
1

36-752: Lecture 11

How is this course different from your earlier probability courses? There are some prob-2

lems that simply can’t be handled with finite-dimensional sample spaces and random vari-3

ables that are either discrete or have densities.4

Example 1. Try to express the strong law of large numbers without using an infinite-5

dimensional space. Oddly enough, the weak law of large numbers requires only a sequence6

of finite-dimensional spaces, but the strong law concerns entire infinite sequences.7

Example 2. Consider a distribution whose cumulative distribution function (cdf) in-8

creases continuously part of the time but has some jumps. Such a distribution is neither9

discrete nor continuous. How do you define the mean of such a random variable? Is there10

a way to treat such distributions together with discrete and continuous ones in a unified11

manner?12

General Measures. Both of the above examples are accommodated by a generaliza-13

tion of the theories of summation and integration. Indeed, summation becomes a special14

case of the more general theory of integration. It all begins with a generalization of the15

concept of “size” of a set.16

Example 3. One way to measure the size of a set is to count its elements. All infinite17

sets would have the same size (unless you distinguish different infinite cardinals).18

Example 4. Special subsets of Euclidean spaces can be measured by length, area, vol-19

ume, etc. But what about sets with lots of holes in them? For example, how large is the set20

of irrational numbers between 0 and 1?21

We will use measures to say how large sets are. First, we have to decide which sets we22

will measure.23

Definition 5. Let Ω be a set. A collection F of subsets of Ω is called a field if it24

satisfies25

• Ω ∈ F ,26

• for each A ∈ F , AC ∈ F ,27

• for all A1, A2 ∈ F , A1 ∪A2 ∈ F .28

A field F is a σ-field if, in addition, it satisfies29

• for every sequence {Ak}∞k=1 in F ,
⋃∞

k=1Ak ∈ F .30

We will define measures on fields and σ-field’s. A set Ω together with a σ-field F is called31

a measurable space (Ω,F), and the elements of F are called measurable sets .32
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Example 6. Let Ω = IR and define U to be the collection of all unions of finitely many1

disjoint intervals of the form (a, b] or (−∞, b] or (a,∞) or (−∞,∞), together with ∅. Then2

U is a field.3

Example 7. (Power set) Let Ω be an arbitrary set. The collection of all subsets of4

Ω is a σ-field. It is denoted 2Ω and is called the power set of Ω.5

Example 8. (Trivial σ-field) Let Ω be an arbitrary set. Let F = {Ω,∅}. This is6

the trivial σ-field.7

Definition 9. The extended reals is the set of all real numbers together with ∞ and8

−∞. We shall denote this set IR. The positive extended reals, denoted IR
+

is (0,∞], and the9

nonnegative extended reals, denoted IR
+0

is [0,∞].10

Definition 10. Let (Ω,F) be a measurable space. Let µ : F → IR
+0

satisfy11

• µ(∅) = 0,12

• for every sequence {Ak}∞k=1 of mutually disjoint elements of F , µ(
⋃∞

k=1Ak) =
∑∞

k=1 µ(Ak).13

Then µ is called a measure on (Ω,F) and (Ω,F , µ) is a measure space. If F is merely a field,14

then a µ that satisfies the above two conditions whenever
⋃∞

k=1Ak ∈ F is called a measure15

on the field F .16

Example 11. Let Ω be arbitrary with F the trivial σ-field. Define µ(∅) = 0 and17

µ(Ω) = c for arbitrary c > 0 (with c = ∞ possible).18

Example 12. (Counting measure) Let Ω be arbitrary and F = 2Ω. For each finite19

subset A of Ω, define µ(A) to be the number of elements of A. Let µ(A) = ∞ for all infinite20

subsets. This is called counting measure on Ω.21
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For every collection C of subsets of Ω, there is a smallest field containing C and a smallest2

σ-field containing C. These are called the field generated by C and the σ-fieldgenerated by3

C . Just check that the intersection of an arbitrary collection of fields is a field and the4

intersection of an arbitrary collection of σ-field’s is a σ-field. These collections are nonempty5

because 2Ω is always a σ-field that contains every collection of subsets of Ω. The σ-field6

generated by C is sometimes denoted σ(C).7

Exercise 13. Let F1,F2, . . . be classes of sets in a common space Ω such that Fn ⊂ Fn+18

for each n. Show that if each Fn is a field, then ∪∞
n=1Fn is also a field.9

If each Fn is a σ-field, then is ∪∞
n=1Fn also necessarily a σ-field? Think about the following10

case: Ω is the set of nonnegative integers and Fn ≡ σ({{0}, {1}, . . . , {n}}).11

Example 14. Let C = {A} for some nonempty A that is not itself Ω. Then σ(C) =12

{∅, A, AC ,Ω}.13

Example 15. Let Ω = IR and let C be the collection of all intervals of the form (a, b].14

Then the field generated by C is U from Example 6 while σ(C) is larger.15

Example 16. (Borel σ-field) Let Ω be a topological space and let C be the collection16

of open sets. Then σ(C) is called the Borel σ-field. If Ω = IR, the Borel σ-field is the same17

as σ(C) in Example 15. The Borel σ-field of subsets of IRk is denoted Bk.18

Exercise 17. Give some examples of classes of sets C such that σ(C) = B1.19

Exercise 18. Are there subsets of IR which are not in B1?20

Definition 19. Let (Ω,F , P ) be a measure space. If P (Ω) = 1, then P is called a21

probability, (Ω,F , P ) is a probability space, and elements of F are called events.22

Sometimes, if the name of the probability P is understood or is not even mentioned, we23

will denote P (E) by Pr(E) for events E.24

Infinite measures pose a few unique problems. Some infinite measures are just like finite25

ones.26

Definition 20. Let (Ω,F , µ) be a measure space, and let C ⊆ F . Suppose that there27

exists a sequence {An}∞n=1 of elements of C such that µ(An) <∞ for all n and Ω =
⋃∞

n=1An.28

Then we say that µ is σ-finite on C. If µ is σ-finite on F , we merely say that µ is σ-finite.29

Example 21. Let Ω = ZZ with F = 2Ω and µ being counting measure. This measure is30

σ-finite. Counting measure on an uncountable space is not σ-finite.31

Exercise 22. Prove the claims in Example 21.32
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Properties of Measures. There are several useful properties of measures that are1

worth knowing.2

First, measures are countably subadditive in the sense that3

µ

( ∞
⋃

n=1

An

)

≤
∞
∑

n=1

µ(An),(23)
4

for arbitrary sequences {An}∞n=1. The proof of this uses a standard trick for dealing with5

countable sequences of sets. Let B1 = A1 and let Bn = An \⋃n−1
i=1 Bi for n > 1. The Bn’s6

are disjoint and have the same finite and countable unions as the An’s. The proof of (23)7

relies on the additional fact that µ(Bn) ≤ µ(An) for all n.8

Next, if µ(An) = 0 for all n, it follows that µ (
⋃∞

n=1An) = 0. This gets used a lot in9

proofs. Similarly, if µ is a probability and µ(An) = 1 for all n, then µ (
⋂∞

n=1An) = 1.10

Definition 24. Suppose that some statement about elements of Ω holds for all ω ∈ AC
11

where µ(A) = 0. Then we say that the statement holds almost everywhere, denoted a.e. [µ].12

If P is a probability, then almost everywhere is often replaced by almost surely, denoted a.s.13

[P ].14

Example 25. Let (Ω,F , P ) be a probability space. Let {Xn}∞n=1 be a sequence of func-15

tions from Ω to IR. To say that Xn converges to X a.s. [P ] (denoted Xn
a.s.→ X) means that16

there is a set A with P (A) = 0 and P ({ω ∈ AC : limn→∞Xn(ω) = X(ω)}) = 1.17

Proposition 26. If µ1, µ2, . . . are all measures on (Ω,F) and if {an}∞n=1 is a sequence18

of positive numbers, then
∑∞

n=1 anµn is a measure on (Ω,F).19

Exercise 27. Prove Proposition 26.20

Definition 28. Define the indicator function IA : Ω → {0, 1} for the set A ⊆ Ω as21

IA(ω) = 1 if ω ∈ A and IA(ω) = 0 if ω ∈ AC .22

Definition 29. Let (Ω,F , µ) be a measure space. A sequence {An}∞n=1 of elements23

of F is called monotone increasing if An ⊆ An+1 for each n. It is monotone decreasing if24

An ⊇ An+1 for each n. For a general sequence, we define25

lim sup
n→∞

An =

∞
⋂

i=1

∞
⋃

n=i

An,
26

lim inf
n→∞

An =
∞
⋃

i=1

∞
⋂

n=i

An.
27

If lim supn→∞An = lim infn→∞An, the common set is called limn→∞An. The set lim supn→∞An28

is often called An infinitely often or An i.o. because a point ω is in that set if and only if ω29

is in infinitely many of the An sets. The set lim infn→∞An is often called An all but finitely30

often or An eventually (An ev.). This set has all those ω such that ω is in all of the An except31

possibly finitely many of the An, i.e., eventually.32
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Exercise 30. What is the relationship between the definition of the lim sup and lim inf1

of a sequence of reals {xn}∞n=1 and this definition of the lim sup and lim inf of a sequence of2

sets?3

Exercise 31. Define An to be the set (−1/n, 1] if n is odd, and to be (−1, 1/n] if n is4

even. What are lim supn→∞An and lim infn→∞An?5

It is easy to establish some simple facts about these limiting sets.6

Proposition 32. Let {An}∞n=1 be a sequence of sets.7

• lim infn→∞An = lim supn→∞An, if and only if, for each ω, limn→∞ IAn(ω) exists.8

• If the sequence is monotone increasing, then limn→∞An =
⋃∞

n=1An.9

• If the sequence is monotone decreasing, then limn→∞An =
⋂∞

n=1An.10

Exercise 33. Prove Proposition 32.11
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Lemma 34. Let (Ω,F , µ) be a measure space. Let {An}∞n=1 be a monotone sequence of2

elements of F . Then limn→∞ µ(An) = µ (limn→∞An) if either of the following hold:3

• the sequence is increasing,4

• the sequence is decreasing and µ(Ak) <∞ for some k.5

Proof. Define A∞ = limn→∞An. In the first case, write B1 = A1 and Bn = An \ An−16

for n > 1. Then An =
⋃n

k=1Bk for all n (including n = ∞). Then µ(An) =
∑n

k=1 µ(Bk),7

and8

µ
(

lim
n→∞

An

)

= µ(A∞) =

∞
∑

k=1

µ(Bk) = lim
n→∞

n
∑

k=1

µ(Bk) = lim
n→∞

µ(An).
9

In the second case, write Bn = An \ An+1 for all n ≥ k. Then, for all n > k,10

Ak \ An =

n−1
⋃

i=k

Bi,
11

Ak \ A∞ =

∞
⋃

i=k

Bi.
12

By the first case,13

lim
n→∞

µ(Ak \ An) = µ

( ∞
⋃

i=k

Bi

)

= µ(Ak \ A∞).
14

Because An ⊆ Ak for all n > k and A∞ ⊆ Ak, it follows that15

µ(Ak \ An) = µ(Ak) − µ(An),16

µ(Ak \ A∞) = µ(Ak) − µ(A∞).17

It now follows that limn→∞ µ(An) = µ(A∞). �18

Exercise 35. Construct a simple counterexample to show that the condition µ(Ak) <19

∞ is required in the second claim of Lemma 34.20

Uniqueness of Measures. There is a popular method for proving uniqueness theo-21

rems about measures. The idea is to define a function µ on a convenient class C of sets and22

then prove that there can be at most one extension of µ to σ(C).23

Example 36. Suppose it is given that for any a ∈ IR,24

P ((−∞, a]) =

∫ a

−∞

1√
2π

exp
(

−u2/2
)

du.
25

Does that uniquely define a probability measure on the class of Borel subsets of the line, B1?26
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Definition 37. A collection A of subsets of Ω is a π-system if, for all A1, A2 ∈ A,1

A1 ∩A2 ∈ A. A class C is a λ-system if2

• Ω ∈ C,3

• for each A ∈ C, AC ∈ C,4

• for each sequence {An}∞n=1 of disjoint elements of C,
⋃∞

n=1An ∈ C.5

Example 38. The collection of all intervals of the form (−∞, a] is a π-system of subsets6

of IR. So too is the collection of all intervals of the form (a, b] (together with ∅). The7

collection of all sets of the form {(x, y) : x ≤ a, y ≤ b} is a π-system of subsets of IR2. So8

too is the collection of all rectangles with sides parallel to the coordinate axes.9

Some simple results about π-systems and λ-systems are the following.10

Proposition 39. If Ω is a set and C is both a π-system and a λ-system, then C is a11

σ-field.12

Proposition 40. Let Ω be a set and let Λ be a λ-system of subsets. If A ∈ Λ and13

A ∩ B ∈ Λ then A ∩ BC ∈ Λ.14

Exercise 41. Prove Propositions 39 and 40.15

Lemma 42. (π − λ theorem) Let Ω be a set and let Π be a π-system and let Λ be a16

λ-system that contains Π. Then σ(Π) ⊆ Λ.17

Proof. Define λ(Π) to be the smallest λ-system containing Π. For each A ⊆ Ω, define18

GA to be the collection of all sets B ⊆ Ω such that A ∩ B ∈ λ(Π).19

First, we show that GA is a λ-system for each A ∈ λ(Π). To see this, note that A ∩ Ω ∈20

λ(Π), so Ω ∈ GA. If B ∈ GA, then A∩B ∈ λ(Π), and Proposition 40 says that A∩BC ∈ λ(Π),21

so BC ∈ GA. Finally, {Bn}∞n=1 ∈ GA with the Bn disjoint implies that A ∩ Bn ∈ λ(Π) with22

A∩Bn disjoint, so their union is in λ(Π). But their union is A∩(
⋃∞

n=1Bn). So
⋃∞

n=1Bn ∈ GA.23

Next, we show that λ(Π) ⊆ GC for every C ∈ λ(Π). Let A,B ∈ Π, and notice that24

A∩B ∈ Π, so B ∈ GA. Since GA is a λ-system containing Π, it must contain λ(Π). It follows25

that A ∩ C ∈ λ(Π) for all C ∈ λ(Π). If C ∈ λ(Π), it then follows that A ∈ GC . So, Π ⊆ GC26

for all C ∈ λ(Π). Since GC is a λ-system containing Π, it must contain λ(Π).27

Finally, if A,B ∈ λ(Π), we just proved that B ∈ GA, so A∩B ∈ λ(Π) and hence λ(Π) is28

also a π-system. By Proposition 39, λ(Π) is a σ-field containing Π and hence must contain29

σ(Π). Since λ(Π) ⊆ Λ, the proof is complete. �30

The uniqueness theorem is the following.31

Theorem 43. Suppose that µ1 and µ2 are measures on (Ω,F) and F is the smallest32

σ-field containing the π-system Π. If µ1 and µ2 are both σ-finite on Π and they agree on Π,33

then they agree on F .34
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Proof. First, let C ∈ Π be such that µ1(C) = µ2(C) < ∞, and define GC to be the1

collection of all B ∈ F such that µ1(B ∩ C) = µ2(B ∩ C). It is easy to see that GC is a2

λ-system that contains Π, hence it equals F by Lemma 42. (For example, if B ∈ GC ,3

µ1(B
C ∩ C) = µ1(C) − µ1(B ∩ C) = µ2(C) − µ2(B ∩ C) = µ2(B

C ∩ C),4

so BC ∈ GC .)5

Since µ1 and µ2 are σ-finite, there exists a sequence {Cn}∞n=1 ∈ Π such that µ1(Cn) =6

µ2(Cn) <∞, and Ω =
⋃∞

n=1Cn. (Since Π is only a π-system, we cannot assume that the Cn7

are disjoint.) For each A ∈ F ,8

µj(A) = lim
n→∞

µj

(

n
⋃

i=1

[Ci ∩ A]

)

for j = 1, 2.
9

Since µj (
⋃n

i=1[Ci ∩A]) can be written as a linear combination of values of µj at sets of the10

form A ∩ C, where C ∈ Π is the intersection of finitely many of C1, . . . , Cn, it follows from11

A ∈ GC that µ1 (
⋃n

i=1[Ci ∩ A]) = µ2 (
⋃n

i=1[Ci ∩A]) for all n, hence µ1(A) = µ2(A). �12

Exercise 44. Return to Example 36. You should now be able to answer the question13

posed there.14

Exercise 45. Suppose that Ω = {a, b, c, d, e} and I tell you the value of P ({a, b}) and15

P ({b, c}). For which subset of Ω do I need to define P (·) in order to have a unique extension16

of P to a σ-field of subsets of Ω?17
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Measures Based on Increasing Functions. Let F be a cdf (nondecreasing, right-2

continuous, limits equal 0 and 1 at −∞ and ∞ respectively). Let U be the field in Example 6.3

Define µ : U → [0, 1] by µ(A) =
∑n

k=1 F (bk) − F (ak) when A =
⋃n

k=1(ak, bk] and {(ak, bk]}4

are disjoint. This set-function is well-defined and finitely additive. To see that it is well-5

defined, look at an alternative representation as µ(A) =
∑m

j=1 F (dj) − F (cj). Consider the6

partition of A into the refinement of the two partitions given. The sum over the refinement7

is the same as both of the two sums we started with. Is µ countably additive as probabilities8

are supposed to be? That is, if A =
⋃∞

i=1Ai where the Ai’s are disjoint, each Ai is a union9

of finitely many disjoint intervals, and A itself is the union of finitely many disjoint intervals10

(ak, bk] for k = 1, . . . , n, does µ(A) =
∑∞

i=1 µ(Ai)? First, take the collection of intervals that11

go into all of the Ai’s and split them, if necessary, so that each is a subset of at most one of12

the (ak, bk] intervals. Then apply the following result to each (ak, bk].13

Lemma 46. Let (a, b] =
⋃∞

k=1(ck, dk] with the (ck, dk]’s disjoint. Then F (b) − F (a) =14

∑∞
k=1 F (dk) − F (ck).15

Proof. Since (a, b] ⊇ ⋃n
k=1(ck, dk] for all n, it follows that F (b)−F (a) ≥∑n

k=1 F (dk)−16

F (ck), hence F (b)−F (a) ≥
∑∞

k=1 F (dk)− F (ck). We need to prove the opposite inequality.17

Suppose first that both a and b are finite. Let ǫ > 0. For each k, there is ek > dk such18

that19

F (dk) ≤ F (ek) ≤ F (dk) +
ǫ

2k
.

20

Also, there is f > a such that F (a) ≥ F (f) − ǫ. Now, the interval [f, b] is compact and21

[f, b] ⊆
⋃∞

k=1(ck, ek). So there are finitely many (ck, ek)’s (suppose they are the first n) such22

that [f, b] ⊆
⋃n

k=1(ck, ek). Now,23

F (b) − F (a) ≤ F (b) − F (f) + ǫ ≤ ǫ+
n
∑

k=1

F (ek) − F (ck) ≤ 2ǫ+
n
∑

k=1

F (dk) − F (ck).
24

It follows that F (b) − F (a) ≤ 2ǫ+
∑∞

k=1 F (dk) − F (ck). Since this is true for all ǫ > 0, it is25

true for ǫ = 0.26

If −∞ = a < b < ∞, let g > −∞ be such that F (g) < ǫ. The above argument shows27

that28

F (b) − F (g) ≤
∞
∑

k=1

F (dk ∨ g) − F (ck ∨ g) ≤
∞
∑

k=1

F (dk) − F (ck).
29

Since limg→−∞ F (g) = 0, it follows that F (b) ≤
∑∞

k=1 F (dk) − F (ck). Similar arguments30

work when a < b = ∞ and −∞ = a < b = ∞. �31

In Lemma 46 you can replace F by an arbitrary nondecreasing right-continuous function32

with only a bit more effort. (See the supplement following at the end of this lecture.)33

The function µ defined in terms of a nondecreasing right-continuous function is a measure34

on the field U . There is an extension theorem that gives conditions under which a measure35

on a field can be extended to a measure on the generated σ-field. Furthermore, the extension36

is unique.37
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Example 47. (Lebesgue measure) Start with the function F (x) = x, form the mea-1

sure µ on the field U and extend it to the Borel σ-field. The result is called Lebesgue measure,2

and it extends the concept of “length” from intervals to more general sets.3

Example 48. Every distribution function for a random variable has a corresponding4

probability measure on the real line.5

Another concept that is occasionally useful is that of a complete measure space.6

Definition 49. A measure space (Ω,F , µ) is complete if, for every A ∈ F such that7

µ(A) = 0 and every B ⊆ A, B ∈ F .8

Theorem 50. (Caratheodory extension) Let µ be a σ-finite measure on the field9

C of subsets of Ω. There exists a σ-field A that contains C and a unique extension µ∗ of µ10

to a measure on (Ω,A). Furthermore (Ω,A, µ∗) is a complete measure space.11

Exercise 51. In this exercise, we prove Theorem 50.12

First, for each B ∈ 2Ω, define13

µ∗(B) = inf
∞
∑

i=1

µ(Ai),(52)
14

where the inf is taken over all {Ai}∞i=1 such that B ⊆ ⋃∞
i=1Ai and Ai ∈ C for all i. Since C15

is a field, we can assume that the Ai’s are mutually disjoint without changing the value of16

µ∗(B). Let17

A = {B ∈ 2Ω : µ∗(C) = µ∗(C ∩B) + µ∗(C ∩BC), for all C ∈ 2Ω}.18

Now take the following steps:19

1. Show that µ∗ extends µ, i.e. that µ∗(A) = µ(A) for each A ∈ C.20

2. Show that µ∗ is monotone and subadditive.21

3. Show that C ⊆ A.22

4. Show that A is a field.23

5. Show that µ∗ is finitely additive on A.24

6. Show that A is a σ-field.25

7. Show that µ∗ is countably additive on A.26

8. Show that µ∗ is the unique extension of µ to a measure of (Ω,A).27

9. Show that (Ω,A, µ∗) is a complete measure space.28
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Supplement: Measures from Increasing Functions1

Lemma 46 deals only with functions F that are cdf’s. Suppose that F is an unbounded2

nondecreasing function that is continuous from the right. If −∞ < a < b <∞, then the proof3

of Lemma 46 still applies. Suppose that (−∞, b] =
⋃∞

k=1(ck, dk] with b < ∞ nd all (ck, dk]4

disjoint. Suppose that limx→−∞ F (x) = −∞. We want to show that
∑∞

k=1 F (dk) − F (ck) =5

∞. If one ck = −∞, the proof is immediate, so assume that all ck > −∞. Then there must6

be a subsequence {kj}∞j=1 such that limj→∞ ckj
= −∞. For each j, let {(c′j,n, d′j,n]}∞n=1 be the7

subsequence of intervals that cover (ckj
, b]. For each j, the proof of Lemma 46 applies to8

show that9

F (b) − F (ckj
) =

∞
∑

n=1

F (d′j,n) − F (c′j,n).(53)
10

As j → ∞, the left side of (53) goes to ∞ while the right side eventually includes every11

interval in the original collection.12

A similar proof works for an interval of the form (a,∞) when limx→∞ F (x) = ∞. A13

combination of the two works for (−∞,∞).14
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Measurable Functions. Measurable functions are the types of functions that we can2

integrate with respect to measures in much the same way that continuous functions can3

be integrated “dx”. Recall that the Riemann integral of a continuous function f over a4

bounded interval is defined as a limit of sums of lengths of subintervals times values of f5

on the subintervals. The measure of a set generalizes the length while elements of the σ-6

field generalize the intervals. Recall that a real-valued function is continuous if and only if7

the inverse image of every open set is open. This generalizes to the inverse image of every8

measurable set being measurable.9

Definition 54. Let (Ω,F) and (S,A) be measurable spaces. Let f : Ω → S be a10

function that satisfies f−1(A) ∈ F for each A ∈ A. Then we say that f is F/A-measurable.11

If the σ-field’s are to be understood from context, we simply say that f is measurable.12

Example 55. Let F = 2Ω. Then every function from Ω to a set S is measurable no13

matter what A is.14

Example 56. Let A = {∅, S}. Then every function from a set Ω to S is measurable,15

no matter what F is.16

Proving that a function is measurable is facilitated by noticing that inverse image com-17

mutes with union, complement, and intersection. That is, f−1(AC) = [f−1(A)]C for all A,18

and for arbitrary collections of sets {Aα}α∈ℵ,19

f−1

(

⋃

α∈ℵ
Aα

)

=
⋃

α∈ℵ
f−1(Aα),

20

f−1

(

⋂

α∈ℵ
Aα

)

=
⋂

α∈ℵ
f−1(Aα).

