2)

Proof: Entirely parallel to the proof of the upper bound in Cramér’s Theorem
(429), up through the point where closed sets are divided into a compact part
and a remainder far from the origin, of exponentially-small probability. Because
K is compact, we can proceed as though the remainder is empty. !

Lemma 447 (Upper Bound in Gärtner-Ellis Theorem: Closed Sets) If
the family of distributions L (Xε) are exponentially tight, then for all closed
C ⊂ Ξ,

lim sup
ε→0

ε log P (Xε ∈ C) ≤ −Λ∗ (C) (34.3)

Proof: Exponential tightness, by definition (417), will let us repeat Theorem
429 trick of dividing closed sets into a compact part, and an exponentially-
vanishing non-compact part. !
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Definition 448 The limiting cumulant generating function is

Λ(t) ≡ lim
ε→0

εΛε(t/ε) (34.4)

when the limit exists. Its domain of finiteness D ≡ {t ∈ Ξ∗ : Λ(t) < infty}. Its
limiting Legendre transform is Λ∗, with domain of finiteness D∗.

Lemma 449 If Λ(t) exists, then it is convex, Λ∗(x) is a convex rate function,
and Eq. 34.2 applies to the latter. If in addition the process is exponentially
tight, then Eq. 34.3 holds for Λ∗(x).

Proof: Because, if a limit exists, it is equal to the limsup. !

Lemma 450 If Ξ = Rd, then 0 ∈ intD is sufficient for exponential tightness.

Proof: Exercise. !
Unfortunately, this is not good enough to get exponential tightness in arbi-

trary vector spaces.

Definition 451 (Exposed Point) A point x ∈ Ξ is exposed for Λ∗ (·) when
there is a t ∈ Ξ∗ such that Λ∗ (y) − Λ∗ (x) > t(y − x) for all y )= x. t is the
exposing hyper-plane for x.

In R1, a point x is exposed if the curve Λ∗ (y) lies strictly above the line of slope
t through the point (x, Λ∗ (x)). Similarly, in Rd, the Λ∗ (y) surface must lie
strictly above the hyper-plane passing through (x,Λ∗ (x)) with surface normal
t. Since Λ∗ (y) is convex, we could generally arrange this by making this the
tangent hyper-plane, but we do not, yet, have any reason to think that the
tangent is well-defined. — Obviously, if Λ(t) exists, we can replace Λ∗ (·) by
Λ∗(·) in the definition and the rest of this paragraph.

Definition 452 An exposed point x ∈ Ξ with exposing hyper-plane t is nice,
x ∈ N , if

lim
ε→0

εΛε(t/ε) (34.5)

exists, and, for some r > 1,
Λ (rt) < ∞ (34.6)

Note: Most books on large deviations do not give this property any particular
name.

Lemma 453 (Lower Bound in Gärtner-Ellis Theorem) If the Xε are ex-
ponentially tight, then, for any open set O ⊆ Ξ,

lim inf
ε→0

ε log P (Xε ∈ O) ≥ −Λ∗ (O ∩N) (34.7)
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Proof: If we pick any nice, exposed point x ∈ O, we can repeat the proof of
the lower bound from Cramér’s Theorem (429). In fact, the point of Definition
452 is to ensure this. Taking the supremum over all such x gives the lemma. !

Theorem 454 (Abstract Gärtner-Ellis Theorem) If the Xε are exponen-
tially tight, and Λ∗ (O ∩ E) = Λ∗ (O) for all open sets O ⊆ Ξ, then Xε obey an
LDP with rate 1/ε and good rate function Λ∗ (x).

Proof: The large deviations upper bound is Lemma 447. The large deviations
lower bound is implied by Lemma 453 and the additional hypothesis of the
theorem. !

Matters can be made a bit more concrete in Euclidean space (the original
home of the theorem), using, however, one or two more bits of convex analysis.

Definition 455 (Relative Interior) The relative interior of a non-empty and
convex set A is

rintA ≡ {x ∈ A : ∀y ∈ A,∃δ > 0, x− δ(y − x) ∈ A} (34.8)

Notice that intA ⊆ rintA, since the latter, in some sense, doesn’t care about
points outside of A.

