
Solution to Homework #3, 36-754

25 February 2006

Exercise 10.1

I need one last revision of the definition of a Markov operator: a linear operator
on L1 satisfying the following conditions.

1. If f ≥ 0 (µ-a.e.), then Kf ≥ 0 (µ-a.e.).

2. If f ≤ M (µ-a.e.), then Kf ≤ M (µ-a.e.).

3. K1Ξ = 1Ξ.

4. If fn ↓ 0, then Kfn ↓ 0.

First, we show that kernels induce operators, then that operators induce
kernels.

Given a kernel κ, we define the operator Kf(x) ≡
∫

κ(x, dy)f(y).

1. Clearly, if f ≥ 0 a.e., then
∫

κ(x, dy)f(y) ≥ 0.

2. If f ≤ M a.e., then M − f(x) ≥ 0 a.e., and
∫

κ(x, dy)(M − f(y)) =∫
κ(x, dy)M −

∫
κ(x, dy)f(y) = M −Kf(x) ≥ 0 a.e., so M ≥ Kf(x) a.e.

3.
∫

κ(x, dy)1Ξ(y) = 1 for all x, so K1Ξ(x) = 1Ξ(x).

4. If fn(x) ↓ 0 pointwise, then, for each x,
∫

κ(x, dy)fn(x) → 0 by monotone
convergence, so Kfn(x) → 0.

Now for the converse: given an operator K, define κ(x,B) = K1B(x). For
fixed x, we need this to be a probability measure. For every B ∈ X , 1B ∈ L1,
so K1B(x) is, for fixed x, a set-function defined over the whole of the σ-algebra
in question. Since 1B(x) ≥ 0, we know that K1B(x) ≥ 0, and this is a non-
negative set-function. Next, we check that it’s finitely additive: If A and B
are disjoint sets, 1A∪B(x) = 1A(x) + 1B(x). Hence, by the linearity of K,
K1A∪B = K1A + K1B , which by induction extends to any finite collection of
disjoint sets. We notice that if An ↓ ∅, 1An

(x) ↓ 0 pointwise, so K1An
(x) → 0

(for fixed x). But, by proposition 32 (ch. 3, p. 14), this implies that K1A

is a measure. Finally, K1Ξ(x) = 1, for all x, so the measure is a probability
measure. We also need κ(x,B) to be a measurable function of x, for every fixed
set B. Since K takes bounded, measurable functions to bounded, measurable
functions, it follows that K1B(x) is measurable for every x, as required.
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What’s that business about preserving the L1 norm of pos-
itive functions?

Let me apologize for leading you down various garden paths; I managed to
get myself confused about the difference between evolution operators acting to
the right, moving functions forward in time, and acting to the left, moving
distributions forward in time.

What I asked you to show was that, if f ∈ L1(µ) and f ≥ 0 µ-a.e., then ‖f‖ =
‖Kf‖, where Kf(x) =

∫
κ(x, dy)f(y) for some transition kernel κ. Consider

f(x) = 1B(x), for some B ∈ X . Clearly, this is non-negative and of finite
L1-norm, in fact ‖1B‖ = µ(B). Then

‖Kf‖ =
∫

µ(dx)|Kf(x)| (1)

=
∫

µ(dx)
∣∣∣∣∫ κ(x, dy)f(y)

∣∣∣∣ (2)

=
∫

µ(dx)
∣∣∣∣∫ κ(x, dy)1B(y)

∣∣∣∣ (3)

=
∫

µ(dx) |κ(x, B)| (4)

=
∫

µ(dx)κ(x, B) (5)

= µκ(B) (6)

according to our definition (101, ch. 9, p. 50) of products of kernels. Hence the
desired property holds only if µ is invariant under κ. Conversely, if µ is invariant
under κ, then this holds for all indicator functions of measurable sets, and so
(by linearity) for all simple functions, and so (by the usual arguments) for all
integrable, i.e., L1, functions. Thus, the invariance of µ under κ is a necessary
and sufficient condition for ‖Kf‖µ = ‖f‖µ when f ≥ 0 µ-a.e.