21

Exercise 57. Is the inverse image of a σ-field is a σ-field? That is, if f : Ω → S and if22

A is a σ-field of subsets of S, then f−1(A) is a σ-field of subsets of Ω.23

Proposition 58. If f is a continuous function from one topological space to another24

(each with Borel σ-field’s) then f is measurable.25

The proof of this makes use of Lemma 60.26

Definition 59. Let f : Ω → S, where (S,A) is a measurable space. The σ-field f−1(A)27

is called the σ-field generated by f . The σ-field f−1(A) is sometimes denoted σ(f).28

It is easy to see that f−1(A) is the smallest σ-field C such that f is C/A-measurable. We29

can now prove the following helpful result.30
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Lemma 60. Let (Ω,F) and (S,A) be measurable spaces and let f : Ω → S. Suppose that1

C is a collection of sets that generates A. Then f is measurable if f−1(C) ⊆ F .2

Exercise 61. Prove Proposition 60.3

Definition 62. If (Ω,F , P ) is a probability space and X : Ω → IR is measurable, then4

X is called a random variable. In general, if X : Ω → S, where (S,A) is a measurable space,5

we call X a random quantity.6

Exercise 63. Prove the following. Let S = IR in Lemma 60. Let D be a dense subset7

of IR, and let C be the collection of all intervals of the form (−∞, a), for a ∈ D. To prove8

that a real-valued function is measurable, one need only show that {ω : f(ω) < a} ∈ F for9

all a ∈ D. Similarly, we can replace < a by > a or ≤ a or ≥ a.10

Exercise 64. Show that a monotone increasing function is measurable.11

Example 65. Suppose that f : Ω → IR takes values in the extended reals. Then12

f−1({−∞,∞}) = [f−1((−∞,∞))]C . Also13

f−1({∞}) =
∞
⋂

n=1

{ω : f(ω) > n},
14

and similarly for −∞. In order to check whether f is measurable, we need to see that the15

inverse images of all semi-infinite intervals are measurable sets. If we include the infinite16

endpoint in these intervals, then we don’t need to check anything else. If we don’t include17

the infinite endpoint, and if both infinite values are possible, then we need to check that at18

least one of {∞} or {−∞} has measurable inverse image.19

Definition 66. A measurable function that takes at most finitely many values is called20

a simple function.21

Example 67. Let (Ω,F) be a measurable space and let A1, . . . , An be disjoint elements22

of F , and let a1, . . . , an be real numbers. Then f =
∑n

i=1 aiIAi
defines a simple function23

since f−1((−∞, a)) is a union of at most finitely many measurable sets.24

Definition 68. Let f be a simple function whose distinct values are a1, . . . , an, and let25

Ai = {ω : f(ω) = ai}. Then f =
∑n

i=1 aiIAi
is called the canonical representation of f .26

Lemma 69. Let f be a nonnegative measurable extended real-valued function from Ω.27

Then there exists a sequence {fn}∞n=1 of nonnegative (finite) simple functions such that fn ≤ f28

for all n and limn→∞ fn(ω) = f(ω) for all ω.29

Proof. For each n, define An,k = f−1((k/n, (k+ 1)/n]) for k = 1, . . . , n2 − 1 and An,0 =30

f−1([0, 1/n]∪ (n,∞)). Let A∞ = f−1({∞}). Define fn(ω) = 1
n

∑n2−1
k=0 kIAn,k

(ω)+nA∞. The31

proof is easy to complete now. �32

Lemma 69 says that each nonnegative measurable function f can be approximated ar-33

bitrarily closely from below by simple functions. It is easy to see that if f is bounded the34

approximation is uniform once n is greater than the bound.35

Many theorems about real-valued functions are easier to prove for nonnegative measurable36

functions. This leads to the common device of splitting a measurable function f as follows.37
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Definition 70. Let f be a real-valued function. The positive part f+ of f is defined as1

f+(ω) = max{f(ω), 0}. The negative part f− of f is f−(ω) = −min{f(ω), 0}.2

Notice that both the positive and negative parts of a function are nonnegative. It follows3

easily that f = f+ − f−. It is easy to prove that the positive and negative parts of a4

measurable function are measurable.5

Here are some simple properties of measurable functions.6

Theorem 71. Let (Ω,F), (S,A), and (T,B) be measurable spaces.7

1. If f is an extended real-valued measurable function and a is a constant, then af is8

measurable.9

2. If f : Ω → S and g : S → T are measurable, then g(f) : Ω → T is measurable.10

3. If f and g are measurable real-valued functions, then f + g and fg are measurable.11

Proof. For a = 0, part 1 is trivial. Assume a 6= 0. Because12

{ω : af(ω) < c} =

{

{ω : f(ω) < c/a} if a > 0,
{ω : f(ω) > c/a} if a < 0,13

we see that af is measurable.14

For part 2, just notice that [g(f)]−1(B) = f−1(g−1(B)).15

For part 3, let h : IR2 → IR be defined by h(x, y) = x + y. This function is continuous,16

hence measurable. Then f + g = h(f, g). We now show that (f, g) : Ω → IR is measurable,17

where (f, g)(ω) = (f(ω), g(ω)). To see that (f, g) is measurable, look at inverse images of18

sets that generate B2, namely sets of the form (−∞, a]× (−∞, b], and apply Lemma 60. We19

see that20

(f, g)−1((−∞, a] × (−∞, b]) = f−1((−∞, a]) ∩ g−1((−∞, b]),21

which is measurable. Hence, (f, g) is measurable and h(f, g) is measurable by part 2. Simi-22

larly fg is measurable. �23

You can also prove that f/g is measurable when the ratio is defined to be an arbitrary24

constant when g = 0. Similarly, part 3 can be extended to extended real-valued functions25

so long as care is taken to handle cases of ∞−∞ and ∞× 0.26
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Theorem 72. Let fn : Ω → IR be measurable for all n. Then the following are measur-2

able:3

1. lim supn→∞ fn,4

2. lim infn→∞ fn,5

3. {ω : limn→∞ fn exists}.6

4. f =

{

limn→∞ fn where the limit exists,
0 elsewhere.7

Exercise 73. Prove Lemma 72.8

Random Variables and Induced Measures.9

Example 74. Let Ω = (0, 1) with the Borel σ-field, and let µ be Lebesgue measure,10

a probability. Let Z0(ω) = ω. For n ≥ 1, define Xn(ω) = ⌊2Zn−1(ω)⌋ and Zn(ω) =11

2Zn−1(ω)−Xn(ω). All Xn’s and Zn’s are random variables. Each Xn takes only two values,12

0 and 1. It is easy to see that µ({ω : Xn(ω) = 1}) = 1/2. It is also easy to see that13

µ({ω : Zn(ω) ≤ c}) = c for 0 ≤ c ≤ 1.14

Each measurable function from a measure space to another measurable space induces a15

measure on its range space.16

Lemma 75. Let (Ω,F , µ) be a measure space and let (S,A) be a measurable space. Let17

f : Ω → S be a measurable function. Then f induces a measure on (S,A) defined by18

ν(A) = µ(f−1(A)) for each A ∈ A.19

Proof. Clearly, ν ≥ 0 and ν(∅) = 0. Let {An}∞n=1 be a sequence of disjoint elements of A.20

Then21

ν

( ∞
⋃

n=1

An

)

= µ

(

f−1

[ ∞
⋃

n=1

An

])

22

= µ

( ∞
⋃

n=1

f−1[An]

)

23

=
∞
∑

n=1

µ(f−1[An])
24

=

∞
∑

n=1

ν(An). �
25

The measure ν in Lemma 75 is called the measure induced on (S,A) from µ by f . This26

measure is only interesting in special cases. First, if µ is a probability then so is ν.27
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Definition 76. Let (Ω,F , P ) be a probability space and let (S,A) be a measurable1

space. Let X : Ω → S be a random quantity. Then the measure induced on (S,A) from P2

by X is called the distribution of X.3

We typically denote the distribution of X by µX . In this case, µX is a measure on the space4

(S,A).5

Example 77. Consider the random variables in Example 74. The distribution of each6

Xn is the Bernoulli distribution with parameter 1/2. The distribution of each Zn is the7

uniform distribution on the interval (0, 1). These were each computed in Example 74.8

If µ is infinite and f is not one-to-one, then the induced measure may be of no interest9

at all.10

Exercise 78. Either prove or create a counterexample to the following conjecture: If µ11

is a σ-finite on some measurable space (Ω,F), then for any measurable function f from Ω12

to S, the induced measure is also σ-finite.13

Example 79. (Jacobians) If Ω = S = IRk and f is one-to-one with a differentiable14

inverse, then ν is the measure you get from the usual change-of-variables formula using15

Jacobians.16

We have just seen how to construct the distribution from a random variable. Oddly17

enough, the opposite construction is also available. First notice that every probability ν on18

(IR,B1) has a distribution function F defined by F (x) = ν((−∞, x]). Now, we can construct19

a probability space (Ω,F , P ) and a random variable X : Ω → IR such that ν = P (X−1).120

Indeed, just let Ω = IR, F = B1, P = ν, and X(ω) = ω.21

Integration. Let (Ω,F , µ) be a measure space. The definition of integral is done in22

three stages. We start with simple functions.23

Definition 80. Let f : Ω → IR
+0

be a simple function with canonical representation24

f(ω) =
∑n

i=1 aiIAi
(ω) The integral of f with respect to µ is defined to be

∑n
i=1 aiµ(Ai). The25

integral is denoted variously as
∫

fdµ,
∫

f(ω)µ(dω), or
∫

f(ω)dµ(ω).26

The values ±∞ are allowed for an integral.27

We use the following convention whenever necessary in defining an integral: ±∞×0 = 0.28

This applies to both the case when the function is 0 on a set of infinite measure and when29

the function is infinite on a set of 0 measure.30

Proposition 81. If f ≤ g and both are nonegative and simple, then
∫

fdµ ≤
∫

gdµ.31

Definition 82. We say that f is integrable with respect to µ if
∫

fdµ is finite.32

Example 83. A real-valued simple function is always integrable with respect to a finite33

measure.34

1
Notation: When X is a random quantity and B is a set in the space where X takes its values, we use

the following two symbols interchangeably: X−1(B) and X ∈ B. Both of these stand for {ω : X(ω) ∈ B}.
Finally, for all B,

µX(B) = Pr(X ∈ B) = P (X−1(B)).
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The second step in the definition of integral is to consider nonnegative measurable func-2

tions.3

Definition 84. For nonnegative measurable f , define the integral of f with respect to4

µ by5
∫

fdµ = sup
nonnegative finite simple g ≤ f

∫

gdµ.
6

That is, if f is nonnegative and measurable,
∫

fdµ is the least upper bound (possibly infinite)7

of the integrals of nonnegative finite simple functions g ≤ f . Proposition 81 helps to show8

that Definition 80 is a special case of Definition 84, so the two definitions do not conflict9

when they both apply.10

Finally, for arbitrary measurable f , we first split f into its positive and negative parts,11

f = f+ − f−.12

Definition 85. Let f be measurable. If either f+ or f− is integrable with respect to µ,13

we define the integral of f with respect to µ to be
∫

f+dµ −
∫

f−dµ, otherwise the integral14

does not exist.15

It is easy to see that Definition 84 is a special case of Definition 85, so the two definitions16

do not conflict when they both apply. The reason for splitting things up this way is to avoid17

ever having to deal with ∞−∞.18

One unfortunate consequence of this three-part definition is that many theorems about19

integrals must be proven in three steps. One fortunate consequence is that, for most of these20

theorems, at least some of the three steps are relatively straightforward.21

Definition 86. If A ∈ F , we define
∫

A
fdµ by

∫

IAfdµ.22

Proposition 87. If f ≤ g and both integrals are defined, then
∫

fdµ ≤
∫

gdµ.23

Example 88. Let µ be counting measure on a set Ω. (This measure is not σ-finite24

unless Ω is countable.) If A ⊆ Ω, then µ(A) = #(A), the number of elements in A. If f is a25

nonnegative simple function, f =
∑n

i=1 aiIAi
, then26

∫

fdµ =

n
∑

i=1

ai#(Ai) =
∑

All ω

f(ω).
27

It is not difficult to see that the equality of the first and last terms above continues to hold28

for all nonnegative functions, and hence for all integrable functions.29

Before we study integration in detail, we should note that integration with respect to30

Lebesgue measure is the same as the Riemann integral in many cases.31

Theorem 89. Let f be a continuous function on a closed bounded interval [a, b]. Let µ32

be Lebesgue measure. Then the Riemann integral
∫ b

a
f(x)dx equals

∫

[a,b]
fdµ.33
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Exercise 90. Prove Theorem 89.1

Example 91. A case in which the Riemann integral differs from the Lebesgue integral2

is that of “improper” Riemann integrals. These are defined as limits of Riemann integrals3

that are each defined in the usual way. For example, integrals of unbounded functions and4

integrals over unbounded regions cannot be defined in the usual way because the Riemann5

sums would always be ∞ or undefined. Consider the function f(x) = sin(x)/x over the6

interval [1,∞). It is not difficult to see that neither f+ nor f− is integrable with respect to7

Lebesgue measure. Hence, the integral that we have defined here does not exist. However,8

the improper Riemann integral is defined as limT→∞
∫ T

1
f(x)dx, if the limit exists. In this9

case, the limit exists.10

Some simple properties of integrals include the following:11

• For c a constant,
∫

cfdµ = c
∫

fdµ if the latter exists.12

• If f ≥ 0, then
∫

fdµ ≥ 0.13

• If f is extended real-valued, then
∣

∣

∫

fdµ
∣

∣ <∞ only if µ(f−1({±∞})) = 0.14

• if f = g a.e. [µ] and if either
∫

fdµ or
∫

gdµ exists, then so does the other, and they15

are equal. Similarly, if one of the integrals doesn’t exist, then neither does the other.16

Definition 92. If P is a probability and X is a random variable, then
∫

XdP is called17

the mean of X, expected value of X, or expectation of X and denoted E(X). If E(X) = µ is18

finite, then the variance of X is Var(X) = E[(X − µ)2].19

The mean and variance of a random variable have an interesting relation to the tail of20

the distribution.21

Proposition 93. (Markov inequality) Let X be a nonnegative random variable.22

Then Pr(X ≥ c) ≤ E(X)/c.23

There is also a famous corollary.24

Corollary 94. (Tchebychev inequality) Let X have finite mean µ. Then Pr(|X−25

µ| ≥ c) ≤ Var(X)/c2.26

Exercise 95. Show that there is some random variable X for which Pr(|X − µ| ≥27

c) = Var(X)/c2. Thus, without additional assumptions, Tchebychev’s inequality cannot be28

improved.29

We would like to be able to prove that
∫

(f + g)dµ =
∫

fdµ +
∫

gdµ whenever at least30

two of them are finite. We could prove this for nonnegative simple functions now, but not31

in general.32

Proposition 96. Let f and g be nonnegative simple functions defined on a measure33

space (Ω,F , µ). Then
∫

(f + g)dµ =
∫

fdµ+
∫

gdµ.34

The proof for general functions requires some limit theorems first.35
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One of the famous limit theorems is the following.2

Theorem 97. (Fatou’s lemma) Let {fn}∞n=1 be a sequence of nonnegative measurable3

functions. Then4
∫

lim inf
n

fndµ ≤ lim inf
n

∫

fndµ.
5

The proof of Theorem 97 is given in a separate document. Here is an outline of the proof.6

Let f = lim infn fn, and let φ be an arbitrary nonnegative simple function such that φ ≤ f .7

We need to show that
∫

φdµ ≤ lim infn

∫

fndµ. The set {ω : φ(ω) > 0} can be written as8

the union of the sets9

An = {ω : fk(ω) > (1 − ǫ)φ(ω), for all k ≥ n}.10

For each n,
∫

fndµ ≥ (1 − ǫ)
∫

An
φdµ. The liminf of the right sides can be shown to equal11

(1 − ǫ)
∫

φdµ. Since lim infn

∫

fndµ ≥ (1 − ǫ)
∫

φdµ for all ǫ > 0, we have what we need.12

The first of the two most useful limit theorems is the following.13

Theorem 98. (Monotone convergence theorem) Let {fn}∞n=1 be a sequence of14

measurable nonnegative functions, and let f be a measurable function such that fn ≤ f a.e.15

[µ] and limn→∞ fn = f(x) a.e. [µ]. Then,16

lim
n→∞

∫

fndµ =

∫

fdµ.
17

Proof. Since fn ≤ f for all n,
∫

fndµ ≤
∫

fdµ for all n. Hence18

lim inf
n→∞

∫

fndµ ≤ lim sup
n→∞

∫

fndµ ≤
∫

fdµ.
19

By Fatou’s lemma,
∫

fdµ ≤ lim infn→∞
∫

fndµ. �20

Exercise 99. Why is it called the “monotone” convergence theorem?21

We are now in a position to prove that the integral of the sum is the sum of the integrals.22

Theorem 100. If
∫

fdµ and
∫

gdµ are defined and they are not both infinite and of23

opposite signs, then
∫

[f + g]dµ =
∫

fdµ+
∫

gdµ.24

Proof. If f, g ≥ 0, then by Lemma 69, there exist sequences of nonnegative simple25

functions {fn}∞n=1 and {gn}∞n=1 such that fn ↑ f and gn ↑ g. Then (fn + gn) ↑ (f + g) and26
∫

[fn+gn]dµ =
∫

fndµ+
∫

gndµ by Proposition 96. The result now follows from the monotone27
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convergence theorem. For integrable f and g, note that (f+g)++f−+g− = (f+g)−+f++ g+.1

What we just proved for nonnegative functions implies that2

∫

(f + g)+dµ+

∫

f−dµ+

∫

g−dµ
3

=

∫

[(f + g)+ + f− + g−]dµ
4

=

∫

[(f + g)− + f+ + g+]dµ
5

=

∫

(f + g)−dµ+

∫

f+dµ+

∫

g+dµ.
6

Rearranging the terms in the first and last expressions gives the desired result. If both f7

and g have infinite integral of the same sign, then it follows easily that f + g has infinite8

integral of the same sign. Finally, if only one of f and g has infinite integral, it also follows9

easily that f + g has infinite integral of the same sign. �10

For proving theorems about integrals, there is a common sequence of steps that is often11

called the standard machinery or standard machine. It is illustrated in the next result, the12

measure-theoretic version of the change-of-variables formula.13

Lemma 101. Let (Ω,F , µ) be a measure space and let (S,A) be a measurable space. Let14

f : Ω → S be a measurable function. Let ν be the measure induced on (S,A) by f from µ.15

(See Definition 76.) Let g : S → IR be A/B1 measurable. Then16

∫

gdν =

∫

g(f)dµ,(102)
17

if either integral exists.18

Proof. First, assume that g = IA for some A ∈ A. Then (102) becomes ν(A) =19

µ(f−1(A)), which is the definition of ν. Next, if g is a nonnegative simple function, then20

(102) holds by linearity of integrals. If g is a nonnegative function, then use the monotone21

convergence theorem and a sequence of nonnegative simple functions converging to g from22

below to see that (102) holds. Finally, for general g, (102) holds if either g+ or g− is23

integrable. �24

Exercise 103. Suppose that fn is integrable for each n and supn

∫

fndµ < ∞. Show25

that, if fn ↑ f , then f is integrable and
∫

fndµ→
∫

fdµ.26

Exercise 104. Show that if f and g are integrable, then27

∣

∣

∣

∣

∫

fdµ−
∫

gdµ

∣

∣

∣

∣

≤
∫

|f − g| dµ.
28

Exercise 105. Assume the sequence of functions fn is defined on a measure space29

(Ω,F , µ) such that µ(Ω) < ∞. Further, suppose that the fn are uniformly bounded and30

that fn → f uniformly. Show that
∫

fndµ→
∫

fdµ.31
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Fatou’s Lemma1

Theorem 97. (Fatou’s lemma) Let {fn}∞n=1 be a sequence of nonnegative measurable2

functions. Then3
∫

lim inf
n

fndµ ≤ lim inf
n

∫

fndµ.
4

Proof. Let f(ω) = lim infn→∞ fn(ω). Because5

∫

fdµ = sup
finite simple φ ≤ f

∫

φdµ,
6

we need only prove that, for every finite simple φ ≤ f ,7

∫

φdµ ≤ lim inf
n→∞

∫

fndµ.
8

Let φ ≤ f be finite and simple, and let ǫ > 0. For each n, define9

An = {ω ∈ A : fk(ω) ≥ (1 − ǫ)φ(ω), for all k ≥ n}.10

Since (1 − ǫ)φ(ω) ≤ f(ω) for all ω with strict inequality wherever either side is positive,11

⋃∞
n=1An = Ω and An ⊆ An+1 for all n. Let Bn = A ∩ AC

n .12

∫

fndµ ≥
∫

An

fndµ ≥ (1 − ǫ)

∫

An

φdµ.(106)
13

Let the canonical representation of φ be
∑m

i=1 ciICi
. Then, for all n.14

∫

An

φdµ =

m
∑

i=1

ciµ(Ci ∩An).
15

Because the An’s form an increasing sequence whose union is Ω, limn→∞ µ(Ci ∩An) = µ(Ci)16

for all i. Taking the lim infn of both sides of (106) yields17

lim inf
n

∫

fndµ ≥ (1 − ǫ)
m
∑

i=1

ciµ(Ci) = (1 − ǫ)

∫

φdµ.
18

Since this is true for every ǫ > 0,19

lim inf
n→∞

∫

fndµ ≥
∫

φdµ. �
20

21
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Lemma 101 has a widely-used corollary.2

Corollary 107. (Law of the unconscious statistician) If X : Ω → S is a3

random quantity with distribution µX and if f : S → IR is measurable, then E[f(X)] =4
∫

fdµX.5

Another useful application of monotone convergence is the following.6

Theorem 108. Let (Ω,F , µ) be a measure space, and let f : Ω → IR
+0

be measurable.7

Then ν(A) =
∫

A
fdµ is a measure on (Ω,F).8

Exercise 109. Prove Theorem 108.9

If µ is σ-finite and if f is finite a.e. [µ], then ν in Theorem 108 is σ-finite.10

What goes wrong with the conclusion to Theorem 108 if f is integrable but not necessarily11

nonnegative? If f can take negative values then ν(A) =
∫

A
fdµ might be negative. Let12

A = {ω : f(ω) < 0}. Suppose that µ(A) > 0. Write A =
⋃∞

n=1An, where An = {ω : f(ω) <13

−1/n}. If µ(A) > 0, then there exists n such that µ(An) > 0. (This argument is used often14

in proving probability results.) Then15

−ν(A) =

∫

IA(−f)dµ ≥
∫

IAn(−f)dµ ≥ 1

n
µ(An) > 0.

