
Chapter 35

Large Deviations for
Stochastic Differential
Equations

This last chapter revisits large deviations for stochastic differen-
tial equations in the small-noise limit, first raised in Chapter 22.

Section 35.1 establishes the LDP for the Wiener process (Schilder’s
Theorem).

Section 35.2 proves the LDP for stochastic differential equations
where the driving noise is independent of the state of the process.

Section 35.3 states the corresponding result for SDEs when the
noise is state-dependent, and gestures in the direction of the proof.

In Chapter 22, we looked at how the diffusions Xε which solve the SDE

dXε = a(Xε)dt + εdW, Xε(0) = x0 (35.1)

converge on the trajectory x0(t) solving the ODE

dx

dt
= a(x(t)), x(0) = x0 (35.2)

in the “small noise” limit, ε → 0. Specifically, Theorem 256 gave a (fairly crude)
upper bound on the probability of deviations:

lim
ε→0

ε2 log P
(

sup
0≤t≤T

∆ε(t) > δ

)
≤ −δ2e−2KaT (35.3)

where Ka depends on the Lipschitz coefficient of the drift function a. The the-
ory of large deviations for stochastic differential equations, known as Freidlin-
Wentzell theory for its original developers, shows that, using the metric implicit
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in the left-hand side of Eq. 35.3, the family of processes Xε obey a large devia-
tions principle with rate ε−2, and a good rate function.

(The full Freidlin-Wentzell theory actually goes somewhat further than just
SDEs, to consider small-noise perturbations of dynamical systems of many sorts,
perturbations by Markov processes (rather than just white noise), etc. Time
does not allow us to consider the full theory (Freidlin and Wentzell, 1998), or
its many applications to nonparametric estimation (Ibragimov and Has’minskii,
1979/1981), systems analysis and signal processing (Kushner, 1984), statistical
mechanics (Olivieri and Vares, 2005), etc.)

As in Chapter 31, the strategy is to first prove a large deviations principle
for a comparatively simple case, and then transfer it to more subtle processes
which can be represented as appropriate functionals of the basic case. Here,
the basic case is the Wiener process W (t), with t restricted to the unit interval
[0, 1].

35.1 Large Deviations of the Wiener Process

We start with a standard d-dimensional Wiener process W , and consider its di-
lation by a factor ε, Xε(t) = εW (t). There are a number of ways of establishing
that Xε obeys a large deviation principle as ε → 0. One approach (see Dembo
and Zeitouni (1998, ch. 5) starts with establishing an LDP for continuous-time
random walks, ultimately based on the Gärtner-Ellis Theorem, and then show-
ing that the convergence of such processes to the Wiener process (the Functional
Central Limit Theorem, Theorem 174 of Chapter 16) is sufficiently fast that the
LDP carries over. However, this approach involves a number of surprisingly
tricky topological issues, so I will avoid it, in favor of a more probabilistic path,
marked out by Freidlin and Wentzell (Freidlin and Wentzell, 1998, sec. 3.2).

Until further notice, ‖w‖∞ will denote the supremum norm in the space of
continuous curves over the unit interval, C([0, 1], Rd).

Definition 459 (Cameron-Martin Spaces) The Cameron-Martin space HT

consists of all continuous sample paths x ∈ C([0, T ], Rd) where x(0) = 0, x is
absolutely continuous, and its Radon-Nikodym derivative ẋ is square-integrable.

Lemma 460 Cameron-Martin spaces are Hilbert spaces, with norm ‖x‖CM =∫ T
0 |ẋ(t)|2dt.

Proof: An exercise (35.1) in verifying that the axioms of a Hilbert space are
satisfied. !

Definition 461 The effective Wiener action of an continuous function x ∈
C([0, t], Rd) is

JT (x) ≡ 1
2
‖x‖2CM (35.4)



CHAPTER 35. FREIDLIN-WENTZELL THEORY 240

if x ∈ HT , and ∞ otherwise. In particular,

J1(x) ≡ 1
2

∫ 1

0
|ẋ(t)|2dt (35.5)

For every j > 0, let LT (j) = {x : JT (x) ≤ j}.

Proposition 462 Fix a function f ∈ H1, and let Yε = Xε−f . Then L (Yε) = νε

is absolutely continuous with respect to L (Xε) = µε, and the Radon-Nikodym
derivative is

dνε

dµε
(εw) = exp

{
−1

ε

∫ 1

0
ẇ(t) · dW − 1

2ε2

∫ 1

0
|ẇ(t)|2dt

}
(35.6)

Proof: This is a special case of Girsanov’s Theorem. See Corollary 18.25 on p.
365 of Kallenberg, or, more transparently perhaps, the relevant parts of Liptser
and Shiryaev (2001, vol. I).!