A number of people tried the following ingenious argument. Kf(x) =
E [f(X1)|X0 = x]. If f ≥ 0, then ‖f‖ = E [f(X)]. Now use smoothing:

‖Kf‖ = E [Kf(X)]
= E [E [f(X1)|X0 = X]]
= E [f(X1)]
= ‖f‖

Unfortnately, for the last step to be valid for all f , it must be the case that X1

and X0 have the same distribution, i.e., that µ is invariant under the action of
the Markov process.

There is a version of what I was trying to assert which is correct, regardless
of whether or not µ is invariant, but we need to have the operators act to the left
rather than to the right. Given a transition kernel κ and a probability measure

2



ν, we have defined νκ as a new probability measure,

νκ(B) =
∫

ν(dy)κ(y, B)

Now suppose that ν is absolutely continuous with respect to some other measure
µ. We can write

νκ(B) =
∫

µ(dy)
dν

dµ
κ(y, B)

by the Radon-Nikodym theorem, which makes it clear that νκ is also absolutely
continuous with respect to µ. The derivative dν

dµ is a function f ∈ L1(µ), such
that f(x) ≥ 0 a.e. µ, and ‖f‖ = 1. Conversely, any such function f is the
Radon-Nikodym derivative of a measure ν absolutely continuous with respect
to µ. Hence we may write fκ to denote the new density obtained by the action
to the left of the transition kernel κ. But any function with finite L1(µ) norm
is the Radon-Nikodym derivative of some signed measure absolutely continuous
with respect to µ. So, we can extend fκ to work for arbitrary functions in
L1(µ):

fκ(B) =
∫

µ(dy)f(y)κ(y, B)

It follows that this is a linear operator: for any a, b ∈ R and all f, g ∈ L1(µ),

(af + bg)κ(B) =
∫

µ(dy)(af(y) + bg(y))κ(y, B)

= a

∫
µ(dy)f(y)κ(y, B) + b

∫
µ(dy)g(y)κ(y, B)

= afκ(B) + bgκ(B)

We have just seen above that, if f ≥ 0 and ‖f‖ = 1, then ‖fκ‖ = 1, because,
in that case, fκ is another probability density. But if f ≥ 0 and ‖f‖ = c, then
‖ 1

cf‖ = 1, so by linearity ‖fκ‖ = ‖f‖ if f ≥ 0.
I apologize for my inability to tell my right from my left.

Exercise 10.2

First, we go from the Markov property (and the associated transition kernels)
to the existence of operators for the conditional expectations. For any inte-
grable function f of a random variable X and σ-algebra F , if there is a regular
conditional probability P (X|F), then E [f(X)|F ] =

∫
fP (X|F). For a Markov

process, the conditional distribution of Xs given FX
t is always regular, and given

by µt,s. Hence

E
[
f(Xs)|FX

t

]
= E [f(Xs)|Xt] =

∫
µt,s(Xt, dy)f(y) = Kt,sf(Xt)

as desired.
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To go the other way, it’s enough to show that E
[
f(Xs)|FX

t

]
= Kt,sf(Xt)

implies the Markov property, that P
(
Xs ∈ B|FX

t

)
= P (Xs ∈ B|Xt) for ev-

ery set B ∈ X . Consider then f(x) = 1B(x). Then E
[
1B(Xs)|FX

t

]
=

P
(
Xs ∈ B|FX

t

)
= Kt,s1B(Xt). That last is a function of B and Xt. Since

it is clearly σ(Xt)-measurable, it must be a version of the conditional probabil-
ity P (Xs ∈ B|Xt). Hence the Markov property holds.

(This is simpler than what I had in mind when I wrote the problem, and more
especially the hint. My proof was to show that Kt,s induces all the right finite-
dimensional distributions. First I showed that the one-dimensional distributions
evolved correctly, i.e., according to Eq. 9.3 and 9.4, and then I showed that if
all the n-dimensional distributions followed Eq. 9.5, then the n+1-dimensional
distributions did too. This was unnecessarily complex.)
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