16

Here is another application of the standard machinery.17

Theorem 110. Assume the same conditions as Theorem 108. Integrals with respect to18

ν can be computed as
∫

gdν =
∫

gfdµ, if either exists.19

Proof. We prove the result in four stages. First, assume that g is a indicator IA of some20

set A ∈ F . Then the definition of ν says that
∫

gdν = ν(A) =
∫

IAfdµ. Second, assume that21

g is a nonnegative simple function. The result holds for g by linearity of integrals. Third,22

assume that g is nonnegative. Approximate g from below by nonnegative simple functions23

{gn}∞n=1. Then
∫

gndν =
∫

gnfdµ for each n and the monotone convergence theorem says24

that the left side converges to
∫

gdν and the right side converges to
∫

gfdµ. Finally, if g is25

measurable, write g = g+ − g− (the positive and negative parts). Then
∫

g+dν =
∫

g+fdµ26

and
∫

g−dν =
∫

g−fdµ. We see that
∫

gdν exists if and only if
∫

gfdµ exists, and if either27

exists they are equal. �28

The standard machinery corresponds to the three stages in defining integrals. The first29

stage is split into indicators and nonnegative simple functions to make four steps in the30

standard machinery.31

Definition 111. The function f in Theorem 108 is called the density of ν with respect32

to µ.33
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Example 112. (Probability density functions) Consider a continuous random1

variable X having a density f . That is,2

Pr(X ≤ a) =

∫ a

−∞
f(x)dx.

3

Then the distribution of X, defined by µX(B) = Pr(X ∈ B) for B ∈ B1, satisfies4

µX(B) =

∫

B

fdλ,
5

where λ is Lebesgue measure. That is, the probability density functions of the usual contin-6

uous distributions that you learned about in earlier courses are also densities with respect7

to Lebesgue measure in the sense defined above.8

Example 113. (Probability mass functions) Consider a typical discrete random9

variable X with mass function f , i.e., f(x) = Pr(X = x) for all x. There are at most10

countably many x such that f(x) > 0. Let µX be the distribution of X. For each set B, we11

know that12

µX(B) = Pr(X ∈ B) =
∑

x∈B

f(x).
13

The rightmost term in this equation is
∫

fdµ, where µ is counting measure on the range14

space of X. So, f is the density of µX with respect to µ.15

The other major limit theorem is the following.16

Theorem 114. (Dominated convergence theorem) Let {fn}∞n=1 be a sequence of17

measurable functions, and let f and g be measurable functions such that fn → f a.e. [µ],18

|fn| ≤ g a.e. [µ], and
∫

gdµ <∞. Then,19

lim
n→∞

∫

fndµ =

∫

fdµ.
20

Proof. We have −g ≤ fn ≤ g a.e. [µ], hence21

g + fn ≥ 0, a.e. [µ],22

g − fn ≥ 0, a.e. [µ],23

lim
n→∞

[g + fn] = g + f a.e. [µ],
24

lim
n→∞

[g − fn] = g − f a.e. [µ].
25

It follows from Fatou’s lemma and Theorem 100 that26

∫

[g + f ]dµ ≤ lim inf
n→∞

∫

[g + fn]dµ
27

=

∫

gdµ+ lim inf
n→∞

∫

fndµ,
28

∫

fdµ ≤ lim inf
n→∞

∫

fndµ.
29
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Similarly, it follows that1

∫

[g − f ]dµ ≤ lim inf
n→∞

∫

[g − fn]dµ
2

=

∫

gdµ− lim sup
n→∞

∫

fndµ,
3

∫

fdµ ≥ lim sup
n→∞

∫

fndµ.
4

Together, these imply the conclusion of the theorem. �5

Example 115. Let µ be a finite measure. Then limits and integrals can be interchanged6

whenever the functions in the sequence are uniformly bounded.7

An alternate version of the dominated convergence theorem is the following.8

Proposition 116. Let {fn}∞n=1, {gn}∞n=1 be sequences of measurable functions such that9

|fn| ≤ gn, a.e. [µ]. Let f and g be measurable functions such that limn→∞ fn = f and10

limn→∞ gn = g, a.e. [µ]. Suppose that limn→∞
∫

gndµ =
∫

gdµ <∞. Then, limn→∞
∫

fndµ =11
∫

fdµ.12

The proof is the same as the proof of Theorem 114, except that gn replaces g in the first13

three lines and wherever g appears with fn and a limit is being taken.14

For finite measure spaces (i.e. (Ω,F , µ) with µ(Ω) < ∞), the minimal condition that15

guarantees convergence of integrals is uniform integrability .16

Definition 117. A sequence of integrable functions {fn}∞n=1 is uniformly integrable17

(with respect to µ) if limc→∞ supn

∫

{ω:|fn(ω)|>c} |fn|dµ = 0.18

Theorem 118. Let µ be a finite measure. Let {fn}∞n=1 be a sequence of integrable func-19

tions such that limn→∞ fn = f a.e. [µ]. Suppose that {fn}∞n=1 is uniformly integrable. Then20

limn→∞
∫

fndµ =
∫

fdµ.21

If the fn’s in Theorem 118 are nonnegative and integrable and fn → f , then limn→∞
∫

fndµ =22
∫

fdµ implies that {fn}∞n=1 are uniformly integrable. We will not use this result, however.23
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Here are some more useful properties of integrals.2

Theorem 119. Let (Ω,F , µ) be a measure space. Let f and g be measurable extended3

real-valued functions.4

1. If f is nonnegative and µ({ω : f(ω) > 0}) > 0, then
∫

fdµ > 0.5

2. If f and g are integrable and if
∫

A
fdµ =

∫

A
gdµ for all A ∈ F , then f = g a.e. [µ].6

3. If µ is σ-finite and if
∫

A
fdµ =

∫

A
gdµ for all A ∈ F , then f = g a.e. [µ].7

4. Let Π be a π-system that generates F . Suppose that Ω is a finite or countable union8

of elements of Π. If f and g are integrable and if
∫

A
fdµ =

∫

A
gdµ for all A ∈ Π, then9

f = g a.e. [µ].10

Proof.11

1. Let Ac = {ω : f(ω) > c} for each c ≥ 0. Because µ(A0) > 0 and A0 =
⋃∞

n=1A1/n, it12

follows from Lemma 34 that there exists n such that µ(A1/n) > 0. Since f ≥ fIA1/n
,13

we have
∫

fdµ ≥
∫

A1/n
fdµ. But (1/n)IA1/n

is a simple function that is ≤ fIA1/n
and14

∫

(1/n)IA1/n
dµ = µ(A1/n) > 0. It follows that

∫

fdµ > 0.15

2. This will appear on a homework assignment.16

3. First, assume that f and g are real-valued. Let {An}∞n=1 be disjoint elements of F such17

that µ(An) < ∞ and
⋃∞

n=1An = Ω. Let Bm = {ω : |f(ω)| < m, |g(ω)| < m} for each18

integer m. For each pair (n,m), fIAn∩Bm and gIAn∩Bm satisfy the conditions of the19

previous part, so fIAn∩Bm = gIAn∩Bm a.e. [µ]. Let C = {ω : f(ω) 6= g(ω)}. Since20

C =
∞
⋃

n=1

∞
⋃

m=1

[C ∩ Bm ∩ An] ,
21

and each µ(C ∩Bm ∩ An) = 0, it follows that µ(C) = 0.22

Next, suppose that f and/or g is extended real-valued. Let E = {f = ∞}∆{g = ∞},23

the set where one function is ∞ but the other is not. If µ(E) > 0, then there is a24

subset A of E such that 0 < µ(A) <∞ and one of the functions is bounded above on25

A while the other is infinite. This contradicts
∫

A
fdµ =

∫

A
gdµ. A similar result holds26

for −∞.27

4. Define ν+
1 (A) =

∫

A
f+dµ, ν+

2 (A) =
∫

A
g+dµ, ν−1 (A) =

∫

A
f−dµ, and ν−2 (A) =

∫

A
g−dµ.28

These are all finite measures according to Theorem 108. The additional condition29

implies that they are all σ-finite on Π. The equality of the integrals implies that30

ν+
1 + ν−2 = ν−1 + ν+

2 for all sets in Π. Theorem 43 implies that ν+
1 + ν−2 = ν−1 + ν+

2 for31

all sets in F . Hence, the condition of part 2 hold and the result is proven. �32
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The condition about unions in part 4 of the above theorem holds for the π-systems in1

Example 38.2

Corollary 120. If µ is σ-finite and ν is related to µ as in Theorem 108, then the3

density of ν with respect to µ is unique, a.e. [µ].4

There is an interesting characterization of σ-finite measures in terms of integrals.5

Theorem 121. Let (Ω,F , µ) be a measure space. Then µ is σ-finite if and only if there6

exists a strictly positive integrable function.7

Exercise 122. Prove Theorem 121.8

Absolute Continuity. There is a special relationship between measures on the same9

space that is very useful in Probability theory.10

Definition 123. Let ν and µ be measures on the space (Ω,F). We say that ν ≪ µ11

(read ν is absolutely continuous with respect to µ) if for every A ∈ F , µ(A) = 0 implies12

ν(A) = 0.13

That is, ν ≪ µ if and only if every measure 0 set under µ is also a measure 0 set under ν.14

Example 124. Let (Ω,F , µ) be a measure space. Let f be a nonnegative function, and15

define ν(A) =
∫

A
fdµ. Then ν is a measure and ν ≪ µ. If f <∞ a.e. [µ] and if µ is σ-finite,16

then ν is σ-finite as well.17

Example 125. Let µ1 and µ2 be measures on the same space. Let µ = µ1 + µ2. Then18

µi ≪ µ for i = 1, 2.19

Absolute continuity has a connection with continuity of functions.20

Proposition 126. Let ν and µ be measures on the space (Ω,F). Suppose that, for every21

ǫ > 0, there exists δ such that for every A ∈ F , µ(A) < δ implies ν(A) < ǫ. Then ν ≪ µ.22

A concept related to absolute continuity is singularity.23

Definition 127. Two measures µ and ν on the same space (Ω,F) are (mutually) sin-24

gular (denoted µ ⊥ ν) if there exist disjoint sets Sµ and Sν such that µ(SC
µ ) = ν(SC

ν ) = 0.25

Example 128. Let f and g be nonnegative functions such that fg = 0 a.e. [µ]. Define26

ν1(A) =
∫

A
fdµ and ν2(A) =

∫

A
gdµ. Then ν1 ⊥ ν2.27

The main theoretical result on absolute continuity is the Radon-Nikodym theorem which28

says that, in the σ-finite case, all absolute continuity is of the type in Example 124.29

Theorem 129. (Radon-Nikodym) Let µ and ν be σ-finite measures on the space30

(Ω,F). Then ν ≪ µ if and only if there exists a nonnegative measurable f such that31

ν(A) =
∫

A
fdµ for all A ∈ F . The function f is unique a.e. [µ].32

One proof of this result is given in a separate course document. Another proof is given33

later after we introduce conditional expectation.34

Definition 130. The function f in Theorem 129 is called a Radon-Nikodym derivative35

of ν with respect to µ. It is denoted dν/dµ. Each such function is called a version of dν/dµ.36
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The uniqueness of Radon-Nikodym derivatives is only a.e. [µ]. If f = dν/dµ, then every2

measurable function that equals f a.e. [µ] could also be called dν/dµ. All of these functions3

are called versions of the Radon-Nikodym derivative.4

Definition 131. If µ≪ ν and ν ≪ µ, we say that µ and ν are equivalent.5

If µ and ν are equivalent, then6

dµ

dν
=

1

dν

dµ

.

7

If ν ≪ µ≪ η, then the chain rule for R-N derivatives says8

dν

dη
=
dν

dµ

dµ

dη
.

9

Absolute continuity plays an important role in statistical inference. Parametric families are10

collections of probability measures that are all absolutely continuous with respect to a single11

measure.12

Theorem 132. Let (Ω,F , µ) be a σ-finite measure space. Let {µθ : θ ∈ Θ} be a collec-13

tion of measures on (Ω,F) such that µθ ≪ µ for all θ ∈ Θ. Then there exists a sequence of14

nonnegative numbers {cn}∞n=1 and a sequence of elements {θn}∞n=1 of Θ such that
∑∞

n=1 cn15

and µθ ≪
∑∞

n=1 cnµθn for all θ ∈ Θ.16

We will not prove this theorem here. (See Theorem A.78 in Schervish 1995.)17

Random Vectors. In Definition 62 we defined random variables and random quanti-18

ties. A special case of the latter and generalization of the former is a random vector.19

Definition 133. Let (Ω,F , P ) be a probability space. LetX : Ω → IRk be a measurable20

function. Then X is called a random vector .21

There arises, in this definition, the question of what σ-field of subsets of IRk should be used.22

When left unstated, we always assume that the σ-field of subsets of a multidimensional real23

space is the Borel σ-field, namely the smallest σ-field containing the open sets. However,24

because IRk is also a product set of k sets, each of which already has a natural σ-field25

associated with it, we might try to use a σ-field that corresponds to that product in some26

way.27

Product Spaces. The set IRk has a topology in its own right, but it also happens to28

be a product set. Each of the factors in the product comes with its own σ-field. There is29

a way of constructing σ-field’s of subsets of product sets directly without appealing to any30

additional structure that they might have.31
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Definition 134. Let (Ω1,F1) and (Ω2,F2) be measurable spaces. Let F1 ⊗ F2 be the1

smallest σ-field of subsets of Ω1 × Ω2 containing all sets of the form A1 ×A2 where Ai ∈ Fi2

for i = 1, 2. Then F1 ⊗ F2 is the product σ-field.3

Lemma 135. Let (Ω1,F1) and (Ω2,F2) be measurable spaces. Suppose that Ci is a π-4

system that generates Fi for i = 1, 2. Let C = {C1 × C2 : C1 ∈ C1, C2 ∈ C2}. Then5

σ(C) = F1 ⊗F2, and C is a π-system.6

Proof. Because σ(C) is a σ-field, it contains all sets of the form C1×A2 where A2 ∈ F2.7

For the same reason, it must contain all sets of the form A1 × A2 for Ai ∈ Fi (i = 1, 2).8

Because9

(C1 × C2) ∩ (D1 ×D2) = (C1 ∩D1) × (C2 ×D2),10

we see that C is a π-system. �11

Example 136. Let Ωi = IR for i = 1, 2, and let F1 and F2 both be B1. Let Ci be12

the collection of all intervals centered at rational numbers with rational lengths. Then Ci13

generates Fi for i = 1, 2 and the product topology is the smallest topology containing C as14

defined in Lemma 135. It follows that F1 ⊗F2 is the smallest σ-field containing the product15

topology. We call this σ-field B2.16

Example 137. This time, let Ω1 = IR2 and Ω2 = IR. The product set is IR3 and the17

product σ-field is called B3. It is also the smallest σ-field containing all open sets in IR3.18

The same idea extends to each finite-dimensional Euclidean space, with Borel σ-field’s Bk,19

for k = 1, 2, . . ..20

Lemma 138. Let (Ωi,Fi) and (Si,Ai) be measurable spaces for i = 1, 2. Let fi : Ωi → Si21

be a function for i = 1, 2. Define g(ω1, ω2) = (f1(ω1), f2(ω2)), which is a function from22

Ω1×Ω2 to S1×S2. Then fi is Fi/Ai-measurable for i = 1, 2 if and only if g is F1⊗F2/A1⊗A2-23

measurable.24

Proof. For the “only if” direction, assume that each fi is measurable. It suffices to25

show that for each product set A1 ×A2 (with Ai ∈ Ai for i = 1, 2) g−1(A1 ×A2) ∈ F1 ⊗F2.26

But, it is easy to see that g−1(A1 ×A2) = f−1
1 (A1) × f−1

2 (A2) ∈ F1 ⊗F2.27

For the “if” direction, suppose that g is measurable. Then for every A1 ∈ A1, g
−1(A1 ×28

S2) ∈ F1 ⊗ F2. But g−1(A1 × S2) = f−1
1 (A1) × Ω2. The fact that f−1

1 (A1) ∈ F1 will now29

follow from the first claim in Proposition 140. (Sorry for the forward reference.) So f1 is30

measurable. Similarly, f2 is measurable. �31

Proposition 139. Let (Ω,F), (S1,A1), and (S2,A2) be measurable spaces. Let Xi :32

Ω → Si for i = 1, 2. Define X = (X1, X2) a function from Ω to S1 × S2. Then Xi is F/Ai33

measurable for i = 1, 2 if and only if X is F/A1 ⊗A2 measurable.34

Lemma 138 and Proposition 139 extend to higher-dimensional products as well.35

The product σ-field is also the smallest σ-field such that the coordinate projection func-36

tions are measurable. The coordinate projection functions for a product set S1 × S2 are the37

functions fi : S1 × S2 → Si (for i = 1, 2) defined by fi(s1, s2) = si (for i = 1, 2).38
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Infinite-dimensional product spaces pose added complications that we will not consider1

until later in the course.2

There are a number of facts about product spaces that we might take for granted.3

Proposition 140. Let (Ω1,F1) and (Ω2,F2) be measurable spaces.4

• For each B ∈ F1⊗F2 and each ω1 ∈ Ω1, the ω1-section of B, Bω1
= {ω2 : (ω1, ω2) ∈ B}5

is in F2.6

• If µ2 is a σ-finite measure on (Ω2,F2), then µ2(Bω1
) is a measurable function from Ω17

to IR.8

• If f : Ω1 × Ω2 → S is measurable, then for every ω1 ∈ Ω1, the function fω1
: Ω2 → S9

defined by fω1
(ω2) = f(ω1, ω2) is measurable.10

• If µ2 is a σ-finite measure on (Ω2,F2) and if f : Ω1 × Ω2 → IR is nonnegative, then11
∫

f(ω1, ω2)µ2(dω2) defines a measurable (possibly infinite valued) function of ω1.12

To prove results like these, start with product sets or indicators of product sets and then13

show that the collection of sets that satisfy the results is a σ-field. Then, if necessary, proceed14

with the standard machinery. For example, consider the second claim. For the case of finite15

µ2, the claim is true if B is a product set. It is easy to show that the collection C of all sets16

B for which µ2(Bω1
) is measurable is a λ-system. Then use Lemma 42. Here is the proof17

that the second claim holds for σ-finite measures once it is proven that it holds for finite18

measures. Let {An}∞n=1 be elements of F2 that cover Ω2 and have finite µ2 measure. Define19

F2,n = {C ∩ An : C ∈ F2} and µ2,n(C) = µ2(An ∩ C) for all C ∈ F2. Then (An,F2,n, µ2,n)20

is a finite measure space for each n and µ2,n(Bω1
) is measurable for all n and all B in the21

product σ-field. Finally, notice that22

µ2(Bω1
) =

∞
∑

n=1

µ2(Bω1
∩ An) =

∞
∑

n=1

µ2,n(Bω1
),

23

a sum of nonnegative measurable functions, hence measurable. The standard machinery can24

be used to prove the third and fourth claims. (Even though the third claim does not involve25

integrals, the steps in the proof are similar to those of the standard machinery.)26
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Radon-Nikodym Theorem1

Theorem 129. (Radon-Nikodym) Let µ and ν be σ-finite measures on the space2

(Ω,F). Then ν ≪ µ if and only if there exists a nonnegative measurable f such that ν(A) =3
∫

A
fdµ for all A ∈ F . The function f is unique a.e. [µ].4

The proof of this result relies upon the theory of signed measures.5

Definition 141. Let (Ω,F) be a measurable space. Let η : F → IR. We call η a signed6

measure if7

• η(∅) = 0,8

• for every sequence {Ak}∞k=1 of mutually disjoint elements of F , η(
⋃∞

k=1Ak) =
∑∞

k=1 η(Ak).9

• η takes at most one of the two values ±∞.10

Example 142. Let µ1 and µ2 be measures on the same space such that at most one of11

them is infinite. Then µ1 − µ2 is a signed measure.12

Example 143. Let f be integrable with respect to µ, and define η(A) =
∫

A
fdµ. Then13

f is a finite signed measure. If the integral of f is merely defined, but not finite, then
∫

A
fdµ14

is a signed measure.15

The nice thing about σ-finite signed measures is that they divide up nicely into positive and16

negative parts just like measurable functions.17

Theorem 144. (Hahn and Jordan decompositions) Let η be a finite signed mea-18

sure on (Ω,F). Then there exists a set A+ such that every subset A of A+ has η(A) ≥ 0 and19

every subset B of A+C has η(B) ≤ 0. Also, there exist finite mutually singular measures η+20

and η− such that η = η+ − η−.21

Proof. Let α = supA∈F η(A). Let limn→∞ η(An) = α. Although the sequence22

{⋃n
i=1Ai}∞n=1

is monotone increasing and signed measures do satisfy Lemma 1 of the course23

notes, η (
⋃n

i=1Ai) is not necessarily as large as η(An). However, the following trick replaces24

⋃n
i=1Ai by a sequence of sets whose signed measures do increase. For each n, partition Ω25

using the sets A1, . . . , An and their complements. Let Cn be the union of all of the compo-26

nent sets that have positive signed measure. Since the n + 1st partition is a refinement of27

the nth partition, we see that Cn+1 ∩CC
n is a union of sets with positive signed measure and28

η(An) ≤ η(Cn) ≤ η
(

Cn

⋃

Cn+1

)

.29

By induction, we then show that A+ =
⋂∞

m=1

⋃∞
n=mCn has η(A+) = α. The conclusions now30

follow easily. �31

Theorem 144 has an interesting consequence.32

Lemma 145. Suppose that µ and ν are finite and not mutually singular. Then there33

exists ǫ > 0 and a set A with µ(A) > 0 and ǫµ(E) ≤ ν(E) for every E ⊆ A.34
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Proof. For each n, let ηn = ν − (1/n)µ. Let β = ν(Ω). Let A+
n and be the set called1

A+ in Theorem 144 when η is ηn. Let M = ∩∞
n=1A

+C
n . Since ηn(E) ≤ 0 for every subset2

of A+C
n , we have ηn(M) ≤ 0 for all n and ν(M) ≤ (1/n)µ(M). It follows that ν(M) = 03

and ν(MC) = β. Since µ and ν are not mutually singular, µ(MC) > 0 and at least one4

µ(A+
n ) > 0. Let A = A+

n and ǫ = 1/n. �5

Proof.Theorem 129 The σ-finite case follows easily from the finite case, so assume that6

