
Solution to Homework #2, 36-754

7 February 2006

Exercise 5.3 (The Logistic Map as a Measure-
Preserving Transformation)

The logistic map with a = 4 is a measure-preserving transfor-
mation, and the measure it preserves has the density 1/π

√
x (1− x)

(on the unit interval.

1. Verify that this density is invariant under the action of the
logistic map.

2. Simulate the logistic map with uniformly distributed X0. What
happens to the density of Xt as t →∞?

a

There are a number of ways to do this; here is one which will feed into later
material. It does not use the fact that the invariant density is the β (1/2, 1/2)
distribution, or that it has a closed-form integral,∫ x

0

dy

π
√

y (1− y)
=

2
π

sin−1√x

though both of these are fine facts to have handy.
Let’s write the mapping as F (x) = 4x (1− x). Solving a simple quadratic

equation gives us the fact that F−1 (x) is the set
{

1
2

(
1−

√
1− x

)
, 1

2

(
1 +

√
1− x

)}
.

Notice, for later use, that the two solutions add up to 1. Notice also that
F−1 ([0, x]) =

[
0, 1

2

(
1−

√
1− x

)]
∪

[
1
2

(
1 +

√
1− x

)
, 1

]
. Now we consider P (Xn+1 ≤ x),

the cumulative distribution function of Xn+1.

P (Xn+1 ≤ x) = P (Xn+1 ∈ [0, x])
= P

(
Xn ∈ F−1 ([0, x])

)
= P

(
Xn ∈

[
0,

1
2

(
1−

√
1− x

)]
∪

[
1
2

(
1 +

√
1− x

)
, 1

])
=

∫ 1
2 (1−

√
1−x)

0

ρn (y) dy +
∫ 1

1
2 (1+

√
1−x)

ρn (y) dy
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where ρn is the density of Xn. So we have an integral equation for the evolution
of the density,∫ x

0

ρn+1 (y) dy =
∫ 1

2 (1−
√

1−x)

0

ρn (y) dy +
∫ 1

1
2 (1+

√
1−x)

ρn (y) dy

This sort of integral equation is complicated to solve directly. Instead, take
the derivative of both sides with respect to x; we can do this through the
fundamental theorem of calculus. On the left hand side, this will just give
ρn+1 (x), the density we want.

ρn+1 (x) =
d

dx

∫ 1
2 (1−

√
1−x)

0

ρn (y) dy +
d

dx

∫ 1

1
2 (1+

√
1−x)

ρn (y) dy

= ρn

(
1
2

(
1−

√
1− x

)) d

dx

(
1
2

(
1−

√
1− x

))
− ρn

(
1
2

(
1 +

√
1− x

)) d

dx

(
1
2

(
1 +

√
1− x

))
=

1
4
√

1− x

(
ρn

(
1
2

(
1−

√
1− x

))
+ ρn

(
1
2

(
1 +

√
1− x

)))
Notice that this defines a linear operator taking densities to densities. (You
should verify the linearity.) In fact, this is (see Section 10.3 in the notes, espe-
cially Definition 113) a Markov operator, as you can verify. Markov operators
of this sort, derived from deterministic maps, are called Perron-Frobenius or
Frobenius-Perron operators, and accordingly denoted by P . Thus an invariant
density is a ρ such that ρ = Pρ. All the problem asks us to do is to verify that

1

π
√

x(1−x)
is such a solution.

ρ

(
1
2

(
1−

√
1− x

))
=

1
π

(
1
2

(
1−

√
1− x

) (
1−

(
1
2

(
1−

√
1− x

))))−1/2

=
1
π

(
1
2

(
1−

√
1− x

) 1
2

(
1 +

√
1− x

))−1/2

=
2

π
√

x

Since ρ (x) = ρ (1− x), it follows that

Pρ = 2
1

4
√

1− x
ρ

(
1
2

(
1−

√
1− x

))
=

1
π
√

x (1− x)
= ρ

as desired.
Source: This is traditional in the study of deterministic measure-preserving

systems. See, for example, Lasota and Mackey.
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b

Any reasonable language is suitable for this part of the problem. I used R, just
to make graphing things easier later.

ulam_map <- function(x) {
# written in vectorized form
4*x*(1-x)

}

iterate_map <- function(x,map,n) {
for (i in 1:n) {

x <- map(x);
}
x

}

invariant_density <- function(x) {
1/(pi*sqrt(x*(1-x)))

}

Then, I ran the following:

> x <- runif(10000)
> x <- iterate_map(x,ulam_map,1)
> x <- iterate_map(x,ulam_map,4)
> x <- iterate_map(x,ulam_map,5)
> x <- iterate_map(x,ulam_map,90)

and, in between,

> hist(x,probability=TRUE,main="Histogram of initial density")
> plot(invariant_density,add=TRUE,lty=2)

to get a graphical comparison between the distribution of points in the simula-
tion and the invariant density (next page).