Lemma 463 For any δ, γ, K > 0, there exists an ε0 > 0 such that, if ε < ε0,

P (‖Xε − x‖∞ ≤ δ) ≥ e−
J1(x)+γ

ε2 (35.7)

provided x(0) = 0 and J1(x) < K.

Proof: Using Proposition 462,

P (‖Xε − x‖∞ ≤ δ) = P (‖Yε − 0‖∞ ≤ δ) (35.8)

=
∫

‖εw‖∞<δ

dνε

dµε
(εw)dµε(εw) (35.9)

= e−
J1(x)

ε2

∫

‖εw‖∞<δ
e−

1
ε

R 1
0 ẋ·dW dµε(w) (35.10)

From Lemma 254 in Chapter 22, we can see that P (‖εW‖∞ < δ) → 1 as ε → 0.
So, if ε is sufficiently small, P (‖εW‖∞ < δ) ≥ 3/4. Now, applying Chebyshev’s
inequality to the integrand,

P
(
−1

ε

∫ 1

0
ẋ · dW ≤ −2

√
2

ε

√
J1(x)

)
(35.11)

≤ P
(∣∣∣∣

1
ε

∫ 1

0
ẋ · dW

∣∣∣∣ ≤
2
√

2
ε

√
J1(x)

)
(35.12)

≤
ε2E

[(∫ 1
0 ẋ · dW

)2
]

8ε2J1(x)
(35.13)

=
∫ 1
0 |ẋ|2dt

8J1(x)
=

1
4

(35.14)



CHAPTER 35. FREIDLIN-WENTZELL THEORY 241

using the Itô isometry (Corollary 196). Thus

P
(
e−

1
ε

R 1
0 ẋ·dW ≥ e−

2
√

2
ε

√
J1(x)

)
≥ 3

4
(35.15)

∫

‖εw‖∞<δ
e−

1
ε

R 1
0 ẋ·dW dµε(w) >

1
2
e−

2
√

2
ε

√
J1(x) (35.16)

P (‖Xε − x‖∞ ≤ δ) >
1
2
e−

J1(x)
ε2

− 2
√

2
ε

√
J1(x) (35.17)

where the second term in the exponent can be made less than any desired γ by
taking ε small enough.

!

Lemma 464 For every j > 0, δ > 0, let U(j, δ) be the open δ neighborhood of
L1(j), i.e., all the trajectories coming within δ of a trajectory whose action is
less than or equal to j. Then for any γ > 0, there is an ε0 > 0 such that, if
ε < ε0 and

P (Xε *∈ U(j, δ)) ≤ e−
s−γ

ε2 (35.18)

Proof: Basically, approximating the Wiener process by a continuous piecewise-
linear function, and showing that the approximation is sufficiently fine-grained.
Chose a natural number n, and let Yn,ε(t) be the piecewise linear random func-
tion which coincides with Xε at times 0, 1/n, 2/n, . . . 1, i.e.,

Yn,ε(t) = Xε([tn]/n) +
(

t− [tn]
n

)
Xε([tn + 1]/n) (35.19)

We will see that, for large enough n, this is exponentially close to Xε. First,
though, let’s bound the probability in Eq. 35.18.

P (Xε *∈ U(j, δ))
= P

(
Xε *∈ U(j, δ), ‖Xε − Yn,ε‖∞ < δ

)

+P
(
Xε *∈ U(j, δ), ‖Xε − Yn,ε‖∞ ≥ δ

)
(35.20)

≤ P
(
Xε *∈ U(j, δ), ‖Xε − Yn,ε‖∞ < δ

)
+ P

(
‖Xε − Yn,ε‖∞ ≥ δ

)
(35.21)

≤ P (J1(Yn,ε) > j) + P
(
‖Xε − Yn,ε‖∞ ≥ δ

)
(35.22)

J1(Yn,ε) can be gotten at from the increments of the Wiener process:

J1(Yn,ε) = n
ε2

2

n∑

i=1

|W (i/n)−W ((i− 1)/n)|2 (35.23)

=
ε2

2

dn∑

i=1

ξi (35.24)
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where the ξi have the χ2 distribution with one degree of freedom. Using our
results on such distributions and their sums in Ch. 22, it is not hard to show
that, for sufficiently small ε,

P (J1(Yn,ε) > j) ≤ 1
2
e−

j−γ

ε2 (35.25)

To estimate the probability that the distance between Xε and Yn,ε reaches or
exceeds δ, start with the independent-increments property of Xε, and the fact
that the two processes coincide when t = i/n.