µ and ν are finite with ν ≪ µ. Let G be the set of all nonnegative measurable functions g such7

that
∫

E
gdµ ≤ ν(E) for all E ∈ F . Because 0 ∈ G, we know that G is nonempty. If g1 and g28

are in G, we know that {g1 ≤ g2} is measurable, hence it is easy to see that max{g1, g2} ∈ G.9

Also, if gn ∈ G for all n and gn ↑ g, then the monotone convergence theorem implies that10

g ∈ G. So, let α = supg∈G
∫

gdµ and let limn→∞
∫

gndµ = α. Let fn = max{g1, . . . , gn} so11

that there is f such that fn ↑ f , fn ∈ G for all n, and limn→∞
∫

fndµ = α. It follows that12
∫

fdµ = α and f ∈ G. Define ν1(E) =
∫

E
fdµ and ν2 = ν − ν1, which is a measure since13

ν1 ≤ ν. If ν2 and µ were not mutually singular, there would exist ǫ > 0 and a set A with14

µ(A) > 0 and ǫµ(E) ≤ ν2(E) for all E ⊆ A. For each E ∈ F ,15

∫

E

(f + ǫIA)dµ =

∫

E

fdµ+ ǫµ(E ∩ A)
16

≤ ν1(E) + ν2(E ∩A) ≤ ν1(E) + ν2(E) = ν(E).17

Hence h = f + ǫIA ∈ G, but
∫

hdµ = α+ ǫµ(A) > α, a contradiction. It follows that ν2 and18

µ are mutually singular. Hence, there exists S such that ν2(S) = µ(SC) = 0. Since ν ≪ µ,19

we have ν(SC) = 0. Because ν2 ≤ ν, we have ν2(S
C) = 0 and ν2(Ω) = 0. It follows that20

ν = ν1 and the proof of existence is complete. Uniqueness follows from Theorem 119 in the21

class notes. �22

Notice that absolute continuity was not used in the proof until the final steps.23

Definition 146. The decomposition of ν into ν1 ≪ µ and ν2 ⊥ µ in the proof of24

Theorem 129 is called the Lebesgue decomposition of ν into an absolutely continuous part25

and a singular part relative to µ.26
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Theorem 147. Let (Ωi,Fi) for i = 1, 2, 3 be measurable spaces. Let f : Ω1 → Ω2 be2

a measurable onto function. Suppose that F3 contains all singletons. Let A1 = σ(f). Let3

g : Ω1 → Ω3 be F1/F3-measurable. Then g is A1/F3-measurable if and only if there exists a4

F2/F3-measurable h : Ω2 → Ω3 such that g = h(f).5

Proof. For the “if” part, assume that there is a measurable h : Ω2 → Ω3 such that6

g(ω) = h(f(ω)) for all ω ∈ Ω1. Let B ∈ F3. We need to show that g−1(B) ∈ A1. Since h is7

measurable, h−1(B) ∈ F2, so h−1(B) = A for some A ∈ F2. Since g−1(B) = f−1(h−1(B)), it8

follows that g−1(B) = f−1(A) ∈ A1.9

For the “only if” part, assume that g is A1 measurable. For each t ∈ Ω3, let Ct = g−1({t}).10

Since g is measurable with respect to A1 = f−1(F2), every element of g−1(F3) is in f−1(F2).11

So let At ∈ F2 be such that Ct = f−1(At). Define h(ω) = t for all ω ∈ At. (Note that12

if t1 6= t2, then At1 ∩ At2 = ∅, so h is well defined.) To see that g(ω) = h(f(ω)), let13

g(ω) = t, so that ω ∈ Ct = f−1(At). This means that f(ω) ∈ At, which in turn implies14

h(f(ω)) = t = g(ω).15

To see that h is measurable, let A ∈ F3. We must show that h−1(A) ∈ F2. Since g is A116

measurable, g−1(A) ∈ A1, so there is some B ∈ F2 such that g−1(A) = f−1(B). We will show17

that h−1(A) = B ∈ F2 to complete the proof. If ω ∈ h−1(A), let t = h(ω) ∈ A and ω = f(x)18

(because f is onto). Hence, x ∈ Ct ⊆ g−1(A) = f−1(B), so f(x) ∈ B. Hence, ω ∈ B. This19

implies that h−1(A) ⊆ B. Lastly, if ω ∈ B, ω = f(x) for some x ∈ f−1(B) = g−1(A) and20

h(ω) = h(f(x)) = g(x) ∈ A. So, h(ω) ∈ A and ω ∈ h−1(A). This implies B ⊆ h−1(A). �21

The condition that f be onto can be relaxed at the expense of changing the domain of h to22

be the image of f , i.e. h : f(Ω1) → Ω3, with a different σ-field. The proof is slightly more23

complicated due to having to keep track of the image of f , which might not be a measureable24

set in F2.25

The following is an example to show why the condition that F3 contains all singletons is26

included in Theorem 147.27

Example 148. Let Ωi = IR for all i and let F1 = F2 = B1, while F3 = {IR,∅}. Then28

every function g : Ω1 → Ω3 is σ(f)/F3-measurable, no matter what f : Ω1 → Ω2 is. For29

example, let f(x) = x2 and g(x) = x for all x. Then g−1(F3) ⊆ σ(f) but g is not a function30

of f .31

The reason that we need the condition about singletons is the following. Suppose that32

there are two points t1, t2 ∈ Ω3 such that t1 ∈ A implies t2 ∈ A and vice versa for every33

A ∈ F3. Then there can be a set A ∈ F3 that contains both t1 and t2, and g can take both34

of the values t1 and t2, but f is constant on g−1(A) and all the measurability conditions still35

hold. In this case, g is not a function of f .36

Product Measures. Product measures are measures on product spaces that arise37

from individual measures on the component spaces. Product measures are just like joint38

distributions of independent random variables, as we shall see after we define both concepts.39
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Theorem 149. Let (Ωi,Fi, µi) for i = 1, 2 be σ-finite measure spaces. There exists a1

unique measure µ defined on (Ω1 × Ω2,F1 ⊗ F2) that satisfies µ(A1 × A2) = µ1(A1)µ2(A2)2

for all A1 ∈ F1 and A2 ∈ F2.3

Proof. The uniqueness will follow from Theorem 43 since any two such measures will4

agree on the π-system of product sets. For the existence, consider the measurable function5

µ2(Bω1
) defined in Proposition 140. For B ∈ F1 ⊗F2, define6

µ(B) =

∫

µ2(Bω1
)µ1(dω1).

7

Because µ2(Bω1
) ≥ 0, µ is a σ-finite measure. (See Example 124.) If B is a product set8

A1 ×A2, then Bω1
= A2 for all ω1, and9

µ(B) =

∫

µ2(A2)IA1
(ω1)µ1(dω1) = µ1(A1)µ2(A2).

10

It follows that µ is the desired measure. �11

Definition 150. The measure µ in Theorem 149 is called the product measure of µ112

and µ2 and is sometimes denoted µ1 × µ2.13

How to integrate with respect to a product measure is an interesting question. For14

nonnegative functions, there is a simple answer.15

Theorem 151. (Fubini/Tonelli theorem) Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be σ-16

finite measure spaces. Let f : Ω1 × Ω2 → IR be a nonnegative F1 ⊗ F2/B1-measurable17

function. Then18

∫

fdµ1 × µ2 =

∫
[
∫

f(ω1, ω2)µ1(dω1)

]

µ2(dω2) =

∫
[
∫

f(ω1, ω2)µ2(dω2)

]

µ1(dω1).(152)
19

Proof. We will use the standard machinery. If f is the indicator of a set B, then all20

three integrals in (152) equal µ1 × µ2(B), as in the poof of Theorem 149. By linearity of21

integrals, the three integrals are the same for all nonnegative simple functions. Next, let22

{fn}∞n=1 be a sequence of nonnegative simple functions all ≤ f such that limn→∞ fn = f . We23

have just shown that, for each n,24

∫

fndµ1 × µ2 =

∫
[
∫

fn(ω1, ω2)µ1(dω1)

]

µ2(dω2).
25

For each ω2, the monotone convergence theorem says26

lim
n→∞

∫

fn(ω1, ω2)µ1(dω1) =

∫

f(ω1, ω2)µ1(dω1).
27

Again, the monotone convergence theorem says that28

lim
n→∞

∫
[
∫

fn(ω1, ω2)µ1(dω1)

]

µ2(dω2) =

∫
[

lim
n→∞

∫

fn(ω1, ω2)µ1(dω1)

]

µ2(dω2).
29

Combining these last three equations proves that the first two integrals in (152) are equal.30

A similar argument shows that the first and third are equal. �31
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Theorem 151 says that nonnegative product-measurable functions can be integrated in2

either order to get the integral with respect to product measure. A similar result holds for3

integrable product-measurable functions.4

Corollary 153. Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be σ-finite measure spaces. Let f :5

Ω1 × Ω2 → IR be a function that is integrable with respect to µ1 × µ2. Then (152) holds.6

The only sticky point in the proof of Corollary 153 is making sure that ∞ −∞ occurs7

with measure zero in the iterated integrals. But if ∞(−∞) occurs with positive measure for8

f+(f−) in either of the iterated integrals, that iterated integral would be infinite and f+(f−)9

would not be integrable.10

Exercise 154. Let X be a nonnegative random variable defined on a probability space11

(Ω,F , P ) having distribution function F . Show that E(X) =
∫∞
0

[1 − F (x)]dx.12

Example 155. This example satisfies neither the conditions of Theorem 151 nor those13

of Corollary 153. Let14

f(x, y) =

{

x exp(−[1 + x2]y/2) if y > 0,
0 otherwise.15

Then16

∫

f(x, y)dx = exp(−y/2)

∫

x exp(−x2y/2)
17

= 0,18

∫

f(x, y)dy = x

∫ ∞

0

exp(−[1 + x2]y/2)dy
19

=
2x

1 + x2
.

20

The iterated integral in one direction is 0 and is undefined in the other direction.21

These results extend to arbitrary finite products.22

Example 156. The product of k copies of Lebesgue measure on IR1 is Lebesgue mea-23

sure on IRk. Theorem 151 and Corollary 153 give conditions under which integrals can be24

performed in any desired order.25

Independence. We shall define what it means for collections of events and random26

quantities to be independent.27

Definition 157. Let (Ω,F , P ) be a probability space. Let C1 and C2 be subsets of F .28

We say that C1 and C2 are independent if P (A1 ∩ A2) = P (A1)P (A2) for all A1 ∈ C1 and29

A2 ∈ C2.30
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Example 158. If each of C1 and C2 contains only one event, then C1 being independent1

of C2 is the same as those events being independent.2

Definition 159. Let (Ω,F , P ) be a probability space. Let (Si,Ai) for i = 1, 2 be3

measurable spaces. Let Xi : Ω → Si be F/Ai measurable for i = 1, 2. We say that X1 and4

X2 are independent if the σ-field’s σ(X1) and σ(X2) (see Definition 59) are independent.5

Proposition 160. If C1 and C2 are independent π-systems then σ(C1) and σ(C2) are6

independent.7

Example 161. Let f1 and f2 be densities with respect to Lebesgue measure. Let P be8

defined on (IR2,B2) by P (C) =
∫

C

∫

f1(x)f2(y)dxdy. Then the following two σ-field’s are9

independent :10

C1 = {A× IR : A ∈ B1},11

C2 = {IR × A : A ∈ B1}.12

Also, the following two random variables are independent: X1(x, y) = x and X2(x, y) = y,13

the coordinate projection functions. Indeed, Ci = σ(Xi) for i = 1, 2.14

Example 162. Let X1 and X2 be two random variables defined on the same probability15

space (Ω,F , P ). Suppose that the joint distribution of (X1, X2) has a density f(x, y) that16

factors into f(x, y) = f1(x)f2(y), the two marginal densities. Then, for each product set17

A× B with A,B ∈ B1,18

Pr(X1 ∈ A,X2 ∈ B) = Pr((X1, X2) ∈ A×B)19

=

∫

A

∫

B

f1(x)f2(y)dydx
20

=

∫

A

f1(x)dx

∫

B

f2(y)dy
21

= Pr(X1 ∈ A) Pr(X2 ∈ B).22

So, X1 and X2 are independent. The same reasoning would apply if the two random variables23

were discrete. It would also apply if one were discrete and the other continuous.24

These definitions extend to more than two collections of events and more than two random25

variables.26

Definition 163. Let (Ω,F , P ) be a probability space. Let {Cα : α ∈ ℵ} be a collection27

of subsets of F . We say that the Cα’s are (mutually) independent if, for every finite integer28

n ≥ 2 and no more than the cardinality of ℵ, and for all distinct α1, . . . , αn ∈ ℵ, and29

Aαi
∈ Cαi

for i = 1, . . . , n,30

P

(

n
⋂

i=1

Aαi

)

=
n
∏

i=1

P (Aαi
).

31
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Definition 164. Let (Ω,F , P ) be a probability space. Let {(Sα,Aα) : α ∈ ℵ} be1

measurable spaces. Let Xα : Ω → Sα be F/Aα measurable for each α ∈ ℵ. We say that2

{Xα : α ∈ ℵ} are (mutually) independent if the σ-field’s {σ(Xα) : α ∈ ℵ} are mutually3

independent.4

Theorem 165. Let (Ω,F , P ) be a probability space. Let (Si,Ai) for i = 1, 2 be measur-5

able spaces. Let X1 : Ω → S1 and X2 : Ω → S2 be random quantities. Define X = (X1, X2).6

The distribution of X : Ω → S1 × S2, µX, is the product measure µX1
× µX2

if and only if7

X1 and X2 are independent.8

Proof. For the “if” direction, suppose that X1 and X2 are independent. Then for every9

product set A1 ×A2,10

µX(A1 ×A2) = Pr(X1 ∈ A1, X2 ∈ A2) = Pr(X1 ∈ A1) Pr(X2 ∈ A2)11

= µX1
(A1)µX2

(A2).12

It follows from the uniqueness of product measure that µX is the product measure.13

For the “only if” direction, suppose that µX = µX1
× µX2

. Then, for every A1 ∈ A1 and14

A2 ∈ A2,15

Pr(X1 ∈ A1, X2 ∈ A2) = µX(A1 × A2) = µX1
(A1)µX2

(A2)16

= Pr(X1 ∈ A1) Pr(X2 ∈ A2). �17

18

Theorem 166. (First Borel-Cantelli lemma) Let (Ω,F , µ) be a measure space.19

If
∑∞

n=1 µ(An) <∞ then µ (lim supn→∞An) = 0.20

Proof. Let Bi =
⋃∞

n=iAn. Then {Bi}∞i=1 is a decreasing sequence of sets, each of which21

has finite measure, so the second part of Lemma 34 says that22

lim
i→∞

µ(Bi) = µ
(

lim
i→∞

Bi

)

= µ

(∞
⋂

i=1

Bi

)

= µ

(

lim sup
n→∞

An

)

.
23

Since
∑∞

n=1 µ(An) <∞, it follows that limi→∞
∑∞

n=i µ(An) = 0. Since µ(Bi) ≤
∑∞

n=i µ(An),24

limi→∞ µ(Bi) = 0, and the result follows. �25

Theorem 167. (Second Borel-Cantelli lemma) Let (Ω,F , P ) be a probability26

space. If
∑∞

n=1 P (An) = ∞ and if {An}∞n=1 are mutually independent, then P (lim supn→∞An) =27

1.28

Proof. Let B = lim supn→∞An. We shall prove that P (BC) = 0. Let Ci =
⋂∞

n=iA
C
n .29

Then BC =
⋃∞

i=1Ci. So, we shall prove that P (Ci) = 0 for all i. Now, for each i and k > i,30

P (Ci) = P

( ∞
⋂

n=i

AC
n

)

≤ P

(

k
⋂

n=i

AC
n

)

=

k
∏

n=i

[1 − P (An)].
31
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Use the fact that log(1 − x) ≤ −x for all 0 ≤ x ≤ 1 to see that, for every k > i,1

log[P (Ci)] ≤
k
∑

n=i

log[1 − P (An)] ≤ −
k
∑

n=i

P (An).
2

Since this is true for all k > i, it follows that log[P (Ci)] ≤ −∑∞
n=i P (An) = −∞. Hence,3

P (Ci) = 0 for all i. �4

Theorem 168. (Kolmogorov 0-1 law) Let {Xn}∞n=1 be a sequence of independent5

random quantities. Define Tn = σ({Xi : i ≥ n}) and T =
⋂∞

n=1 Tn. Then every event in T6

has probability either 0 or 1.7

Proof. Let Un = σ({Xi : i ≤ n}), and let U =
⋃∞

n=1 Un. Let A ∈ U and B ∈ T . There8

exists n such that A ∈ Un. Because B ∈ Tn+1, it follows that A and B are independent. So9

U and T are independent. It follows from Proposition 160 that σ(U) = σ({Xn}∞n=1) and T10

are independent. Since T ⊆ σ(U), it follows that T is independent of itself, hence for all11

B ∈ T , Pr(B) ∈ {0, 1} by a homework problem. �12

Definition 169. The σ-field T in Theorem 168 is called the tail σ-field of the sequence13

{Xn}∞n=1.14

Exercise 170. Let X1, X2, . . . be independent, real-valued random variables defined on15

a probability space. Let Sn = X1 +X2 + · · ·+Xn. Which of the following is in T ?16

1. {limn→∞ Sn exists}17

2. {lim supn→∞ Sn > 0}18

3. {lim supn→∞ Sn/cn > x} where cn → ∞19
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Stochastic Processes. A stochastic process is an indexed collection of random quan-2

tities.3

Definition 171. Let (Ω,F , P ) be a probability space. Let ℵ be a set. Suppose that,4

for each α ∈ ℵ, there is a measurable space (Xα,Aα) and a random quantity Xα : Ω → Xα.5

The collection {Xα : α ∈ ℵ} is called a stochastic process , and ℵ is called the index set.6

The most popular stochastic processes are those for which Xα = IR for all α. Among7

those, there are two very commonly used index sets, namely ℵ = ZZ
+ (sequences of random8

variables) and ℵ = IR+0 (continuous-time stochastic processes). There are, however, many9

more general index sets than these, and they are all handled in the same general fashion.10

Example 172. (Random vector) Let ℵ = {1, . . . , k} and for each i ∈ ℵ, let Xi be a11

random variable (all defined on the same probability space). Then (X1, . . . , Xk) is one way12

to represent {Xi : i ∈ {1, . . . , k}}.13

Example 173. (Random probability measure) Let Θ : Ω → IRk be a random14

vector with distribution µΘ. Let f : IR × IRk → IR+0 be a measurable function such that15
∫

f(x, θ)dx = 1 for all θ ∈ IRk. Let ℵ = B1, the Borel σ-field of subsets of IR. For each16

B ∈ ℵ, define17

XB(ω) =

∫

B

f(x,Θ(ω))dx.
18

The stochastic process {XB : B ∈ B1} is a random probability measure.19

The distribution of a stochastic process is the probability measure induced on its range20

space. Unfortunately, if ℵ is an infinite set, the range space of a stochastic process is an21

infinite-dimensional product set. We need to be able to construct a σ-field of subsets of such22

a set.23

An infinite product of sets is usually defined as a set of functions.24

Definition 174. Let ℵ be a set. Suppose that, for each α ∈ ℵ, there is a set Xα. The25

product set X =
∏

α∈ℵ Xα is defined to be the set of all functions f : ℵ →
⋃

α∈ℵ Xα such that,26

for every α, f(α) ∈ Xα. When each Xα is the same set Y , then the product set is denoted27

Yℵ.28

The above definition applies to all product sets, not just infinite ones.29

Example 175. It is easy to see that finite product sets can be considered sets of func-30

tions also. Each k-tuple is a function f from {1, . . . , k} to some space, where the ith coor-31

dinate is f(i). For example, the notation IRk can be thought of as a shorthand for IR{1,...,k}.32

A vector (x1, . . . , xk) is the function f such that f(i) = xi for i = 1, . . . , k.33

Example 176. (Random probability measure) In Example 173, let XB = [0, 1] for34

all B ∈ ℵ. Then each random variable XB takes values in XB. The infinite product set is35

[0, 1]B
1

. Each probability measure on (IR,B1) is a function from B1 into [0, 1]. The product36

set contains other functions that are not probabilities. For example, the function f(B) = 137

for all B ∈ B1 is in the product set, but is not a probability.38
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We want the σ-field of subsets of a product space to be large enough so that all of the1

coordinate projection functions are measurable.2

Definition 177. Let ℵ be a set. For each α ∈ ℵ, let (Xα,Aα) be a measurable space.3

Let X =
∏

α∈ℵ Xα be the product set. For each α ∈ ℵ, the α-coordinate projection function4

pα : X → Xα is defined as pα(f) = f(α). A one-dimensional cylinder set is a set of the form5

∏

α∈ℵBα where there exists one α0 ∈ ℵ and B ∈ Aα0
such that Bα0

= B and Bα = Xα for6

all α 6= α0. Define ⊗α∈ℵAα to be the σ-field generated by the one-dimensional cylinder sets,7

and call this the product σ-field.8

Example 178. Let X = IRk for finite k. For 1 ≤ i ≤ k, the i-coordinate projection9

function is pi(x1, . . . , xk) = xi. An example of a one-dimensional cylinder set (in the case10

k = 3) is IR × [−3.7, 4.2) × IR.11

Example 179. (Random probability measure) In Example 176, let Q be a prob-12

ability on B1. Then Q is an element of the infinite product set [0, 1]B
1

. For each B ∈ ℵ, the13

B-coordinate projection function evaluated at Q is pB(Q) = Q(B).14

Lemma 180. The product σ-field is the smallest σ-field such that all pα are measurable.15

16

Proof. Notice that, for each α0 ∈ ℵ and each Bα0
∈ Aα0

, p−1
α0

(Bα0
) is the one-17

dimensional cylinder set
∏

α∈ℵBα where Bα = Xα for all α 6= α0. This makes every pα18

measurable. Notice also that the sets required to make all the pα measurable generate the19

product σ-field, hence the product σ-field is the smallest σ-field such that the pα are all20

measurable. �21

A stochastic process can be thought of as a random function. When a product space22

is explicitly considered a function space, the coordinate projection functions are sometimes23

called evaluation functionals.24

Theorem 180. Let (Ω,F , P ) be a probability space. Let ℵ be a set. For each α ∈ ℵ,25

let (Xα,Aα) be a measurable space and let Xα : Ω → Xα be a function. Let X =
∏

α∈ℵ Xα.26

Define X : Ω → X by setting X(ω) to be the function f defined by f(α) = Xα(ω) for all α.27

Then X is F/⊗α∈ℵ Aα-measurable if and only if each Xα : Ω → Xα is F/Aα-measurable.28

Proof. For the “if” direction, assume that each Xα is measurable. Let C be the29

collection of one-dimensional cylinder sets, which generates the product σ-field. Let C ∈ C.30

