Solution to Homework #1, 36-754

27 January 2006

Exercise 1.1 (The product σ -field answers countable questions)

Let $\mathcal{D} = \bigcup_S \mathcal{X}^S$, where the union ranges over all countable subsets S of the index set T. For any event $D \in \mathcal{D}$, whether or not a sample path $x \in D$ depends on the value of x_t at only a countable number of indices t.

(a) Show that \mathcal{D} is a σ -field.

(b) Show that if $A \in \mathcal{X}^T$, then $A \in \mathcal{X}^S$ for some countable subset S of T.

Cf. the proof of Theorem 29 in the notes.

(a): We must show that (i) $\Xi^T \in \mathcal{D}$, (ii) $A \in \mathcal{D} \Rightarrow \Xi^T \setminus A \in \mathcal{D}$ and (iii) $A_n \in \mathcal{D} \Rightarrow \bigcup_n A_n \in \mathcal{D}$ for any countable collection of sets A_n .

(i): Pick $S = \{t\}$ for any $t \in T$, and take the base set to be Ξ , i.e, the base set is $\{x \in \Xi^T : x_t \in \Xi_t\}$. Clearly, this set is Ξ^T .

(ii): Fix S. Then for any $A \in \mathcal{X}^S$,

$$\Xi^{T} \setminus A = \Xi^{T} \setminus \left(A \times \prod_{t \in T \setminus S} \Xi_{t} \right)$$
$$= (\Xi^{S} \setminus A) \times \prod_{t \in T \setminus S} \Xi_{t}$$

which is in \mathcal{X}^S .

(iii): Take any countable collection of sets $A_n \in \mathcal{D}$. For each such set, there is a corresponding finite set of indices, S_n , for which $A_n \in \mathcal{X}^{S_n}$. Let $S = \bigcup_n S_n$.

Because this is a countable union of denumerable sets, S is itself countable. Now

$$\bigcup_{n} A_{n} = \bigcup_{n} \left(A_{n} \times \prod_{t \in T \setminus S_{n}} \Xi_{t} \right)$$
$$= \bigcup_{n} \left(A_{n} \times \prod_{t \in S \setminus S_{n}} \Xi_{t} \times \prod_{t \in T \setminus S} \Xi_{t} \right)$$
$$= \left(\bigcup_{n} A_{n} \times \prod_{t \in S \setminus S_{n}} \Xi_{t} \right) \times \prod_{t \in T \setminus S} \Xi_{t}$$

which is clearly $\in \mathcal{X}^S$. Hence \mathcal{D} is closed under countable unions. \Box

(b): \mathcal{X}^T is, by definition, the smallest σ -field containing all the finite cylinders. Since every finite cylinder is in \mathcal{D} , clearly $\mathcal{X}^T \subseteq \mathcal{D}$. But, by definition, if $A \in \mathcal{D}$, then $A \in \mathcal{X}^S$ for some countable S. \Box

Source: Billingsley, Probability and Measure, third edition, Theorem 36.3 (ii), pp. 492–493.

Exercise 3.1 (Lomnick-Ulam Theorem on infinite product measures)

Let T be an uncountable index set, and $(\Xi_t, \mathcal{X}_t, \mu_t)$ a collection of probability spaces. Show that there exist independent random variables X_t in Ξ_t with distributions μ_t . *Hint:* use the Ionescu Tulcea theorem on countable subsets of T, and then imitate the proof of the Kolmogorov extension theorem.

Pick any countable collection of indices $J \subset T$. Arrange them in any order; there is a 1-1 correspondence between natural numbers and index values. For each n > 1, let κ_n be a kernel from $\prod_{i=1}^{n-1} \Xi_i$ to Ξ_n , which always gives the measure μ_n . (For n = 1, set κ_1 to be a kernel from the empty set to Ξ_1 which always gives μ_1 .) Then the Ionescu Tulcea Theorem (33) gives us a measure μ_J on Ξ_J, \mathcal{X}_J . Moreover, this measure does not depend on the ordering we chose of the indices in J: if we had chosen a different one, we would still get the same finite-dimensional distributions, and consequently (Theorem 23) the same infinite-dimensional distribution.

Now proceed exactly as in the proof of the Kolmogorov Extension Theorem (29), defining a set function on the countable cylinders, and showing that it is countably additive. (You should go through all the steps!) \Box

Source: Kallenberg, Corollary 6.18, p. 117.