P
(
‖Xε − Yn,ε‖∞ ≥ δ

)

≤
n∑

i=1

P
(

max
(i−1)/n≤t≤i/n

|Xε(t)− Yn,ε(t)| ≥ δ

)
(35.26)

= nP
(

max
0≤t≤1/n

|Xε(t)− Yn,ε(t)| ≥ δ

)
(35.27)

= nP
(

max
0≤t≤1/n

|εW (t)− nεW (1/n)| ≥ δ

)
(35.28)

≤ nP
(

max
0≤t≤1/n

|εW (t)| ≥ δ

2

)
(35.29)

≤ 4dnP
(

W1(1/n) ≥ δ

2dε

)
(35.30)

≤ 4dn
2dε

δ
√

2πn
e−

nδ2

8d2ε2 (35.31)

again freely using our calculations from Ch. 22. If n > 4d2j/δ2, then P
(
‖Xε − Yn,ε‖∞

)
≤

1
2e−

j−γ

ε2 , and we have overall

P (Xε *∈ U(j, δ)) ≤ e−
j−γ

ε2 (35.32)

as required. !

Proposition 465 The Cameron-Martin norm has compact level sets.

Proof: See Kallenberg, Lemma 27.7, p. 543. !

Theorem 466 (Schilder’s Theorem) If W is a d-dimensional Wiener pro-
cess on the unit interval, then Xε = εW obeys an LDP on C([0, 1], Rd), with
rate ε−2 and good rate function J1(x), the effective Wiener action over [0, 1].

Proof: It is easy to show that Lemma 463 implies the large deviation lower
bound for open sets. (Exercise 35.2.) The tricky part is the upper bound. Pick
any closed set C and any γ > 0. Let s = J1(C) − γ. By Lemma 465, the set
K = L1(s) = {x : J1(x) ≤ s} is compact. By construction, C ∩ K = ∅. So
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δ = infx∈C,y∈K ‖x− y‖∞ > 0. Let U be the closed δ-neighborhood of K. Then
use Lemma 464

P (Xε ∈ C) ≤ P (Xε *∈ U) (35.33)

≤ e−
s−γ

ε2 (35.34)

≤ e−
J1(C)−2γ

ε2 (35.35)

log P (Xε ∈ C) ≤ −J1(C)− 2γ

ε2
(35.36)

ε2 log P (Xε ∈ C) ≤ −J1(C)− 2γ (35.37)
lim sup

ε→0
ε2 log P (Xε ∈ C) ≤ −J1(C)− 2γ (35.38)

Since γ was arbitrary, this completes the proof. !
Remark: The trick used here, about establishing results like Lemmas 464

and 463, and then using compact level sets to prove large deviations, works
more generally. See Theorem 3.3 in Freidlin and Wentzell (1998, sec. 3.3).

Corollary 467 Schilder’s theorem remains true for Wiener processes on [0, T ],
for all T > 0, with rate function JT , the effective Wiener action on [0, T ].

Proof: If W is a Wiener process on [0, 1], then, for every T , S(W ) =
√

TW (t/T )
is a Wiener process on [0, T ]. (Show this!) Since the mapping S is continu-
ous from C([0, 1], Rd) to C([0, T ], Rd), by the Contraction Principle (Theorem
410) the family εS(W ) obey an LDP with rate ε−2 and good rate function
JT (x) = J1(S−1(x)). (Notice that S is invertible, so S−1(x) is a function, not
a set of functions.) Since x ∈ H1 iff y = S(x) ∈ HT , it’s easy to check that for
such, ẏ(t) = T−1/2ẋ(t/T ), meaning that

‖y‖CM =
∫ T

0
|ẏ(t)|2dt =

∫ T

0
|ẋ(t/T )|2 dt

T
= ‖x‖CM (35.39)

which completes the proof. !

Corollary 468 Schilder’s theorem remains true for Wiener processes on R+,
with good rate function J∞ given by the effective Wiener action on R+,

J∞(x) ≡ 1
2

∫ ∞

0
|ẋ(t)|2dt (35.40)

if x ∈ H∞, J∞(x) = ∞ otherwise.

Proof: For each natural number n, let πnx be the restriction of x to the
interval [0, n]. By Corollary 467, each of them obeys an LDP with rate function
1
2

∫ n
0 |ẋ(t)|2dt. Now apply the projective limit theorem (420) to get that J∞(x) =

supn Jn(x), which is clearly Eq. 35.40, as the integrand is non-negative. !
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35.2 Large Deviations for SDEs with State-Independent
Noise

Having established an LDP for the Wiener process, it is fairly straightforward
to get an LDP for stochastic differential equations where the driving noise is
independent of the state of the diffusion process.

Definition 469 (SDE with Small State-Independent Noise) An SDE with
small state-independent noise is a stochastic differential equation of the form

dXε = a(Xε)dt + εdW (35.41)
Xε(0) = 0 (35.42)

where a : Rd -→ Rd is uniformly Lipschitz continuous.