Then there exists α0 and B ∈ Aα0
such that C =

∏

α∈ℵBα where Bα0
= B and Bα = Xα for31

all α 6= α0. It follows that X
−1(C) = X−1

α0
(B) ∈ F . So, X is measurable by Lemma 60.32

For the “only if” direction, assume that X is measurable. Let pα be the α coordinate33

projection function for each α ∈ ℵ. It is trivial to see that Xα = pα(X). Since each pα is34

measurable, it follows that each Xα is measurable. �35

The function X defined in Theorem 180 is an alternative way to represent the stochastic36

process {Xα : α ∈ ℵ}. That is, instead of thinking of a stochastic process as an indexed37

set of random quantities, think of it as just another random quantity, but one whose range38

space is itself a function space. In this way, stochastic processes can be thought of as random39
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functions. The idea is that, instead of thinking of Xα as a function of ω for each α, think of1

X(ω) as a function of α for each ω.2

Here are some examples of how to think of stochastic processes as random functions and3

vice-versa.4

Example 181. Let β0 and β1 be random variables. Let ℵ = IR. For each x ∈ IR, define5

Xx(ω) = β0(ω)+β1(ω)x. Define X as in Theorem 180. Then X is a random linear function.6

This means that, for every ω, X(ω) is a linear function from IR to IR. Indeed, it is the7

function that maps the number x to the number β0(ω) + β1(ω)x.8

Example 182. (Random probability measure) In Example 173, define X(ω) to9

be the function (element of the product set) that maps each set B to
∫

B
f(x,Θ(ω))dx. To10

see that X : Ω → [0, 1]B
1

is measurable, let C be the one-dimensional cylinder set
∏

B∈ℵ CB11

where each CB = [0, 1] except CB0
= D. Define g(θ) =

∫

B0
f(x, θ)dx. We know that12

g : IRk → [0, 1] is measurable. Hence g(Θ) : Ω → [0, 1] is measurable. It follows that13

X
−1(C) = g−1(D), a measurable set.14

Clearly, there must exist probability measures on product spaces such as15
(
∏

α∈ℵ Xα,⊗α∈ℵAα

)

. If we start with a stochastic process {Xα : α ∈ ℵ} and represent it as16

a random function X, then the distribution of X is a probability measure on the product17

space. This distribution has the obvious marginal distributions for the individual Xα’s. But,18

in general, nothing much can be said about other aspects of the joint distribution.19

When a stochastic process is a sequence of independent random quantities, then we can20

say more.21

Theorem 183. (Kolmogorov 0-1 law) Let {Xn}∞n=1 be a sequence of independent22

random quantities. Define Tn = σ({Xi : i ≥ n}) and T =
⋂∞

n=1 Tn. Then every event in T23

has probability either 0 or 1.24

Proof. Let Un = σ({Xi : i ≤ n}), and let U =
⋃∞

n=1 Un. Let A ∈ U and B ∈ T . There25

exists n such that A ∈ Un. Because B ∈ Tn+1, it follows that A and B are independent. So26

U and T are independent. It follows from Proposition 160 that σ(U) = σ({Xn}∞n=1) and T27

are independent. Since T ⊆ σ(U), it follows that T is independent of itself, hence for all28

B ∈ T , Pr(B) ∈ {0, 1} by a homework problem. �29

Definition 184. The σ-field T in Theorem 168 is called the tail σ-field of the sequence30

{Xn}∞n=1.31

There is such a thing as product measure on an infinite product space, but to prove it,32

we need a little more machinery. There is a theorem that says that finite-dimensional distri-33

butions that satisfy a certain intuitive condition will determine a unique joint distribution34

on the product space. This theorem is stated and proven in another course document.35
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36-752: Lecture 141

Definition 185. Let (Ω,F , µ) be a measure space and suppose f is a Borel measurable2

function defined on this space. Define, for 1 ≤ p <∞,3

‖f‖p =

[
∫

|f |p dµ
]1/p

4

and5

‖f‖∞ = inf [α : µ[ω : |f(ω)| > α] = 0] .6

Let Lp(Ω,F , µ) denote the class of all Borel measurable functions f such that ‖f‖p < ∞.7

When the measure space is clear, we usually write only Lp to denote this space of functions.8

Convergence of Random Variables. Let (Ω,F , P ) be a probability space. We have9

already discussed convergence a.s., in the context of what a.s. means.10

Each Lp space has a sense of convergence.11

Definition 186. Suppose f1, f2, . . . is a sequence of Borel measurable functions defined12

on (Ω,F , µ) and each fn ∈ Lp. Let f be another Borel measurable function on (Ω,F , µ).13

Then we say that fn converges in Lp to f if ‖fn − f‖p → 0. Write this as fn
Lp

−→ f .14

Exercise 187. Assume (Ω,F , µ) is a measure space with µ(Ω) < ∞. Show that, for15

f, f1, f2, . . . real-valued functions defined on this space, fn
Lp

−→ f implies fn
Lr

−→ f for r < p.16

Convergence in Lp is different from convergence a.s.17

Example 188. Let Ω = (0, 1) with P being Lebesgue measure. Consider the sequence18

of functions 1, I(0,1/2], I(1/2,1), I(0,1/3], I(1/3,2/3], . . . . These functions converge to 0 in Lp for all19

finite p since the integrals of their absolute values go to 0. But they clearly don’t converge20

to 0 a.s. since every ω has fn(ω) = 1 infinitely often. These functions are in L∞, but they21

don’t converge to 0 in L∞. because their L∞ norms are all 1.22

Example 189. Let Ω = (0, 1) with P being Lebesgue measure. Consider the sequence23

of functions24

fn(ω) =

{

0 if 0 < ω < 1/n,
1/ω if 1/n ≤ ω < 1.25

Each fn is in Lp for all p, and limn→∞ fn(ω) = 1/ω a.s. But the limit function is not in Lp
26

for even a single p. Clearly, {fn}∞n=1 does not converge in Lp.27

Example 190. Let Ω = (0, 1) with P being Lebesgue measure. Consider the sequence28

of functions29

fn(ω) =

{

n if 0 < ω < 1/n,
0 otherwise.30

Then fn converges to 0 a.s. but not in Lp since
∫

|fn|pdP = np−1 for all n and finite p. In31

this case, the a.e. limit is in Lp, but it is not an Lp limit.32
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Oddly enough convergence in L∞ does imply convergence a.e., the reason being that L∞
1

convergence is “almost” uniform convergence.2

Proposition 191. Let (Ω,F , µ) be a measure space. If fn converges to f in L∞, then3

limn→∞ fn = f , a.e. [µ].4

There are other modes of convergence besides those mentioned above.5

Definition 192. Let (Ω,F , µ) be a measure space and let f and {fn}∞n=1 be measurable6

functions that take values in a metric space with metric d. We say that fn converges to f7

in measure if, for every ǫ > 0,8

lim
n→∞

µ({ω : d(fn(ω), f(ω)) > ǫ}) = 0.
9

When µ is a probability, convergence in measure is called convergence in probability, denoted10

fn
P→ f .11

Convergence in measure is different from a.e. convergence. Example 188 is a classic example12

of a sequence that converges in measure (in probability in that example) but not a.e. Here13

is an example of a.e. convergence without convergence in measure (only possible in infinite14

measure spaces).15

Example 193. Let Ω = IR with µ being Lebesgue measure. Let fn(x) = I[n,∞)(x) for all16

n. Then fn converges to 0 a.e. [µ]. However, fn does not converge in measure to 0, because17

µ({|fn| > ǫ}) = ∞ for every n.18

Example 190 is an example of convergence in probability but not in Lp. Indeed convergence19

in probability is weaker than Lp convergence.20

Proposition 194. If Xn converges to X in Lp for some p ≥ 1, then Xn
P→ X.21

Convergence in probability is also weaker than converges a.s.22

Lemma 195. If Xn → X a.s., then Xn
P→ X.23

Proof. Let ǫ > 0. Let C = {ω : limn→∞Xn(ω) = X(ω)}, and define Cn = {ω :24

d(Xk(ω), X(ω)) < ǫ, for all k ≥ n}. Clearly, C ⊆
⋃∞

n=1Cn,ǫ. Because Pr(C) = 1 and25

{Cn}∞n=1 is an increasing sequence of events, Pr(Cn) → 1. Because {ω : d(Xn(ω), X(ω)) >26

ǫ} ⊆ CC
n ,27

Pr(d(Xn, X) > ǫ) → 0. �28

A partial converse of this lemma is true.29

Lemma 196. If Xn
P→ X, then there is a subsequence {Xnk

}∞k=1 such that Xnk

a.s.→ X.30

Proof. Let nk be large enough so that nk > nk−1 and Pr(d(Xnk
, X) > 1/2k) < 1/2k.31

Because
∑∞

k=1 Pr(d(Xnk
, X) > 1/2k) < ∞, we know that Pr(d(Xnk

, X) > 1/2k i.o.) = 0.32

Let A = {d(Xnk
, X) > 1/2k i.o.}. Then Pr(AC) = 1 and limk→∞Xnk

(ω) = X(ω) for every33

ω ∈ AC . �34

There is an even weaker form of convergence that we will discuss later in the course.35
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36-752: Lecture 151

Let {Xn}∞n=1 be a sequence of random variables. As we pointed out earlier, the tail σ-field2

contains all events of the form {Xn converges} or {Xn converges to c}. Because 1
n

∑n
i=1Xi3

converges if and only if 1
n

∑n
i=ℓXi converges for all ℓ = 1, 2, . . ., we see that limn→∞

1
n

∑n
i=1Xi,4

if it exists, is measurable with respect to the tail σ-field. The Kolmogorov 0-1 law says that5

the tail σ-field of an independent sequence has all probabilities 0 and 1. So, the sample6

averages of an independent sequence must converge a.s. to constants if they converge at all.7

Also,
∑n

i=1Xi must converge a.s. or with probability 0, although it will not necessarily be8

measurable with respect to the tail σ-field. Next, we will begin study of sums of independent9

random variables, finding conditions under which sums and averages converge or don’t.10

Sums of Independent Random Variables. There are several useful theorems about11

sums of independent random variables. All of these make use of a common setup. Let12

{Xn}∞n=1 be a sequence of random variables, and define, for each n, Sn =
∑n

k=1Xk. First,13

there is the weak law of large numbers, this version of which does not assume that the Xn’s14

are independent.15

Theorem 197. (Weak law of large numbers) Let {Xn}∞n=1 be uncorrelated ran-16

dom variables with mean 0 and such that
∑n

i=1 Var(Xi) = o(n2). Then 1
n

∑n
i=1Xi

P→ 0.17

Proof. Since the Xn’s are uncorrelated,18

Var

(

1

n

n
∑

i=1

Xi

)

=
1

n2

n
∑

i=1

Var(Xi),
19

which we have assumed goes to 0 as n→ ∞. According to Tchebychev’s inequality (Corol-20

lary 94)21

Pr

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Xi

∣

∣

∣

∣

∣

> ǫ

)

≤ 1

ǫ2
Var

(

1

n

n
∑

i=1

Xi

)

,
22

which we just showed goes to 0 as n→ ∞. �23

There are various strong laws of large numbers that conclude that the average converges24

almost surely. A proof of Theorem 198 is given in another course document.25

Theorem 198. (Strong law of large numbers) Assume that {Xk}∞k=1 are inde-26

pendent and identically distributed random variables with finite mean µ. Then limn→∞ Sn/n =27

µ, a.s.28

We will prove a stronger law than Theorem 198 later in the course. For now, we will29

concentrate on sums of independent random variables.30

Theorem 199. (Kolmogorov’s maximal inequality) Let {Xk}n
k=1 be a finite col-31

lection of independent random variables with finite variance and mean 0. Define Sk =32

∑k
i=1Xi for all k. Then33

Pr

(

max
1≤k≤n

|Sk| ≥ ǫ

)

≤ Var(Sn)

ǫ2
.

34
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Proof. For n = 1, the result is just Chebyshev’s inequality. So assume that n > 1 for1

the rest of the proof. Let Ak be the event that |Sk| ≥ ǫ but |Sj| < ǫ for j < k. Then {Ak}n
k=12

are disjoint and3

{

max
1≤k≤n

|Sk| ≥ ǫ

}

=

n
⋃

k=1

Ak.(200)
4

It follows that5

E(S2
n) ≥

n
∑

k=1

∫

Ak

S2
ndP

6

=

n
∑

k=1

∫

Ak

[

S2
k + 2Sk(Sn − Sk) + (Sn − Sk)

2
]

dP
7

≥
n
∑

k=1

∫

Ak

[S2
k + 2Sk(Sn − Sk)]dP

8

=
n
∑

k=1

∫

Ak

S2
kdP

9

≥ ǫ2
n
∑

k=1

Pr(Ak)
10

= ǫ2 Pr

(

max
1≤k≤n

|Sk| ≥ ǫ

)

,
11

where the first two inequalities and the first equality are obvious. The second inequality12

follows from the fact that IAk
Sk is independent of (Sn − Sk) which has mean 0. The third13

inequality follows since S2
k ≥ ǫ2 on Ak, and the third equality follows from (200). �14

The reason that this theorem works is that whenever the maximum |Sk| is large, it most15

likely is |Sn| that is large. There is another inequality like that of Kolmogorov that is often16

used in proofs, but we will not discuss it in this class:17

Proposition 201. (Etemadi Lemma) Let {Xn}∞n=1 be a sequence if independent ran-18

dom variables. Then, for each ǫ > 0 and each finite or infinite m,19

Pr

(

max
1≤n≤m

|Sn| > 3ǫ

)

≤ 3 max
1≤n≤m

Pr(|Sn| > ǫ).
20

The first theorem on the convergence of sums has a simple condition.21

Theorem 202. Let {Xn}∞n=1 be independent with mean 0 and suppose that
∑∞

n=1 Var(Xn) <22

∞. Then Sn converges a.s.23

Proof. The proof is to show that Sn is a Cauchy sequence a.s. The sequence {Sn(ω)}∞n=124

is not Cauchy if and only if there exists a rational ǫ > 0 such that for every n, supj,k>n |Sj(ω)−25
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Sk(ω)| ≥ ǫ. For each n and ǫ > 0, let1

Bn,ǫ = { sup
j,k>n

|Sj − Sk| ≥ ǫ},
2

Cn,ǫ =

{

sup
k≥1

|Sn+k − Sn| ≥
ǫ

2

}

,
3

So that Bn,ǫ ⊆ Cn,ǫ for all n and ǫ > 0. Then {Sn(ω)}∞n=1 is not a Cauchy sequence if and4

only if5

ω ∈
⋃

rational ǫ > 0

∞
⋂

n=1

Bn,ǫ ⊆
⋃

rational ǫ > 0

∞
⋂

n=1

Cn,ǫ.
6

So, it suffices to show that7

lim
n→∞

Pr

(

sup
k≥1

|Sn+k − Sn| ≥
ǫ

2

)

= 0.(203)
8

To show (203), use Theorem 199 to see that, for each r ≥ 1,9

Pr

(

max
1≤k≤r

|Sn+k − Sn| ≥
ǫ

2

)

≤ 4

ǫ2

r
∑

k=1

Var(Xn+k).
10

The sets whose probabilities are on the left side increase with r, so we can take a limit on11

both sides as r → ∞:12

Pr

(

sup
k≥1

|Sn+k − Sn| ≥
ǫ

2

)

≤ 4

ǫ2

∞
∑

k=1

Var(Xn+k) =
4

ǫ2

∞
∑

j=n+1

Var(Xj).
13

Since
∑∞

j=1 Var(Xj) <∞, the tail sums must go to 0, and this implies (203). �14

Corollary 204. Let {Xn}∞n=1 be independent. Suppose that
∑∞

n=1 Var(Xn) < ∞ and15

∑n
k=1 E(Xk) converges. Then Sn converges a.s.16

Proof. Let µn =
∑n

k=1 E(Xk). Write Sn = (Sn − µn) + µn. Theorem 202 says that17

Sn − µn converges a.s., and we are assuming that µn converges, hence the sum of the two18

converges a.s.�19

Example 205. Let the Xn’s have normal distribution with mean 1/n2 and variance20

1/n2. Then Theorem 202 says that the partial sums
∑n

i=1(Xi −1/i2) converge a.s. It follows21

easily that
∑n

i=1Xi converges a.s. as well. Later we will be able to prove that the distribution22

of the limit is normal with mean and variance equal to
∑∞

n=1 1/n2.23

Example 206. Let the Xn’s have uniform distributions on the intervals [−1/n, 1/n].24

Then
∑n

i=1Xi converges a.s.25
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Strong Law of Large Numbers1

The preliminary results in this document are numbered locally because they do not figure2

in the course notes.3

Lemma 207. (Kronecker’s lemma) Let {xk}∞k=1 and {bk}∞k=1 be sequences of real4

numbers such that
∑∞

k=1 xk = s <∞ and bk ↑ ∞. Then5

lim
n→∞

1

bn

n
∑

k=1

bkxk = 0.
6

Proof. Define rn =
∑∞

k=n+1 xk so that r0 = s. Then xk = rk−1 − rk for all k. So7

n
∑

k=1

bkxk =

n
∑

k=1

bk(rk−1 − rk)
8

=

n−1
∑

k=0

bk+1rk −
n
∑

k=1

bkrk
9

=

n−1
∑

k=1

(bk+1 − bk)rk + b1s− bnrn.
10

Take absolute values to conclude that11

∣

∣

∣

∣

∣

n
∑

k=1

bkxk

∣

∣

∣

∣

∣

≤
n−1
∑

k=1

(bk+1 − bk)|rk| + b1|s| + bn|rn|.
12

Let ǫ > 0. Because |rn| → 0, there exists N such that for all k ≥ N , |rk| < ǫ. It follows that13

lim
n→∞

∣

∣

∣

∣

∣

1

bn

n
∑

k=1

bkxk

∣

∣

∣

∣

∣

≤ lim
n→∞

ǫ

bn

n−1
∑

k=N

(bk+1 − bk)
14

= ǫ lim
n→∞

(

1 − bN
bn

)

= ǫ.
15

Since this is true for all ǫ > 0, the limit is 0. �16

Theorem 198. (Strong law of large numbers) Assume that {Xk}∞k=1 are indepen-17

dent and identically distributed random variables with finite mean µ. Then limn→∞ Sn/n = µ,18

a.s.19

Proof. Define Yk = XkI[−k,k](Xk), S
∗
n =

∑n
k=1 Yk, and µk = E(Yk). Recall that20

Var(Yk) ≤ E(Y 2
k ). Also,21

∞
∑

k=1

1

k2
E(Y 2

k ) =
∞
∑

k=1

1

k2

∫

|x|<k

x2dµX(x)
22
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=

∞
∑

k=1

k
∑

j=1

1

k2

∫

j−1<|x|≤j

x2dµX(x)
1

=
∞
∑

j=1

(

∫

j−1<|x|≤j

x2dµX(x)
∞
∑

k=j

1

k2

)

2

<
∞
∑

j=1

2

j

∫

j−1<|x|≤j

x2dµX(x)
3

≤ 2E(|X1|) <∞,4

where the first inequality follows from the fact that
∑∞

k=j 1/k2 < 2/j. So,
∑n

k=1 Var(Yk)/k
2

5

converges It follows from Theorem 202 in the class notes that
∑n

k=1(Yk − µk)/k converges6

a.s. Now, apply Lemma 207 to conclude that 1
n

∑n
k=1(Yk − µk) converges a.s. Since µk → µ,7

it follows that limn→∞
1
n

∑n
k=1 µk = µ. So 1

n

∑n
k=1 Yk converges a.s. to µ.8

Notice that Pr(Yk 6= Xk) = Pr(|Xk| > k). Let µX denote the distribution of each Xi.9

Recall that10

E(|X1|) =

∫ ∞

0

Pr(|X1| > t)dt
11

≥
∞
∑

k=1

Pr(|Xk| > k).
12

Because E(|X1|) <∞, the first Borel-Cantelli lemma says that Pr(Yk 6= Xk i.o.) = 0. Hence13

∑∞
k=1(Yk −Xk) is finite a.s. and 1

n

∑n
k=1Xk converges a.s. to µ. �14



48

36-752: Lecture 161

Another interesting theorem about sums of independent random variables is the following.2

It gives necessary and sufficient conditions for convergence of Sn. For each c > 0 and each3

n, let X
(c)
n (ω) = Xn(ω)I[0,c](|Xn(ω)|). We will prove only the sufficiency part of the result.4

The necessity proof is not included here but can be found in another course document.5

Theorem 208. (Three-series theorem) Suppose that {Xn}∞n=1 are independent. For6

each c > 0, consider the following three series:7

∞
∑

n=1

Pr(|Xn| > c),
∞
∑

n=1

E(X(c)
n ),

∞
∑

n=1

Var(X(c)
n ).(209)

8

A necessary condition for Sn to converge a.s. is that all three series are finite for all c > 0.9

A sufficient condition is that all three series converge for some c > 0.10

Example 210. Let Xn have a uniform distribution on the interval [an, bn]. A necessary11

condition for convergence of Sn is that
∑∞

n=1(bn − an)2 < ∞ (the third series). Another12

necessary condition is that
∑∞

n=1(an + bn) converge (the second series). It follows that an13

and bn must both converge to 0 so that the first series also converges for all c > 0. That the14

two conditions above are sufficient for the convergence of Sn follows from Corollary 204.15

Proof.Theorem 208 First, define some notation. For each c > 0 and each n, define16

S(c)
n =

n
∑

k=1

X
(c)
k ,

17

M (c)
n =

n
∑

k=1

E(X
(c)
k ),

18

s(c)
n =

√

√

√

√

n
∑

k=1

Var(X
(c)
k ).

19

For sufficiency, assume that all three series converge for some c > 0. Because the second20

and third series in (209) converge, Corollary 204 says that S
(c)
n converges a.s. We know that21

Pr(Xn 6= X
(c)
n ) = Pr(|Xn| > c). Since the first series in (209) converges, the first Borel-22

Cantelli lemma says that Pr(Xn 6= X
(c)
n i.o.) = 0. Hence, for almost all ω, there exists N(ω)23

such that Sn(ω) − S
(c)
n (ω) is the same for all n ≥ N(ω). Hence Sn(ω) converges for almost24

all ω. �25

Example 211. Let26

Pr(Xn = x) =







1
2n2 if x = n or x = −n,
1
2
− 1

2n2 if x = −1/n or x = 1/n,
0 otherwise.27

Then E(Xn) = 0 and Var(Xn) = 1 + 1/n2 − 1/n4. So Theorem 202 does not imply that Sn28

converges a.s. However, for c > 0, E(X
(c)
n ) = 0 and Var(X

(c)
n ) eventually equals 1/n2 − 1/n4

29

while Pr(|Xn| > c) eventually equals 1/n2, so the three-series theorem does imply that Sn30

converges a.s.31
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Conditional Expectation. The measure-theoretic definition of conditional expecta-1

tion is a bit unintuitive, but we will show how it matches what we already know from earlier2

study.3

Definition 212. Let (Ω,F , P ) be a probability space, and let C ⊆ F be a sub-σ-field.4

Let X be a random variable whose mean is defined. We use the symbol E(X|C) to stand for5

any function h : Ω → IR that is C/B1 measurable and that satisfies6

∫

C

hdP =

∫

C

XdP, for all C ∈ C.(213)
7

We call such a function h, a version of the conditional expectation of X given C.8

Equation (213) can also be written E(ICh) = E(ICX) for all C ∈ C. Any two versions of9

E(X|C) must be equal a.s. according to Theorem 119 (part 3). Also, any C/B1-measurable10

function that equals a version of E(X|C) a.s. is another version.11

Example 214. If X is itself C/B1 measurable, then X is a version of E(X|C).12

Example 215. If X = a a.s., then E(X|C) = a a.s.13

Let Y be a random quantity and let C = σ(Y ). We will use the notation E(X|Y ) to14

stand for E(X|C). According to Theorem 147, E(X|Y ) is some function g(Y ) because it is15

σ(Y )/B1-measurable. We will also use the notation E(X|Y = y) to stand for g(y).16

Example 216. (Joint Densities) Let (X, Y ) be a pair of random variables with a17

joint density fX,Y with respect to Lebesgue measure. Let C = σ(Y ). The usual marginal18

and conditional densities are19

fY (y) =

∫

fX,Y (x, y)dx,
20

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
.