To get a more quanitative comparison, I used the Kolmogorov-Smirnov test
to compare the empirical distribution of the simulated points with the invariant
distribution and got (with a particular initial random sample) the following
p-values:

n p
0 < 2.2 · 10−16

1 < 2.2 · 10−16

2 < 2.2 · 10−16

3 0.1067
4 0.3343
5 0.8182
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Histogram of initial density
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Histogram of density after one iteration
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Histogram of density after five iterations
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Histogram of density after ten iterations
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Histogram of density after 100 iterations
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Figure 1: Evolution of the distribution of points in the simulation of the logistic
map, starting from a uniform distribution, towards the invariant distribution,
shown by the dotted curve for comparison. Note how, even though the initial
distribution is symmetric around 1/2, and the map, too, is symmetric around
1/2, after one iteration the distribution is not symmetric but peaked around 1.
This shows the danger of relying on naive symmetry arguments.

4



which generally makes the point: after a few iterations, the difference between
the simulated distribution and the invariant one is basically the same as what
we’d expect by sampling fluctuations.

(We will see later how to connect the KS test to theorems about the conver-
gence of stochastic processes.)

6.1 (Weakly Optional Times and Right-Continuous
Filtrations)

Show that a random time τ is weakly F-optional iff it is F+-
optional.

Recall that τ is weakly F-optional when, for all t ∈ T ,

{ω ∈ Ω : τ (ω) < t} ∈ Ft

and F-optional when, for all t ∈ T ,

{ω ∈ Ω : τ (ω) ≤ t} ∈ Ft

Note: throughout, assume that T possesses at least one countable dense
subset D.

“If”:
{ω ∈ Ω : τ (ω) < t} =

⋃
r∈D: r<t

{ω ∈ Ω : τ (ω) ≤ r}

since D is countable and dense. Since τ is F+-optional, each set in the union on
the right-hand side is in F+

r =
⋂

s>r Fs. Therefore, every set on the right-hand
side is in Ft. Since a countable union of sets in Ft is itself in Ft, it follows that
{ω ∈ Ω : τ (ω) < t} ∈ Ft, and τ is weakly F-optional.

“Only if”: Again, re-write the kind of event we want (an optional time in the
strong sense) in terms of the kinds of events we have (weakly optional times).

{ω ∈ Ω : τ (ω) ≤ t} =
⋂

r∈D: r>t

{ω ∈ Ω : τ (ω) < r}

=
⋂

r∈D: t<r<t+h

{ω ∈ Ω : τ (ω) < r}

where the second line holds for any positive h. τ is weakly optional, so {ω ∈ Ω : τ < r} ∈
Fr for all r, and F is a filtration, so the intersection on the right-hand side in
the second equation is in Ft+h. Thus

{ω ∈ Ω : τ ≤ t} ∈ Fr, ∀r > t

{ω ∈ Ω : τ ≤ t} ∈
⋂
r>t

Fr = F+
t

as was to be shown.
Source: Kallenberg, Lemma 7.2 on p. 121, which proves a slightly stronger

statement about the σ-fields generated by optional and weakly optional times.
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6.2 (Kac’s Theorem for the Logistic Map)

Numerically check Kac’s Theorem for the logistic map with a =
4. Pick any interval I ⊂ [0, 1] you like, but be sure not to make it
too small.

1. Generate n initial points in I, according to the invariant mea-
sure 1

π
√

x(1−x)
. For each point xi, find the first t such that

F t (xi) ∈ I, and take the mean over the sample. What hap-
pens to this space average as n grows?

2. Generate a single point x0 in I, according to the invariant mea-
sure. Iterate it N times. Record the successive times t1, t2, . . .
at which F t (x0) ∈ I, and find the mean of ti − ti−1 (taking
t0 = 0). What happens to this time average as N grows?

Let’s set I = [0.6, 0.8]. ρ (I) = 0.1407385, so the mean time between recur-
rences should be 7.105374 iterations.

First, code to generate points in the interval from the invariant distribution.

rinvariant_dist_points_in_interval <- function(n,lower,upper) {
# Quantile transform method:
# Pr(X =< x| a =< X =< b)
# == (F(x) - F(a))/(F(b) - F(a))
# hence if p ~ U(0,1),
# F^-1(p*(F(b)-F(a)) + F(a)) = x
# will have the right distribution.
F.b <- pbeta(lower,0.5,0.5)
F.a <- pbeta(upper,0.5,0.5)
x <- runif(n)
qbeta(x*(F.b-F.a) + F.a,0.5,0.5)

}

and then to calculate the nth return time of a single point to a given interval,
assuming the initial point starts in the interval.

nth_return_time <- function(x,n,lower,upper) {
# Assumes x is in the interval in question
returns <- 0
t <- 0
while (returns < n) {

t <- t+1
x <- ulam_map(x)
if ((x <= upper) & (x >= lower)) {

returns <- returns+1
}

}
t

}
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a: Space averages

We can calculate the required space average through the functions above. To
get an average over N = 10 initial points, for instance, we’d do this:

> mean(sapply(rinvariant_dist_points_in_interval(10,0.6,0.8),nth_return_time,1,0.6,0.8))
[1] 14.5

Here are some of these averages.

N t
10 14.5
100 6.61
1000 6.617
10000 7.1662
100000 7.09655

b: Time averages

The mean of the first n return times is simply tn/n. So we can pick a single
initial point, according to the right distribution, and then use the return time
function given above. I got x0 = 0.7336846.

n 〈t〉
1 1
2 1
5 13.4
10 9.5
100 7.52
1000 6.986
10000 7.1332
100000 7.12278

7