Notice that any non-random initial condition x0 can be handled by a simple
change of coordinates.

Definition 470 (Effective Action: State-Independent Noise) The effec-
tive action of a trajectory x ∈ H∞ is

J(x) ≡ 1
2

∫ t

0
|ẋ(t)− a(x(t))|2dt (35.43)

and = ∞ if x ∈ C \ H∞.

Lemma 471 The map F : C(R+, Rd) -→ C(R+, Rd) given by

x(t) = w(t) +
∫ t

0
a(w(s))ds (35.44)

when x = F (w) is continuous.

Proof: This goes rather in the same manner as the proof of existence and
uniqueness for SDEs (Theorem 216). For any w1, w2 ∈ C(R+, Rd), set x1 =
F (w1), x2 = F (w2). From the Lipschitz property of a,

|x1(t)− x2(t)| ≤ ‖w1 − w2‖+ Ka

∫ t

0
|x1(s)− x2(s)| ds (35.45)

(writing |y(t)| for the norm of Euclidean vectors y, and ‖x‖ for the supremum
norm of continuous curves). By Gronwall’s Inequality (Lemma 214), then,

‖x1 − x2‖ ≤ ‖w1 − w2‖ eKaT (35.46)

on every interval [0, T ]. So we can make sure that ‖x1 − x2‖ is less than any
desired amount by making sure that ‖w1 − w2‖ is sufficiently small, and so F
is continuous.
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Lemma 472 If w ∈ H∞, then x = F (w) is in H∞.

Proof: Exercise 35.3. !

Theorem 473 (Freidlin-Wentzell Theorem: State-Independent Noise)
The Itô processes Xε of Definition 469 obey the large deviations principle with
rate ε−2 and good rate function given by the effective action J(x).

Proof: For every ε, Xε = F (εW ). Corollary 468 tells us that εW obeys
the large deviation principle with rate ε−2 and good rate function J∞. Since
(Lemma 471) F is continuous, by the Contraction Principle (Theorem 410) Xε

also obeys the LDP, with rate given by J∞(F−1(x)). If F−1(x) ∩ H∞ = ∅,
this is ∞. On the other hand, if F−1(x) does contain curves in H∞, then
J∞(F−1(x)) = J∞(F−1(x) ∩H∞). By Lemma 472, this implies that x ∈ H∞,
too. For any curve w ∈ F−1(x) ∩ H∞, ẋ = ẇ + a(x), or ẇ = ẋ − a(x).
J∞(w) =

∫∞
0 |ẋ− a(x)|2dt is however the effective action of the trajectory x

(Definition 470). !

35.3 Large Deviations for State-Dependent Noise

If the diffusion term in the SDE does depend on the state of the process, one
obtains a very similar LDP to the results in the previous section. However, the
approach must be modified: the mapping from W to Xε, while still measurable,
is no longer necessarily continuous, so we can’t use the contraction principle as
before.

Definition 474 (SDE with Small State-Dependent Noise) An SDE with
small state-dependent noise is a stochastic differential equation of the form

dXε = a(Xε)dt + εb(Xε)dW (35.47)
Xε(0) = 0 (35.48)

where a and b are uniformly Lipschitz continuous, and b is non-singular.

Definition 475 (Effective Action: State-Dependent Noise) The effective
action of a trajectory x ∈ H∞ is given by

J(x) ≡
∫ ∞

0
L(x(t), ẋ(t))dt (35.49)

where
L(q, p) =

1
2

(pi − ai(q))B−1
ij (q) (pj − aj(q)) (35.50)

and
B(q) = b(q)bT (q) (35.51)

with J(x) = ∞ if x ∈ C \ H∞.
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Theorem 476 (Freidlin-Wentzell Theorem: State-Dependent Noise) The
processes Xε obey a large deviations principle with rate ε−2 and good rate func-
tion equal to the effective action.

Proof: Considerably more complicated. (See, e.g., Dembo and Zeitouni (1998,
sec. 5.6, pp. 213–220).) The essence, however, is to consider an approxi-
mating Itô process Xn, where a(Xt) and b(Xt) are replaced in Eq. 35.47 by
a(Xn([tn]/n)) and b(Xn([tn]/n)). Here the mapping from W to Xn is continu-
ous, so it’s not too hard to show that the latter obey an LDP with a reasonable
rate function, and also that they’re exponentially equivalent (in n) to Xε. !

35.4 Exercises

Exercise 35.1 Prove Lemma 460.

Exercise 35.2 Prove that Lemma 463 implies the large deviations lower bound
for open sets.

Exercise 35.3 Prove Lemma 472. Hint: Use Gronwall’s Inequality (Lemma
214) again to show that F maps HT into HT , and then show that H∞ =⋂∞

n=1 Hn.