21

The traditional calculation of the conditional mean of X given Y = y is22

g(y) =

∫

xfX|Y (x|y)dx.
23

That is, E(X|Y ) = g(Y ) is the traditional definition of conditional mean of X given Y . We24

also use the symbol E(X|Y = y) to stand for g(y). We can prove that h = g(Y ) is a version25

of the conditional mean according to Definition 212. Since g(Y ) is a function of Y , we know26

that it is C/B1 measurable. We need to show that (213) holds. Let C ∈ C so that there27

exists B ∈ B1 so that C = Y −1(B). Then IC(ω) = IB(Y (ω)) for all ω. Then28

∫

C

hdP =

∫

IChdP
29
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=

∫

IB(Y )g(Y )dP
1

=

∫

IBgdµY
2

=

∫

IB(y)g(y)fY (y)dy
3

=

∫

IB(y)

∫

xfX|Y (x|y)dxfY (y)dy
4

=

∫ ∫

IB(y)xfX,Y (x, y)dxdy
5

= E(IB(Y )X) = E(ICX).6

Example 216 can be extended easily to handle two more general cases. First, we could7

find E(r(X)|Y ) by virtually the same calculation. Second, the use of conditional densities8

extends to the case in which the joint distribution of (X, Y ) has a density with respect to9

an arbitrary product measure.10
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Three-Series Theorem1

Theorem 208. (Three-series theorem) Suppose that {Xn}∞n=1 are independent. For2

each c > 0, consider the following three series:3

(209)

∞
∑

n=1

Pr(|Xn| > c),

∞
∑

n=1

E(X(c)
n ),

∞
∑

n=1

Var(X(c)
n ).

4

A necessary condition for Sn to converge a.s. is that all three series are finite all c > 0. A5

sufficient condition is that all three series converge for some c > 0.6

Proof. Recall some notation. For each c > 0 and each n, define7

m(c)
n = E(X(c)

n ),8

S(c)
n =

n
∑

k=1

X
(c)
k ,

9

M (c)
n =

n
∑

k=1

m
(c)
k ,

10

s(c)
n =

√

√

√

√

n
∑

k=1

Var(X
(c)
k ).

11

The sufficiency was proved in the course notes. For necessity, suppose that Sn converges12

a.s. Let c > 0. For each ω such that Sn(ω) converges, we must have limn→∞Xn(ω) = 0.13

It follows that Xn(ω) = X
(c)
n (ω) for all but finitely many n and so S

(c)
n (ω) converges. Since14

Pr(Xn 6= X
(c)
n ) = Pr(|Xn| > c) the contrapositive of the second Borel-Cantelli lemma says15

that the first series in (209) converges. Suppose that the third series in (209) diverges. Since16

X
(c)
n −m

(c)
n are uniformly bounded and s

(c)
n → ∞, the central limit theorem says that, for all17

y > x,18

lim
n→∞

Pr

(

x <
S

(c)
n −M

(c)
n

s
(c)
n

≤ y

)

= Φ(y) − Φ(x),(217)
19

where Φ is the standard normal df. Since S
(c)
n converges a.s., we have limn→∞ S

(c)
n /s

(c)
n = 020

a.s. Hence, S
(c)
n /s

(c)
n

P→ 0. For each 1/2 > ǫ > 0,21

Pr

(

x <
S

(c)
n −M

(c)
n

s
(c)
n

≤ y,

∣

∣

∣

∣

∣

S
(c)
n

s
(c)
n

∣

∣

∣

∣

∣

< ǫ

)

(218)
22

≥ Pr

(

x <
S

(c)
n −M

(c)
n

s
(c)
n

≤ y

)

− Pr

(∣

∣

∣

∣

∣

S
(c)
n

s
(c)
n

∣

∣

∣

∣

∣

≥ ǫ

)

.(219)
23

Notice that the event on the left side of (218) can occur only if x− ǫ < −M (c)
n /s

(c)
n ≤ y + ǫ.24

Hence, the event on the left side of (218) cannot occur for both of the pairs (x, y) = (ǫ−1,−ǫ)25

and (x, y) = (ǫ, 1− ǫ). Let δ > 0 be smaller than both Φ(−ǫ)−Φ(ǫ−1) and Φ(1− ǫ)−Φ(ǫ).26
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Then (217) says that there exists N1(x, y) large enough so that n ≥ N1(x, y) implies that the1

first probability on the right of (219) is within δ/2 of Φ(y)−Φ(x). Also, since S
(c)
n /s

(c)
n

P→ 0,2

there exists N2 so that n ≥ N2 implies that the second probability on the right of (219) is3

at most δ/2. So, if4

n ≥ max{N1(ǫ− 1,−ǫ), N1(ǫ, 1 − ǫ), N2},5

we have6

Pr

(

ǫ− 1 <
S

(c)
n −M

(c)
n

s
(c)
n

≤ −ǫ,
∣

∣

∣

∣

∣

S
(c)
n

s
(c)
n

∣

∣

∣

∣

∣

< ǫ

)

7

≥ Φ(−ǫ) − Φ(ǫ− 1) − δ > 0,8

Pr

(

ǫ <
S

(c)
n −M

(c)
n

s
(c)
n

≤ 1 − ǫ,

∣

∣

∣

∣

∣

S
(c)
n

s
(c)
n

∣

∣

∣

∣

∣

< ǫ

)

9

≥ Φ(1 − ǫ) − Φ(ǫ) − δ > 0.10

This contradicts the fact that at least one of the two events on the far left sides of these11

inequalities is impossible. Hence, s
(c)
n cannot diverge and the third series in (209) converges.12

Theorem 202 now says that S
(c)
n −M

(c)
n converges a.s. Since we already showed that S

(c)
n13

converges a.s., the second series in (209) must converge. �14
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36-752: Lecture 171

All of the familiar results about conditional expectation are special cases of the general2

definition. Here is an unfamiliar example.3

Example 220. Let X1, X2 be independent with U(0, θ) distribution for some known θ.4

Let Y = max{X1, X2} and X = X1. Find the conditional mean of X given Y . In this5

case (X, Y ) do not have a joint density with respect to any product measure. But we can6

argue what the conditional distribution, and hence conditional mean, of X given Y should7

be. With probability 1/2, X = Y . With probability 1/2, X is the min of X1 and X2 and8

ought to be uniformly distributed between 0 and Y . The mean of this hybrid distribution is9

Y/2 + Y/4 = 3Y/4. Let’s verify this.10

First, we see that h = 3Y/4 is measurable with respect to C = σ(Y ). Next, let C ∈ C.11

We need to show that E(XIC) = E([3Y/4]IC). Theorem 119 (part 4) says that we only need12

to check this for sets of the form C = Y −1([0, d]) with 0 < d < θ. Rewrite these expectations13

as integrals with respect to the joint distribution of (X1, X2). We need to show that14

∫ d

0

∫ d

0

x1

θ2
dx1dx2 =

∫ d

0

3y

4

2y

θ2
dy,(221)

15

for all 0 < d < θ. It is easy to see that both sides of (221) equal d3/[2θ2].16

A reminder about versions: If two functions h1 and h2 are both C/B1-measurable and if17

they both satisfy E(hiIC) = E(XIC) for all C ∈ C, then they are both versions of E(X|C).18

Similarly, any function h′ that equals a version of E(X|C) a.s. and is C/B1-measurable is19

another version.20

Example 222. In Example 220,21

h′ =

{

3Y/4 if Y is irrational,
0 otherwise.22

is another version of E(X|Y ).23

The following fact is immediate by letting C = Ω.24

Proposition 223. E(E(X|C)) = E(X).25

Here is a generalization of Proposition 223, which is sometimes called the tower property of26

conditional expectations.27

Proposition 224. (Law of total probability) IfC1 ⊆ C2 ⊆ F are sub-σ-field’s28

and E(X) exists, then E(X|C1) is a version of E(E(X|C2)|C1).29

Proof. By definition E(X|C1) is C1/B1-measurable. We need to show that, for every30

C ∈ C1,31
∫

C

E(X|C1)dP =

∫

C

E(X|C2)dP.
32

The left side is E(XIC) by definition of conditional mean. Similarly, because C ∈ C2 also,33

the right side is E(XIC) as well. �34
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Example 225. Let (X, Y, Z) be a triple of random variables. Then E(X|Y ) is a version1

of E(E(X|(Y, Z))|Y ).2

Here is a simple property that extends from expectations to conditional expectations.3

Lemma 226. If X1 ≤ X2 a.s., then E(X1|C) ≤ E(X2|C) a.s.4

Proof. Suppose that both E(X1|C) and E(X2|C) exist. Let5

C0 = {∞ > E(X1|C) > E(X2|C)},6

C1 = {∞ = E(X1|C) > E(X2|C)}.7

Then, for i = 0, 1,8

0 ≤
∫

Ci

[E(X1|C) − E(X2|C)]dP =

∫

Ci

(X1 −X2)dP ≤ 0.
9

It follows that all terms in this string are 0 and P (Ci) = 0 for i = 0, 1. Since C0 ∪ C1 =10

{E(X1|C) > E(X2|C)}, the result is proven. �11

We can prove that versions of conditional expectations exist by the Radon-Nikodym12

theorem. However, the “modern” way to prove the existence of conditional expectations is13

through the theory of Hilbert spaces.14
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36-752: Lecture 181

The following corollary to Proposition 224 is sometimes useful.2

Corollary 227. Assume that C1 ⊆ C2 ⊆ F are sub-σ-field’s and E(X) exists. If a3

version of E(X|C2) is C1/B1-measurable, then E(X|C1) is a version of E(X|C2) and E(X|C2)4

is a version of E(X|C1).5

Example 228. Suppose that X and Y have a joint conditional density given Θ that6

factors,7

fX,Y |Θ(x, y|θ) = fX|Θ(x|θ)fY |Θ(y|θ).8

Then, the conditional density of X given (Y,Θ) is9

fX|Y,Θ(x|y, θ) =
fX,Y |Θ(x, y|θ)
fY |Θ(y|θ) = fX|Θ(x|θ).

10

With C1 = σ(Θ) and C2 = σ(Y,Θ), we see that E(r(X)|C1) will be a version of E(r(X)|C2)11

for every function r(X) with defined mean.12

Here is another example of a result that extends from expectations to conditional expec-13

tations.14

Lemma 229. If E(X), E(Y ), and E(X+Y ) all exist, then E(X|C)+E(Y |C) is a version15

of E(X + Y |C).16

Proof. Clearly E(X|C) + E(Y |C) is C/B1-measurable. We need to show that for all17

C ∈ C,18
∫

C

E(X|C) + E(Y |C)dP =

∫

C

(X + Y )dP.(230)
19

The left side of (230) is
∫

C
XdP +

∫

C
Y dP =

∫

C
(X + Y )dP because E(ICX), E(ICY ) and20

E(IC [X + Y ]) all exist. �21

The following theorem is used extensively in later results.22

Theorem 231. Let (Ω,F , P ) be a probability space and let C be a sub-σ-field of F .23

Suppose that E(Y ) and E(XY ) exist and that X is C/B1-measurable. Then E(XY |C) =24

XE(Y |C).25

Proof. Clearly, XE(Y |C) is C/B1-measurable. We will use the standard machinery on26

X. If X = IB for a set B ∈ C, then27

E(ICXY ) = E(IC∩BY ) = E(IC∩BE(Y |C)) = E(ICXE(Y |C)),(232)28

for all C ∈ C. Hence, XE(Y |C) = E(XY |C). By linearity of expectation, the extreme29

ends of (232) are equal for every nonnegative simple function, X. Next, suppose that X is30

nonnegative and let {Xn} be a sequence of nonnegative simple functions converging to X31

from below. Then32

E(ICXnY
+) = E(ICXnE(Y +|C)),33

E(ICXnY
−) = E(ICXnE(Y −|C)),34
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for each n and each C ∈ C. Apply the monotone convergence theorem to all four sequences1

above to get2

E(ICXY
+) = E(ICXE(Y +|C)),3

E(ICXY
−) = E(ICXE(Y −|C)),4

for all C ∈ C. It now follows easily from Lemma 229 that XE(Y |C) = E(XY |C). Finally, if5

X is general, use what we just proved to see that X+E(Y |C) = E(X+Y |C) and X−E(Y |C) =6

E(X−Y |C). Apply Lemma 229 one last time. �7

In all of the proofs so far, we have proven that the defining equation for conditional8

expectation holds for all C ∈ C. Sometimes, this is too difficult and the following result can9

simplify a proof.10

Proposition 233. Let (Ω,F , P ) be a probability space and let C be a sub-σ-field of F .11

Let Π be a π-system that generates C. Assume that Ω is the finite or countable union of sets12

in Π. Let Y be a random variable whose mean exists. Let Z be a C/B1-measurable random13

variable such that E(ICZ) = E(ICY ) for all C ∈ Π. Then Z is a version of E(Y |C).14

One proof of this result relies on signed measures, and is very similar to the proof of Theo-15

rem 43.16

Conditional Probability. For A ∈ F , define Pr(A|C) = E(IA|C). That is, treat IA17

as a random variable X and define the conditional probability of A to be the conditional18

mean of X. We would like to show that conditional probabilities behave like probabilities.19

The first thing we can show is that they are additive. That is a consequence of the following20

result.21

It follows easily from Lemma 229 that Pr(A|C) + Pr(B|C) = Pr(A ∪ B|C) a.s. if A and22

B are disjoint. The following additional properties are straightforward, and we will not do23

them all in class. They are similar to Lemma 229.24

Example 234. (Probability at most 1) We shall show that Pr(A|C) ≤ 1 a.s. Let25

B = {ω : Pr(A|C) > 1}. Then B ∈ C, and26

P (B) ≤
∫

B

Pr(A|C)dP =

∫

B

IAdP = P (A ∩ B) ≤ P (B),
27

where the first inequality is strict if P (B) > 0. Clearly, neither of the inequalities can be28

strict, hence P (B) = 0.29

Example 235. (Countable Additivity) Let {An}∞n=1 be disjoint elements of F . Let30

W =
∑∞

n=1 Pr(An|C). We shall show that W is a version of Pr(
⋃∞

n=1An|C). Let C ∈ C.31

E
[

ICI∪∞

n=1
An

]

= P

(

C ∩
[ ∞
⋃

n=1

An

])

32

=
∞
∑

n=1

P (C ∩An)
33
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=
∞
∑

n=1

∫

C

Pr(An|C)dP
1

=

∫

C

∞
∑

n=1

Pr(An|C)dP
2

=

∫

C

WdP,
3

where the sum and integral are interchangeable by the monotone convergence theorem.4

We could also prove that Pr(A|C) ≥ 0 a.s. and Pr(Ω|C) = 1, a.s. But there are generally5

uncountably many different A ∈ F and uncountably many different sequences of disjoint6

events. Although countable additivity holds a.s. separately for each sequence of disjoint7

events, how can we be sure that it holds simultaneously for all sequences a.s.?8

Definition 236. Let A ⊆ F be a sub-σ-field. We say that a collection of versions9

{Pr(A|C) : A ∈ A} are regular conditional probabilities if, for each ω, Pr(·|C)(ω) is a proba-10

bility measure on (Ω,A).11

Rarely do regular conditional probabilities exist on (Ω,F), but there are lots of common12

sub-σ-field’s A such that regular conditional probabilities exist on (Ω,A). Oddly enough,13

the existence of regular conditional probabilities doesn’t seem to depend on C.14

Example 237. (Joint Densities) Use the same setup as in Example 216. For each y15

such that fY (y) = 0, define fX|Y (x|y) = φ(x), the standard normal density. For each y such16

that fY (y) > 0, define fX|Y as in Example 216. Next, for each A ∈ σ(X), define17

h(y) =

∫

B

fX|Y (x|y)dx,
18

for all y, where A = X−1(B). Finally, define Pr(A|C)(ω) = h(Y (ω)). The calculation done19

in Example 216 shows that this is a version of the conditional mean of IA given C. But it is20

easy to see that for each ω, Pr(·|C)(ω) is a probability measure on (Ω, σ(X)).21
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36-752: Lecture 191

Convergence in Distribution. Let X be a topological space and let B be the Borel2

σ-field. Let (Ω,F , P ) be a probability space and let Xn : Ω → X be F/B-measurable.3

Also, let X : Ω → X be another random quantity. This will be the standard setup for all4

discussions of convergence in distribution.5

Definition 238. We say that Xn converges in distribution to X if6

lim
n→∞

E[f(Xn)] = E[f(X)],
7

for all bounded continuous functions f : X → IR. We denote this property Xn
D→ X.8

Example 239. Let Ω = IR∞ with F = B∞ and P being the joint distribution of a9

sequence {Xn}∞n=1 of iid standard normal random variables. Let Xn(ω) = 1√
n

∑n
j=1 ωj . Let10

X = X1. Then Xn
D→ X in a trivial way.11

There are several conditions that are all equivalent to Xn
D→ X.12

Theorem 240. (Portmanteau theorem) The following are all equivalent if X is a13

metric space:14

1. limn→∞ E[f(Xn)] = E[f(X)], for all bounded continuous f ,15

2. For each closed C ⊆ X , lim supn→∞ µXn(C) ≤ µX(C).16

3. For each open A ⊆ X , lim infn→∞ µXn(A) ≥ µX(A).17

4. For each B ∈ B such that µX(∂B) = 0, limn→∞ µXn(B) = µX(B).18

We will not prove this whole theorem, but we will look a bit more at the four conditions.19

If X = IR, then the fourth condition is a lot like the familiar convergence of cdf’s in places20

where the limit is continuous. An interval B = (−∞, b] has µX(∂B) = 0 if and only if there21

is no mass at b, hence if and only if the cdf is continuous at b. The second condition says22

that we don’t want any mass from the distributions of the Xn’s to be able to escape from23

a closed set, although it could happen that mass from outside of a closed set approaches24

the boundary. That is why the inequality goes the way it does. Similarly, for the third25

condition, mass can escape from an open set but nothing should be allowed to “jump” into26

the open set. The first condition is related to the often overlooked fact that the distribution27

of a random quantity is equivalent to the means of all bounded continuous functions. The28

first condition is also a version of what mathematicians call weak∗ convergence, a concept29

that arises in the theory of normed linear spaces. Many statisticians and probabilists call30

convergence in distribution “weak convergence,” but convergence in distribution is not quite31

the same as weak convergence in normed linear spaces.32

Proof.Theorem 240 First, notice that the second and third conditions are equivalent33

since closed sets are complements of open sets. Together the second and third conditions34
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imply the fourth one. We will prove that the fourth condition implies the first one. We will1

waive hands over the proof that the first condition implies the second one.2

Assume the fourth condition. Let f be bounded and continuous, |f(x)| ≤ K for all x. Let3

ǫ > 0. Let v0 < v1 < · · · < vM be real numbers such that v0 < −K < K < vM , vj − vj−1 < ǫ4

for all j = 1, . . . ,M , and µX({x : f(x) = vj}) = 0 for all j. Let Fj = {x : vj−1 < f(x) ≤ vj}.5

The continuity of f and the fact that ∂Fj ⊆ {x : f(x) ∈ {vj, vj−1}} imply that6

{x : vj−1 < f(x) < vj} ⊆ int(Fj) ⊆ F j ⊆ {x : vj−1 ≤ f(x) ≤ vj}.7

By construction8

∣

∣

∣

∣

∣

M
∑

j=1

vjµXn(Fj) − E[f(Xn)]

∣

∣

∣

∣

∣

≤ ǫ,
9

∣

∣

∣

∣

∣

M
∑

j=1

vjµX(Fj) − E[f(X)]

∣

∣

∣

∣

∣

≤ ǫ.
10

By assumption µX(∂Fj) = 0 for all j and11

lim
n→∞

M
∑

j=1

vjµXn(Fj) =
M
∑

j=1

vjµX(Fj).
12

Combining these yields | limn→∞ E[f(Xn)] − E[f(X)]| < 2ǫ, hence the first condition holds.13

To see why the first condition implies the second one, let C be a closed set. For each14

m, let Cm be the set of points that are at most 1/m away from C. The function fm(x) =15

max{0, 1 −md(x, C)} is bounded and continuous, equals 0 on CC
m, equals 1 on C, and lies16

between 0 and 1 everywhere. We know that limn→∞ E(fm(Xn)) = E(fm(X)) for all m. Also,17

µXn(C) ≤ E(fm(Xn)) ≤ µXn(Cm) for all n and m. So18

lim sup
n→∞

µXn(C) ≤ E(fm(X)) ≤ µX(Cm),(241)
19

for all m. Since {Cm}∞m=1 is a decreasing sequence of sets whose intersection is C, we have20

limm→∞ µX(Cm) = µX(C). Since the left side of (241) doesn’t depend on m, we have the21

result. �22

Because convergence in distribution depends only on the distributions of the random23

quantities involved, we do not actually need random quantities in order to discuss conver-24

gence in distribution. Hence, we might also use notation like µn
D→ µ, where µn and µ are25

probability measures on the same space. If X = IR, we might refer to the cdf’s and say26

Fn
D→ F . We might even refer to the names of distributions and say that Xn converges in27

distribution to a standard normal distribution or some other distribution. Even if we do have28

random quantities, they don’t even have to be defined on the same probability spaces. They29

do have to take values in the same space, however. For example, for each n, let (Ωn,Fn, Pn)30

be a probability space, and let (Ω,F , P ) be another one. Let (X ,B) be a topological space31

with Borel σ-field. Let Xn : Ωn → X and X : Ω → X be random quantities. We could then32

ask whether or not Xn
D→ X. We won’t use this last bit of added generality.33
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Example 242. Let {Xn}∞n=1 be a sequence of iid standard normal random variables.1

Then Xn converges in distribution to standard normal, but does not converge in probability2

to anything.3

Some authors use the expression converges in law to mean “converges in distribution”.4

They might write this Xn
L→ X. Others use the expression converges weakly and might write5

it Xn
w→ X.26

Skorohod proved a result that simplifies some proofs of convergence in distribution when7

X = IR.8

Lemma 243. (Skorohod Theorem) Let (X ,B) = (IR,B1). Suppose that Xn
D→ X.9

Then there exist {Yn}∞n=1 and Y defined on ((0, 1),B1, λ) (λ being Lebesgue measure) such10

that Yn has the same distribution as Xn for all n, Y has the same distribution as X, and11