Definition 456 (Essentially Smooth) Λ is essentially smooth if (i) intD )=
∅, (ii) Λ is differentiable on intD, and (iii) Λ is “steep”, meaning that if D has
a boundary, ∂D, then limt→∂D ‖∇Λ(t)‖ = ∞.

This definition was introduced to exploit the following theorem of convex
analysis.

Proposition 457 If Λ is essentially smooth, then Λ∗ is continuous on rintD∗,
and rintD∗ ⊆ N , the set of exposed, nice points.

Proof: D∗ is non-empty, because there is at least one point x0 where Λ∗(x0) =
0. Moreover, it is a convex set, because Λ∗ is a convex function (Lemma 449),
so it has a relative interior. Now appeal to Rockafellar (1970, Corollary 26.4.1).
!

Remark: You might want to try to prove that Λ∗ is continuous on rintD∗.

Theorem 458 (Euclidean Gärtner-Ellis Theorem) Suppose Xε, taking val-
ues in Rd, are exponentially tight, and that Λ(t) exists and is essentially smooth.
Then Xε obey an LDP with rate 1/ε and good rate function Λ∗(x).

Proof: From the abstract Gärtner-Ellis Theorem 454, it is enough to show
that Λ∗(O ∩N) = Λ∗(O), for any open set O. That is, we want

inf
x∈O∩N

Λ∗(x) = inf
x∈O

Λ∗(x) (34.9)
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Since it’s automatic that

inf
x∈O∩N

Λ∗(x) ≥ inf
x∈O

Λ∗(x) (34.10)

what we need to show is that

inf
x∈O∩N

Λ∗(x) ≤ inf
x∈O

Λ∗(x) (34.11)

In view of Proposition 457, it’s really just enough to show that Λ∗(O∩rintD∗) ≤
Λ∗(O). This is trivial when the intersection O ∩ D∗ is empty, so assume it
isn’t, and pick any x in that intersection. Because O is open, and because
of the definition of the relative interior, we can pick any point y ∈ rintD∗,
and, for sufficiently small δ, δy + (1 − δ)x ∈ O ∩ rintD∗. Since Λ∗ is convex,
Λ∗(δy + (1− δ)x) ≤ δΛ∗(y) + (1− δ)Λ∗(x). Taking the limit as δ → 0,

Λ∗(O ∩ rintD∗) ≤ Λ∗(x) (34.12)

and the claim follows by taking the infimum over x.

34.2 Exercises

Exercise 34.1 Show that Cramér’s Theorem (429), is a special case of the
Euclidean Gärtner-Ellis Theorem (458).

Exercise 34.2 Let Z1, Z2, . . . be IID random variables in a discrete space, and
let X1, X2, . . . be the empirical distributions they generate. Use the Gärtner-
Ellis Theorem to re-prove Sanov’s Theorem (434). Can you extend this to the
case where the Zi take values in an arbitrary Polish space?

Exercise 34.3 Let Z1, Z2, . . . be values from a stationary ergodic Markov chain
(i.e. the state space is discrete). Repeat the previous exercise for the pair mea-
sure. Again, can the result be extended to arbitrary Polish state spaces?

Exercise 34.4 Let Zi be real-valued mean-zero stationary Gaussian variables,
with

∑∞
i=−∞ |cov (Z0, Zi) | < ∞. Let Xt = t−1

∑t
i=1 Zi. Show that these

time averages obey an LDP with rate t and rate function x2/2Γ, where Γ =∑∞
i=−∞ cov (Z0, Zi). (Cf. the mean-square ergodic theorem 246 of chapter 21.)

If Zi are not Gaussian but are weakly stationary, find an additional hypothesis
such that the time averages still obey an LDP.

Exercise 34.5 (Too-Strong Dependence) Let Xi = X, a random variable
in R, for all i. Show that the Gärtner-Ellis Theorem fails, unless X is degener-
ate.