Yn(ω) → Y (ω) for all ω.12

Proof. Let Fn be the cdf of Xn and let F be the cdf of X. Then limn→∞ Fn(x) = F (x)13

for all x at which F is continuous by part 4 of Theorem 240. Define Yn(ω) = F−1
n (ω) and14

Y (ω) = F−1(ω). Here, the inverse of a general cdf G is defined by G−1(p) = inf{x : G(x) ≥15

p}. It is easy to see that Yn has the same distribution as Xn and Y has the same distribution16

as X. For example,17

Pr(Y ≤ y) = Pr(F−1(ω) ≤ y) = Pr(ω ≤ F (y)) = F (y).18

To see that Yn(ω) → Y (ω), let ǫ > 0 and let Y (ω)−ǫ < x < Y (ω) be such that F is continuous19

at x. Then F (x) < ω, so eventually Fn(x) < ω and eventually Y (ω) − ǫ < x < Yn(ω), so20

lim infn Yn(ω) ≥ Y (ω). A similar argument shows lim supn Yn(ω) ≤ Y (ω). �21

The following result says that the usual definition of convergence in distribution in one22

dimension is equivalent to what we have stated above.23

Lemma 244. Let (X ,B) = (IR,B1). Let Fn be the cdf of Xn and let F be the cdf of X.24

Then Xn
D→ X if and only if limn→∞ Fn(x) = F (x) for all x at which F is continuous.25

Proof. The proof of the “only if” direction is direct from Theorem 240 because F is26

continuous at x if and only if µX({x}) = 0 and {x} is the boundary of (−∞, x]. For the “if”27

part, construct Yn and Y as in the proof of Lemma 243. It then follows from the dominated28

convergence theorem that E(f(Yn)) → E(f(Y )) for all bounded continuous f . �29

Example 245. Let Φ be the standard normal cdf, and let30

Fn(x) =







0 if x < −n,
Φ(x)−Φ(−n)
Φ(n)−Φ(−n)

if −n ≤ x < n,

1 if x ≥ n.31

Then, we see that limn→∞ Fn(x) = Φ(x) for all x. Each Fn gives probability 1 to a bounded32

set, but the limit distribution does not.33

2Convergence in distribution is not the same as weak convergence of continuous linear functionals in
functional analysis. It is the same as weak∗ convergence, but we will not go into that distinction here.
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Example 246. Let Φ be the standard normal cdf, and let1

Fn(x) =







0 if x < −n,
Φ(x) if −n ≤ x < n,
1 if x ≥ n.2

Then, we see that limn→∞ Fn(x) = Φ(x) for all x. Each Fn is neither discrete nor continuous,3

but the limit is continuous.4

Example 247. Enumerate the dyadic rationals in this sequence: 1/2, 1/4, 3/4, 1/8,5

3/8, 5/8, 7/8, 1/16, 3/16, . . . . Let µn be the measure that puts mass 1/n on each of the6

first n in the list. Then the subsequence {µ2n−1}∞n=1 converges in distribution to the uniform7

distribution on [0, 1], but the whole sequence does not converge. Consider the subsequence8

{µ2n+2−2n−1}∞n=1, which converges to a distribution with twice as much probability on [0, 1/2]9

as on (1/2, 1].10

Example 248. Let Fn be the cdf of the uniform distribution on [−n, n]. No subsequence11

of Fn converges in distribution even though each cdf gives probability 1 to a bounded set.12

Examples 245 and 248 illustrate a necessary and sufficient condition for a sequence of13

distributions to have a convergent (in distribution) subsequence. Even though the Fn in14

both examples assign probability to 1 to the same intervals, the probability moves out to15

infinity at different rates in the two examples. In ??, we will see a condition on how fast16

probability can move out to infinity and still allow subsequences to converge in distribution.17

Convergence in distribution is weaker than convergence in probability, hence it is also18

weaker than convergence a.s. and Lp convergence.19

Proposition 249. Let (X ,B) be a metric space (having metric d) and its Borel σ-field.20

Let {Xn}∞n=1 be a sequence of random quantities taking values in X and let X be another21

random quantity taking values in X .22

1. If limn→∞Xn = X a.s., then Xn
P→ X.23

2. If Xn
P→ X, then Xn

D→ X.24

3. If X is degenerate and Xn
D→ X, then Xn

P→ X.25

4. If Xn
P→ X, then there is a subsequence {nk}∞k=1 such that limk→∞Xnk

= X, a.s.26

Proof. The first and last claims were proven earlier and are only included for complete-27

ness. For the second claim, let C be a closed set and let Cm = {x : d(x, C) ≤ 1/m} for each28

integer m > 0. Then29

µXn(C) ≤ µX(Cm) + Pr(d(X,Xn) > 1/m).30

It follows that lim supn µXn(C) ≤ µX(Cm). Since limm→∞ µX(Cm) = µX(C), we have that31

Xn
D→ X by Theorem 240. The third claim follows by approximating I[c−ǫ,c+ǫ] by a bounded32

continuous function, where Pr(X = c) = 1. �33
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If f is a continuous function and Xn
D→ X, then f(Xn)

D→ f(X). Indeed, even if f is not2

continuous, so long as µX assigns 0 probability to the set of discontinuities, the result still3

holds.4

Theorem 250. (Continuous mapping theorem) Let {Xn}∞n=1 be a sequence of ran-5

dom quantities, and let X be another random quantity all taking values in the same metric6

space X . Suppose that Xn
D→ X. Let Y be a metric space and let g : X → Y. Define7

Cg = {x : g is continuous at x}.8

Suppose that Pr(X ∈ Cg) = 1. Then g(Xn)
D→ g(X).9

The proof of Theorem 250 together with the proof of Theorem 252 are in another course10

document. They both rely on the second part of Theorem 240, and they resemble the part11

of the proof of Proposition 249 that we already did.12

Example 251. If (Sn − nµ)/[
√
nσ] converges in distribution to standard normal, then13

(Sn − nµ)2/(nσ2) converges in distribution to χ2 with one degree of freedom.14

Theorem 252. Let {Xn}∞n=1, X, and {Yn}∞n=1 be random quantities taking values in a15

metric space with metric d. Suppose that Xn
D→ X and d(Xn, Yn)

P→ 0, then Yn
D→ X.16

The most common use of this theorem is the following. If the difference between two se-17

quences converges to 0 in probability and if one of the two sequences converges in distribution18

to X, then so does the other one. A related result is the following.19

Theorem 253. Let Xn take values in a metric space and let Yn take values in a metric20

space. Suppose that Xn
D→ X and Yn

P→ c, then (Xn, Yn)
D→ (X, c).21

Proof. Let d1 be the metric in the space where Xn takes values and let d2 be the metric22

in the space where Yn takes values. Then23

d((x1, y1), (x2, y2)) = d1(x1, x2) + d2(y1, y2),24

defines a metric in the product space and the product σ-field is the Borel σ-field. First note25

that (Xn, c)
D→ (X, c) since every bounded continuous function of (Xn, c) is a bounded26

continuous function of Xn alone. Next, note that d((Xn, Yn), (Xn, c)) = d2(Yn, c) and27

Pn(d2(Yn, c) > ǫ) → 0 for all ǫ > 0, so d((Xn, Yn), (Xn, c))
P→ 0. By Theorem 252,28

(Xn, Yn)
D→ (X, c). �29

Example 254. Suppose that Un = (Sn − nµ)/(
√
nσ) converges in distribution to stan-30

dard normal. Suppose also, that Tn
P→ σ. Then (Un, Tn)

D→ (Z, σ), where Z ∼ N(0, 1).31

Consider the continuous function g(z, s) = zσ/s. It follows that32

g(Un, Tn) =
Sn − nµ√

nTn

D→ Z.
33
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Example 255. (Delta method) Suppose that limn→∞ rn = ∞ and rn(Xn − a)
D→ Y .1

Then Xn
P→ a. Suppose that g is a function that has a derivative g′(a) at a. Define2

h(x) =
g(x) − g(a)

x− a
− g′(a).

3

We know that limx→a h(x) = 0, so we can make h continuous at a by setting h(a) = 0. Also4

g(x) − g(a) = (x− a)g′(a) + (x− a)h(x). So,5

rn[g(Xn) − g(a)] = rn(Xn − a)g′(a) + rn(Xn − a)h(Xn).6

It follows from Theorems 250 and 249 that h(Xn)
P→ 0. By Theorem 253, rn(Xn−a)h(Xn)

P→7

0 and rn(Xn − a)g′(a)
D→ g′(a)Y . By Theorem 252, rn[g(Xn)− g(a)]

D→ g′(a)Y . After we see8

the central limit theorem, there will be many examples of the use of this result.9

If g′(a) = 0 in the above example, there may still be hope if a higher derivative is nonzero.10

Example 256. Let {Xn}∞n=1 be iid with exponential distribution with parameter 2.11

That is, the density is 2 exp(−2x) for x > 0. Let Yn = min{X1, . . . , Xn}. Then Yn has12

an exponential distribution with parameter 2n. So n(Yn − 0)
D→ X1. Let g(y) = cos(y) so13

that g′(y) = − sin(y). Then n[cos(Yn) − 1]
D→ 0. But g(y) − 1 = 0 − y2/2 + o(y2) as y → 0.14

So,15

n2[g(Yn) − 1] =
n2

2
Y 2

n + Zn
D→ 1

2
X2

1 ,16

where Zn
P→ 0.17
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Continuous Mapping and Related Theorems1

Lemma 257. Let X and Y be metric spaces. Let B be a closed subset of X . Let g : X →2

Y. If x ∈ g−1(B) and g is continuous at x, then x ∈ g−1(B).3

Proof. If x ∈ g−1(B) then there exists a sequence {xn}∞n=1 of elements of g−1(B) such4

that xn → x. If g is continuous at x then g(xn) → g(x). Since all g(xn) ∈ B and B is closed,5

g(x) ∈ B. �6

Theorem 250. (Continuous mapping theorem) Let {Xn}∞n=1 be a sequence of ran-7

dom quantities, and let X be another random quantity all taking values in the same metric8

space X . Suppose that Xn
D→ X. Let Y be a metric space and let g : X → Y. Define9

Cg = {x : g is continuous at x}.10

Suppose that Pr(X ∈ Cg) = 1. Then g(Xn)
D→ g(X).11

Proof. Let Qn be the distribution of g(Xn) and let Q be the distribution of g(X). Let12

Rn be the distribution of Xn and let R be the distribution of X. Let B be a closed subset13

of Y . If x ∈ g−1(B) but x 6∈ g−1(B), then g is not continuous at x by Lemma 257. It follows14

that g−1(B) ⊆ g−1(B) ∪ CC
g . Now write15

lim sup
n→∞

Qn(B) = lim sup
n→∞

Rn(g−1(B)) ≤ lim sup
n→∞

Rn(g−1(B))
16

≤ R(g−1(B)) ≤ R(g−1(B)) +R(CC
g )17

= R(g−1(B)) = Q(B),18

and the result now follows from the Theorem 240. �19

Theorem 252. Let {Xn}∞n=1, X, and {Yn}∞n=1 be random quantities taking values in a20

metric space with metric d. Suppose that Xn
D→ X and d(Xn, Yn)

P→ 0, then Yn
D→ X.21

Proof. Let Qn be the distribution of Yn, let Rn be the distribution of Xn and let R22

be the distribution of X. Let B be an arbitrary closed set. According to Theorem 240, it23

suffices to show that lim supQn(B) ≤ R(B). Then24

{Yn ∈ B} ⊆ {d(Xn, B) ≤ ǫ} ∪ {d(Xn, Yn) > ǫ}.25

Define Cǫ = {x : d(x,B) ≤ ǫ}, which is a closed set. So,26

Qn(B) = Pn(Yn ∈ B)27

≤ Pn(d(Xn, B) ≤ ǫ) + Pn(d(Xn, Yn) > ǫ)28

= Rn(Cǫ) + Pn(d(Xn, Yn) > ǫ).29

We have assumed that limn→∞ Pn(d(Xn, Yn) > ǫ) = 0 and that Xn
D→ X, so we conclude30

lim supn→∞Qn(B) ≤ lim supn→∞Rn(Cǫ) ≤ R(Cǫ). Since B is closed, limǫ→0R(Cǫ) = R(B).31

It follows then that32

lim sup
n→∞

Qn(B) ≤ R(B),
33

hence Yn
D→ X. �34

Here is the convergence in probability version of Theorem 250.35
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Theorem 258. Let {Xn}∞n=1 be a sequence of random quantities, and let X be another1

random quantity all taking values in the same metric space X with metric d1. Suppose that2

Xn
P→ X. Let Y be a metric space with metric d2 and let g : X → Y. Define3

Cg = {x : g is continuous at x}.4

Suppose that Pr(X ∈ Cg) = 1. Then g(Xn)
P→ g(X).5

Proof. For each x ∈ X and ǫ > 0, there exists δ(x, ǫ) such that d2(g(x), g(y)) < ǫ6

whenever d1(x, y) < δ(x, ǫ). For every set A,7

Pr(A ∩ {d2(g(X), g(Xn)) < ǫ}) ≥ Pr(A ∩ {d1(X,Xn) < δ(X, ǫ)}).8

Define Am = Cg ∩ {X : δ(X, ǫ) ≥ 1/m}. We know that limm→∞ Pr(Am) = 1. Also, for every9

m,10

Pr(d2(g(X), g(Xn)) < ǫ) ≥ Pr(Am ∩ {d2(g(X), g(Xn)) < ǫ})11

≥ Pr(Am ∩ {d1(X,Xn) < δ(X, ǫ)})12

≥ Pr(Am ∩ {d1(X,Xn) < 1/m}).13

This last converges to Pr(Am) as n→ ∞ because Xn
P→ X. Hence14

lim inf
n

Pr(d2(g(X), g(Xn)) < ǫ) ≥ Pr(Am).
15

Now, take limits as m → ∞ on both sides to get that lim infn Pr(d2(g(X), g(Xn)) < ǫ) ≥ 1.16

So, g(Xn)
P→ g(X). �17
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Characteristic Functions. For the special case in which (X ,B) = (IRp,Bp), there is a2

useful technique for determining if a sequence of random vectors convergences in distribution.3

It is based on a characterization of distributions by something simpler than the means of4

all bounded continuous functions. The means of a special collection of bounded continuous5

functions, namely {exp(it⊤x) : t ∈ IRp}, are enough to characterize a distribution. From6

here on in the notes, i is one of the complex square-roots of −1.37

Definition 259. The function φX(t) = E exp(it⊤X) is called the characteristic func-8

tion (cf) of X.9

(Mathematicians will recognize the cf as the Fourier transform of f .) Every distribution10

on IRp has a cf regardless of whether moments exist. Recall from complex analysis that11

exp(iu) = cos(u) + i sin(u). So, we see that exp(it⊤x) is indeed bounded as a function of x12

for each t.13

Example 260. (Cauchy distribution) Let fX(x) = [π(1 + x2)]−1. Then φX(t) =14

exp(−|t|). To prove this requires contour integration.15

The remaining theorems about convergence in distribution are16

• the inversion/uniqueness theorem that says that each cf corresponds to a unique dis-17

tribution,18

• the continuity theorem that says that Xn
D→ X if and only if φXn(t) → φX(t) for all t19

(the “only if” direction being trivial), and20

• the central limit theorem that says that certain normalized sums of independent (not21

necessarily identically distributed) random variables with finite variance converge in22

distribution to a standard normal distribution.23

Proposition 261. If X and Y are independent, then φX+Y (t) = φX(t)φY (t).24

Example 262. (Normal distribution) Let fX(x) = exp(−x2/2)/
√

2π be the density25

of X. Then26

φX(t) =
1√
2π

∫

exp(itx− x2/2)dx
27

=
1√
2π

∫

exp

(

−1

2
[x− it]2 − t2

2

)

dx
28

= exp(−t2/2).29

3If I ever use i again to mean something else, stop me so that I can fix it.
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Example 263. (Uniform distribution) Let f(x) = 1/2 for −1 < x < 1. Then1

φ(t) =
1

2

∫ 1

−1

exp(itx)dx =
exp(it) − exp(−it)

2it
=

sin(t)

t
.

2

The smoothness of the cf is related to the existence of moments. Of course all cf’s are3

continuous by the dominated convergence theorem. Since | exp(it⊤x)−exp(iu⊤x)| ≤ 2 for all4

t, u, x, we can pass the limit as u → t under the integral in
∫

[exp(it⊤x)− exp(iu⊤x)]dµX(x)5

to get 0 for the limit. Now, suppose that X is a random variable with finite mean. We can6

write7

| exp(ix) − 1|2 = | cos(x) + i sin(x) − 1|2 = 2 − 2 cos(x) = 2

∫ x

0

sin(t)dt ≤ 2

∫ x

0

tdt = x2.
8

This implies that | exp(ix) − 1| ≤ |x| for all x. Clearly, | exp(ix) − 1| ≤ 2 for all x also. So9

| exp(ix) − 1| ≤ min{2, |x|}.(264)10

This implies that [exp(ixt) − 1]/t is bounded by a µX-integrable function |x|. By the dom-11

inated convergence theorem, we can pass the limit as t → 0 under the integral to get that12

φ′(0) exists and equals iE(X). With a bit more effort similar results hold if higher moments13

exist. That is, higher order derivatives of φ exist and equal powers of i times the moments14

times real constants.15

Theorem 265. (Inversion and uniqueness) Let φ be the cf for the probability P on16

(IRp,Bp). Let A be a rectangular region of the form17

A = {(x1, . . . , xp) : aj ≤ xj ≤ bj for all j},18

where aj < bj for all j and P (∂A) = 0. For each T > 0, let19

BT = {(t1, . . . , tp) : −T ≤ tj ≤ T for all j}.20

Then21

P (A) = lim
T→∞

1

(2π)p

∫

BT

p
∏

j=1

[

exp(−itjaj) − exp(−itjbj)
itj

]

φ(t)dt1 · · · dtp.
22

Distinct probability measures have distinct cf ’s.23

The proof of Theorem 265 is provided in another course document. The proof relies on the24

following interesting result.25

lim
T→∞

∫ T

−T

sin(ct)

t
dt =







π if c > 0,
0 if c = 0,
−π if c < 0.26

(Because dt/t is invariant measure with respect to scale changes on (0,∞), the integral27

doesn’t depend on |c| for c 6= 0.) Basically, replace φ(t) by
∫
∏p

j=1 exp(itjxj)dP (x), change28
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the order of integration, pass the limit inside the integral over x, combine the two products1

into one, rewrite exp(−itjcj) in terms of sines and cosines (for cj ∈ {xj −aj , xj − bj}), notice2

that the cosine terms integrate to 0 over tj , and apply the above formula to the sine terms.3

When xj is between aj and bj , the limit of the integral over tj yields π − (−π) = 2π. When4

xj is outside of [aj , bj ], the limit yields either π − π or −π − (−π), both 0.5

The following theorem allows us to simplify some future proofs by doing only the p = 16

case.7

Lemma 266. (Cramér-Wold) Let X and Y be p-dimensional random vectors. Then8

X and Y have the same distribution if and only if α⊤X and α⊤Y have the same distribution9

for every α ∈ IRp.10

Proof. We know that X and Y have the same distribution if and only if φX(t) = φY (t)11

for every t ∈ IRp. This is true if and only if φX(sα) = φY (sα) for all α ∈ IRp and all12

s ∈ IR. But φX(sα) is the cf of α⊤X (as a function of s) and φY (sα) is the cf of α⊤Y . So,13

φX(sα) = φY (sα) for all α ∈ IRp and all s ∈ IR if and only if α⊤X and α⊤Y have the same14

distribution for every α ∈ IRp. �15

If the characteristic function is integrable, a continuous density exists. We will not prove16

this result.17

Proposition 267. If φ is the cf of the cdf F on (IR,B1) and if φ is integrable, then F18

has a density19

f(x) =
1

2π

∫ ∞

−∞
exp(−itx)φ(t)dt,(268)

20

which is continuous.21

The connection between characteristic functions and convergence in distribution is the22

following.23

Theorem 269. (Continuity theorem) Let {Pn}∞n=1 be a sequence of probabilities on24

(IRp,Bp), and let P be another probability. Let φn be the cf for Pn, and let φ be the cf for P .25

Then Pn
D→ P if and only if limn→∞ φn(t) = φ(t) for all t ∈ IRp.26

See Section 7.2 in Ash for the proof and underlying theory for the case p = 1.27

Example 270. For each j, let Yj have a uniform distribution on the interval [−1, 1] and28

let Xn =
√

3
n

∑n
j=1 Yj . Then the cf of Xn is29

φn(t) =





sin
(

t
√

3/n
)

t
√

3/n





n

.
30

We can write sin(t) = t− t3/6 + o(t3) so that, for each t,31

sin
(

t
√

3/n
)

t
√

3/n
= 1 − t2

2n
+ o(1/n),

32

as n → ∞. It follows easily that limn→∞ φn(t) = exp(−t2/2). This is the cf of the standard33

normal distribution.34
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An interesting corollary to the continuity theorem is that if limn→∞ φn(t) exists for all t1

and is continuous at 0, then the limit is a cf, and the distributions converge to the distribution2

with that cf. Another interesting corollary (thanks to Cramér and Wold) is that if {Xn}∞n=13

is a sequence of p-dimensional random vectors and X is a random vector, then Xn
D→ X if4

and only if α⊤Xn
D→ α⊤X for all α ∈ IRp.5
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Inversion/Uniqueness Theorem1

Lemma 271.2

lim
T→∞

∫ T

−T

sin(ct)

t
dt =







π if c > 0,
0 if c = 0,
−π if c < 0.

(272)
3

Proof. Since sin(−ct) = − sin(ct) and sin(0t) = 0, it suffices to prove the result for4

c > 0. First, we do an auxiliary integral. For fixed u and c, consider5

f(x) =
1

1 + u2
[1 − exp(−ucx)(u sin(cx) + cos(cx))].

6

Then f(0) = 0 and f ′(x) = c exp(−ucx) sin(cx). It follows that7

c

∫ T

0

exp(−utc) sin(ct)dt = f(T ).
8

The integrand in (272) is symmetric around 0, so we will work with the integral from 0 to9

T . Assume that c > 0. Since10

c

∫ ∞

0

exp(−uct)du = 1/t,
11

sin(ct) = sin(ct),12

we have13

∫ T

0

sin(ct)

t
dt = c

∫ T

0

∫ ∞

0

sin(ct) exp(−uct)dudt
14

= c

∫ ∞

0

∫ T

0

exp(−uct) sin(ct)dtdu
15

=

∫ ∞

0

du

1 + u2
−
∫ ∞

0

exp(−ucT )

1 + u2
(u sin(cT ) + cos(cT ))du.

16

The first integral in the last equation equals π/2 and the last integral goes to 0 as T → ∞.17

�18

Theorem 265. (Inversion and uniqueness) Let φ be the cf for the probability P on19

(IRp,Bp). Let A be a rectangular region of the form20

A = {(x1, . . . , xp) : aj ≤ xj ≤ bj for all j},21

where aj < bj for all j and P (∂A) = 0. For each T > 0, let22

BT = {(t1, . . . , tp) : −T ≤ tj ≤ T for all j}.23

Then24

P (A) = lim
T→∞

1

(2π)p

∫

BT

p
∏

j=1

[

exp(−itjaj) − exp(−itjbj)
itj

]

φ(t)dt1 · · · dtp.
25
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Distinct probability measures have distinct cf ’s.1

Proof. Apply Fubini’s theorem to write2

∫

BT

p
∏

j=1

[

exp(−itjaj) − exp(−itjbj)
itj

]

φ(t)dt1 · · · dtp(273)
3

=

∫

IRp

∫

BT

p
∏

j=1

[

exp(itj [xj − aj ]) − exp(itj [xj − bj ])

itj

]

dt1 · · · dtjdµ(x).
4

We can do this beacuse the integrand is bounded by
∏p

j=1 |bj − aj| according to (264) and5

the set over which we are integrating has finite product measure. Rewrite the jth factor in6

the integrand on the right-side of (273) as7

cos(tj [xj − aj]) − cos(tj[xj − bj ]) + i sin(tj [xj − aj]) − i sin(tj[xj − bj ])

itj
.

8

Since the integration over tj is from −T to T and {cos(tj [xj − aj]) − cos(tj [xj − bj ])}/tj is9

bounded and an odd function, its integral is 0. We rewrite the right side of (273) as10

∫

IRp

∫

BT

p
∏

j=1

[

sin(tj [xj − aj])

tj
− sin(tj [xj − bj ])

tj

]

dt1 · · · dtjdµ(x).(274)
11

Define12

gT (x) =

∫

BT

p
∏

j=1

[

sin(tj[xj − aj ])

tj
− sin(tj [xj − bj ])

tj

]

dt1 · · · dtp
13

=

p
∏

j=1

∫ T

−T

sin(tj [xj − aj])

tj
− sin(tj[xj − bj ])

tj
dtj .

14

This function is uniformly bounded for all T and x, hence the limit as T → ∞ of the integral15

in (274) equals
∫

limT→∞ gT (x)dµ(x). If we define16

ψa,b(x) =























0 if x < a,
π if x = a,
2π if a < x < b,
π if x = b,
0 if x > b,17

then Lemma 271 says that limT→∞ gT (x) =
∏p

j=1 ψaj ,bj
(xj), which equals (2π)p for x ∈ int(A)18

and equals 0 for x ∈ A
C
. Since µ(∂A) = 0, we have19

1

(2π)p

∫

IRp

lim
T→∞

gT (x)dµ(x) = µ(A).
20

At most countably many hyperplanes perpendicular to the coordinate axes can have21

positive µ probability. So, the rectangular regions A with µ(∂A) = 0 form a π-system that22

generate Bp. It follows from the inversion formula that φ1 = φ2 implies µ1 = µ2. That is,23

the characteristic function determines the distribution. �24
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36-752: Lecture 221

Central Limit Theorem. Suppose that Sn is the sum of n independent random2

variables with mean 0. Under some conditions to be given soon, there will exist a constant3

cn such that Sn/cn has a cf that is close to the cf of the standard normal distribution. If4

we can show that the cf of Sn/cn converges to the cf of the standard normal distribution5

then we have that Sn/cn converges in distribution to the standard normal distribution. To6

achieve this goal, we will need to be able to approximate arbitrary characteristic functions.7

By various integrations by parts and reasoning similar to that which achieved (264), we8

can obtain the following bound:9

∣

∣

∣

∣

exp(ix) −
[

1 + ix− x2

2

]∣

∣

∣

∣

≤ min{|x|3, x2}.
10

In terms of the cf of a random variable X with mean 0 and variance σ2, this equation says11

that12
∣

∣

∣

∣

φX(t) −
[

1 − t2σ2

2

]∣

∣

∣

∣

≤ E
[

min{|Xt|3, (Xt)2}
]

.(275)
13

Notice that only a second moment is required in order for the mean on the far right to exist.14

In order to apply a bound like this to a sum like Sn, we need to approximate a product of15

cf’s by a product of approximations. The following simple results are useful. Their proofs16

are contained in another course document.17

Proposition 276. Let z1, . . . , zm and w1, . . . , wm be complex numbers with modulus at18

most 1. Then19
∣

∣

∣

∣

∣

m
∏

k=1

zk −
m
∏

k=1

wk

∣

∣

∣

∣

∣

≤
m
∑

k=1

|zk − wk|
20

Proposition 277. For complex z, | exp(z) − 1 − z| ≤ |z|2 exp(|z|).21

We are now in position to state and prove a central limit theorem.22

Theorem 278. (Lindeberg-Feller central limit theorem) Let {rn}∞n=1 be a se-23

quence of integers. For each n = 1, 2, . . ., let Xn,1, . . . , Xn,rn be independent random vari-24

ables with Xn,k having mean 0 and finite nonzero variance σ2
n,k. Define s2

n =
∑rn

k=1 σ
2
n,k and25

Sn =
∑rn

k=1Xn,k. Assume that, for every ǫ > 0,26

lim
n→∞

rn
∑

k=1

1

s2
n

∫

{|Xn,k|≥ǫsn}
X2

n,k(ω)dP (ω) = 0.(279)
27

Then Sn/sn converges in distribution to the standard normal distribution.28
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The usual iid central limit theorem is a special case. If X1, X2, . . ., are iid with mean 01

and variance σ2, then let rn = n and Xn,k = Xk for all n and all k ≤ n. Then s2
n = nσ2 and2

n
∑

k=1

1

s2
n

∫

{|Xn,k|>ǫsn}
|Xn,k(ω)|2dP (ω) =

1

σ2

∫

{|X1|>ǫσ
√

n}
|X1(ω)|2dP (ω),

3

which goes to 0 as n → ∞, because {ω : |X1(ω)| > ǫσ
√
n} decreases to the empty set as4

n→ ∞.5

The Lyapounov central limit theorem is another special case. In this theorem, instead of6

assuming (279), we assume that there exists δ > 0 such that E[|Xn,k|2+δ] <∞ and that7

lim
n→∞

rn
∑

k=1

1

s2+δ
n

E
[

|Xn,k|2+δ
]

= 0.(280)
8

Since |Xn,k|2 ≤ |Xn,k|2+δ/[ǫδsδ
n] when |Xn,k| > ǫsn, we have that the sum in (279) is bounded9

by10

1

ǫδ

rn
∑

k=1

1

s2+δ
n

∫

{|Xn,k|>ǫsn}
|X2+δ

n,k (ω)|dµ(ω) ≤ 1

ǫδ

rn
∑

k=1

1

s2+δ
n

E
[

|Xn,k|2+δ
]

.
11

Hence, if (280) holds, so does (279).12

Example 281. Let Y1, Y2, . . . be independent Poisson random variables with the pa-13

rameter of Yk being 1/k. Then let Xn,k = Yk − 1/k for all n and all k ≤ n. Now,14

s2
n = Ln =

∑n
k=1 1/k. For δ = 1, E(X3

n,k) = 1/k also. Hence15

E|Xn,k|3 ≤ E

(

[

Xn,k +
1

k

]3
)

=
1

k
+

3

k2
+

1

k3
≤ 5

k
.

16

The sum on the left of (280) is bounded by 5/
√
Ln, which goes to 0. So, [

∑n
k=1 Yk−Ln]/

√
Ln17

converges in distribution to standard normal. Notice that Ln = log(n) + cn where cn is18

bounded. By Theorem 252, [
∑n

k=1 Yk−log(n)]/
√

log(n) converges in distribution to standard19

normal also.20

The proof of Theorem 278 works by applying the continuity theorem 269. We must21

show that the cf of Sn/sn converges to exp(−t2/2) for all t. The proof has two (lengthy)22

steps. One is to approximate the cf φn,k of each Xn,k/sn by 1− t2σ2
n,k/(2s

2
n). The other is to23

approximate exp(−t2/2) by
∏rn

k=1[1 − t2σ2
n,k/(2s

2
n)].24

Also, notice that Xn,k is divided by sn in all formulas in the statement of the theorem.25

Hence, without loss of generality, we can assume that sn = 1 for all n. We do this in the26

proof, given in a separate document.27

Proposition 282. If the Xn,k are uniformly bounded and if limn→∞ s2
n = ∞, then (279)28

will hold.29
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Example 283. (Bernoulli distribution) If Xn,k has a Bernoulli distribution with1

parameter 1/k and rn = n, the condition holds. The theorem does not apply, however, if the2

Bernoulli parameter is 1/k2. Indeed, if the Bernoulli parameter is 1/k2,
∑n

k=1Xn,k converges3

almost surely according to Theorem 202. As another example, if rn = n and the Bernoulli4

parameter is k/(n + 1) for k = 1, . . . , n, then s2
n = n(n + 2)/[6(n+ 1)]. In fact, rn could be5

as small as n1/2+ǫ for 0 < ǫ ≤ 1/2, and the theorem would still apply. This example cannot6

be described as a single sequence as all of the distributions of Xn,k change as n changes.7

Example 284. (Delta method) Suppose that Y1, Y2, . . . are iid with common mean8

η and common variance σ2. Let Xn = 1
n

∑n
j=1 Yj. Then

√
n(Xn − η)

D→ Z, where Z has a9

normal distribution with mean 0 and variance σ2. If g is a function with derivative g′ at η,10

then
√
n[g(Xn) − g(η)] converges in distribution to a normal distribution with mean 0 and11

variance [g′(η)]2σ2.12

A multivariate central limit theorem exists for iid sequences, and the proof combines the13

univariate central limit theorem together with the method of the Cramér-Wold lemma 26614

and the Continuity theorem 269.15

Theorem 285. (Multivariate Central Limit Theorem) Let {Xn}∞n=1 be a sequence16

of iid random vectors with common mean vector η and common covariance matrix Σ. Let17

Xn be the average of the first n of these vectors. Then Zn =
√
n(Xn − η) converges in18

distribution to multivariate normal with zero mean vector and covariance matrix Σ.19

Proof. By Lemma 266 and its application to convergence in distribution, all we need to20

show is that, for all α, α⊤Zn
D→ N(0, α⊤Σα). For every vector α, let Yk = α⊤Xk which are iid21

with common mean α⊤η and common variance α⊤Σα. Let s2
n = nα⊤Σα. If α⊤Σα = 0, then22

Pr(Yk = α⊤η) = 1 and Pr(α⊤Zn = 0) = 1 for all n, which means that α⊤Zn
D→ N(0, α⊤Σα).23

For the rest of the proof, assume that α⊤Σα > 0. Theorem 278 says that24

nα⊤Xn − nα⊤η

sn
=

α⊤Zn√
α⊤Σα

D→ N(0, 1).
25

Multiply by
√
α⊤Σα to get that α⊤Zn

D→ N(0, α⊤Σα). �26

A multivariate central limit theorem also exists for general independent sequences, but it is27

very cumbersome to state. (Imagine replacing all of the σ2’s and s2
n’s in Theorem 278 by28

matrices.)29
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Some Results About Complex Numbers1

Proposition 276. Let z1, . . . , zm and w1, . . . , wm be complex numbers with modulus at2

most 1. Then3
∣

∣

∣

∣

∣

m
∏

k=1

zk −
m
∏

k=1

wk

∣

∣

∣

∣

∣

≤
m
∑

k=1

|zk − wk|
4

5

Proof. We shall use induction. The result is trivially true when m = 1. Assume that6

it is true for m = m0. For m = m0 + 1, we have7

∣

∣

∣

∣

∣

m0+1
∏

k=1

zk −
m0+1
∏

k=1

wk

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

m0+1
∏

k=1

zk − wm0+1

m
∏

k=1

zk + wm0+1

m
∏

k=1

zk −
m0+1
∏

k=1

wk

∣

∣

∣

∣

∣8

≤
∣

∣

∣

∣

∣

m
∏

k=1

zk

∣

∣

∣

∣

∣

|zm0+1 − wm0+1| +
∣

∣

∣

∣

∣

m
∏

k=1

zk −
m
∏

k=1

wk

∣

∣

∣

∣

∣

|wm0+1|
9

≤
m
∑

k=1

|zk − wk| + |zm0+1 − wm0+1|.�
10

Proposition 277. For complex z, | exp(z) − 1 − z| ≤ |z|2 exp(|z|).11

Proof. Write exp(z) − 1 − z =
∑∞

k=2 z
k/k!. Since k! < (k + 2)! for k ≥ 0, we have12

∣

∣

∣

∣

∣

∞
∑

k=2

zk

k!

∣

∣

∣

∣

∣

≤ |z|2
∞
∑

k=0

|z|k
(k + 2)!

≤ |z|2 exp(|z|).�
13

14
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Central Limit Theorem1

Proof of Theorem 278. Without loss of generality, we assume that sn = 1 for all n.2

The cf of Sn is3

φn(t) =
rn
∏

k=1

φn,k(t).
4

According to (275), for each n, k, and t,5

∣

∣

∣

∣

φn,k(t) −
[

1 −
t2σ2

n,k

2

]∣

∣

∣

∣

≤ E
[

min{|Xn,kt|3, (Xn,kt)
2}
]

6

≤
∫

{|Xn,k |<ǫ}
|tXn,k(ω)|3dP (ω) +

∫

{|Xn,k|≥ǫ}
|tXn,k(ω)|2dP (ω)

7

≤ ǫ|t|3σ2
n,k + t2

∫

{|Xn,k|≥ǫ}
X2

n,k(ω)dP (ω).
8

It follows that9

rn
∑

k=1

∣

∣

∣

∣

φn,k(t) −
[

1 −
t2σ2

n,k

2

]∣

∣

∣

∣

≤ ǫ|t|3 + t2
rn
∑

k=1

∫

{|Xn,k |≥ǫ}
X2

n,k(ω)dP (ω).
10

The last sum goes to 0 as n→ ∞ according to (279). Since ǫ is arbitrary, we have11

lim
n→∞

rn
∑

k=1

∣

∣

∣

∣

φn,k(t) −
[

1 −
t2σ2

n,k

2

]∣

∣

∣

∣

= 0.(286)
12

In order to apply Proposition 276, we need σ2
n,k to all be small. For each ǫ > 0, we have13

σ2
n,k =

∫

{|Xn,k|≤ǫ}
X2

n,k(ω)dP (ω) +

∫

{|Xn,k |>ǫ}
X2

n,k(ω)dP (ω)
14

≤ ǫ2 +

∫

{|Xn,k|<ǫ}
X2

n,k(ω)dP (ω).
15

It follows from (279) that16

lim
n→∞

max
k

σ2
n,k = 0.(287)

17

Next, fix t 6= 0 and notice that for n sufficiently large 0 < t2σ2
n,k/2 < 1 for all k simultane-18

ously. It follows from Proposition 276 and (286) that19

lim
n→∞

∣

∣

∣

∣

∣

φn(t) −
rn
∏

k=1

[

1 −
t2σ2

n,k

2

]

∣

∣

∣

∣

∣

= 0.(288)
20

Since s2
n = 1, we have that exp(−t2/2) =

∏rn

k=1 exp(−t2σ2
n,k/2). For n large enough so that21

t2σ2
n,k/2 < 1 for all k write22

∣

∣

∣

∣

∣

exp

(

−t
2

2

)

−
rn
∏

k=1

[

1 −
t2σ2

n,k

2

]

∣

∣

∣

∣

∣

≤
rn
∑

k=1

∣

∣

∣

∣

exp

(

−
t2σ2

n,k

2

)

− 1 +
t2σ2

n,k

2

∣

∣

∣

∣

23
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≤ t4

4

rn
∑

k=1

σ4
n,k exp

(

t2

2

)

1

≤ t4

4
max

k
σ2

n,k exp

(

t2

2

)

,(289)
2

where the first inequality follows from Proposition 276, the second follows from Proposi-3

tion 277, and the third follows from the fact that s2
n = 1. Finally, the last term in (289) goes4

to 0 according to (287). Combining this with (288) says that limn→∞ φn(t) = exp(−t2/2). �5
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Existence of rcd’s1

This document contains more details about the proof of ??.2

For each rational number q, let µX|C((−∞, q]) be a version of Pr(X ≤ q|C). Define3

C1 =

{

ω : µX|C((−∞, q])(ω) = inf
rational r>q

µX|C((−∞, r])(ω), for all rational q

}

,
4

C2 =

{

ω : lim
x→−∞, x rational

µX|C((−∞, x])(ω) = 0

}

,
5

C3 =

{

ω : lim
x→∞, x rational

µX|C((−∞, x])(ω) = 1

}

.
6

(Notice that C2 and C3 are defined slightly differently than in the original class notes.)7

Define8

Mq,r = {ω : µX|C((−∞, q](ω) < µX|C((−∞, r])(ω))}, M =
⋃

q>r

Mq,r.
9

If P (Mq,r) > 0, for some q > r then10

Pr(Mq,r ∩ {X ≤ q}) =

∫

Mq,r

µX|C((−∞, q])dP <

∫

Mq,r

µX|C((−∞, q])dP
11

= Pr(Mq,r ∩ {X ≤ r}),12

which is a contradiction. Hence, P (M) = 0. Next, define13

Nq = {ω ∈MC : lim
r ↓ q, r rational

µX|C((−∞, r](ω) 6= µX|C((−∞, q])(ω), N =
⋃

All q

Nq.
14

If P (Nq) > 0 for some q, then15

Pr(Nq ∩ {X ≤ q}) =

∫

Nq

µX|C((−∞, q])dP <

∫

Nq

lim
r ↓ q, r rational

µX|C((−∞, r])dP
16

= lim
r ↓ q, r rational

∫

µX|C((−∞, r])dP = lim
r ↓ q, r rational

Pr(Nq ∩ {X ≤ r}),
17

which is a contradiction. We can use Example 235 once again to prove that P (N) = 0.18

Notice that C1 = NC , so P (C1) = 1.19

Next, notice that20

0 = P

(

C1 ∩ CC
2 ∩

⋂

rational x

{X ≤ x}
)

= lim
x→−∞, x rational

∫

C1∩CC
2

µX|C((−∞, x])dP
21

=

∫

C1∩CC
2

lim
x→−∞, x rational

µX|C((−∞, x])dP.
22

If P (C1 ∩ C2) < 1, then the last integral above is strictly positive, a contradiction. The23

interchange of limit and integral is justified by the fact that, for ω ∈ C1, µX|C((−∞, x]) is24

nondecreasing in x. A similar contradiction arises if P (C1 ∩ C3) < 1.25
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Martingales1

Martingales. Let (Ω,F , P ) be a probability space.2

Definition 290. Let F1 ⊆ F2 ⊆ . . . be a sequence of sub-σ-field’s of F . We call3

{Fn}∞n=1 a filtration . If Xn : Ω → IR is Fn-measurable for every n, we say that {Xn}∞n=1 is4

adapted to the filtration. If {Xn}∞n=1 is adapted to a filtration {Fn}∞n=1, and if E|Xn| < ∞5

for all n and E(Xn+1|Fn) = Xn for all n, then we say that {Xn}∞n=1 is a martingale relative to6

the filtration. Alternatively we say that {(Xn,Fn)}∞n=1 is a martingale. If Xn ≤ E(Xn+1|Fn)7

for all n, we say that {(Xn,Fn)}∞n=1 is a submartingale. If the inequality goes the other way,8

it is a supermartingale.9

Proposition 291. A martingale is both a submartingale and a supermartingale. {Xn}∞n=110

is a submartingale if and only if {−Xn}∞n=1 is a supermartingale.11

Example 292. Let {Yn}∞n=1 be a sequence of independent random variables with fi-12

nite mean. Let Fn = σ(Y1, . . . , Yn) and Xn =
∑n

j=1 Yj. If E(Yn) = 0 for every n, then13

{(Xn,Fn)}∞n=1 is a martingale. If E(Yn) ≥ 0 for every n, then we have a submartingale, and14

if E(Yn) ≤ 0 for every n, we have a supermartingale.15

Example 293. Let (Ω,F , P ) be a probability space. Let {Fn}∞n=1 be a filtration. Let ν16

be a finite measure on (Ω,F) such that for every n, ν has a density Xn with respect to P17

when both are restricted to (Ω,Fn). Then {Xn}∞n=1 is adapted to the filtration. To see that18

we have a martingale, we need to show that for every n and A ∈ Fn19

∫

A

Xn+1(ω)dP (ω) =

∫

A

Xn(ω)dP (ω).(294)
20

Since Fn ⊆ Fn+1, each A ∈ Fn is also in Fn+1. Hence both sides of (294) equal ν(A).21

Example 295. As a more specific example of Example 293, let Ω = IR∞ and let Fn =22

{B × IR∞ : B ∈ Bn}. That is, Fn is the collection of cylinder sets corresponding to the first23

n coordinates (the σ-field generated by the first n coordinate projection functions). Let P24

be the joint distribution of an infinite sequence of iid standard normal random variables. Let25

ν be the joint distribution of an infinite sequence of iid exponential random variables with26

parameter 1. For each n, when we restrict both P and ν to Fn, ν has the density27

Xn(ω) =

{

(2π)n/2 exp
(

∑n
j=1[ω

2
j/2 − ωj]

)

for ω1, . . . , ωn > 0,

0 otherwise,28

with respect to P . It is easy to see that29

E(Xn+1|Fn) = XnE(
√

2π exp(ω2
n+1/2 − ωn+1)I(0,∞)(ωn+1)) = Xn.30
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Example 296. Let {(Xn,Fn)}∞n=1 be a martingale. Let φ : IR → IR be a convex function1

such that E[φ(Xn)] is finite for all n. Define Yn = φ(Xn). Then2

E(Yn+1|Fn) = E[φ(Xn+1)|Fn]3

≥ φ [E(Xn+1|Fn)]4

= φ(Xn) = Yn,5

where the inequality follows from the conditional version of Jensen’s inequality. So {(Yn,Fn)}∞n=16

is a submartingale.7

Example 297. Let (Ω,F , P ) be a probability space. Let {Yn}∞n=1 be a sequence of8

random variables and Fn = σ(Y1, . . . , Yn). Suppose that, for each n, µY1,...,Yn has a strictly9

positive density pn with respect to Lebesgue measure λn. Let Q be another probability on10

(Ω,F) such that Q((Y1, . . . , Yn)
−1(·)) has a density qn with respect to λn for each n. Define11

Xn =
qn(Y1, . . . , Yn)

pn(Y1, . . . , Yn)
.

12

It is easy to check that, for each n and H ∈ Bn
13

E(IH(Y1, . . . , Yn)Xn) =

∫

H

qn(y1, . . . , yn)

pn(y1, . . . , yn)
pn(y1, . . . , yn)dλ

n(y1, . . . , yn)
14

= Q((Y1, . . . , Yn)
−1(H)).15

This makes Xn a density for Q with respect to P on the σ-field Fn. Hence we have a16

martingale according to the construction in Example 293. This is an example of likelihood17

ratios, and it is a generalization of Example 295.18

Example 298. Let {Fn}∞n=1 be a filtration and let X be a random variable with finite19

mean. Define Xn = E(X|Fn). By the law of total probability we have a martingale. Such a20

martingale is sometimes called a Lévy martingale.21

Example 299. Consider Example 292 again. Think of Yn as being the amount that22

a gambler wins per unit of currency bet on the nth play in a sequence of games. Let Y023

denote the gambler’s initial fortune which we can assume is a known value, and let F0 be24

the trivial σ-field. (We could let Y0 be a random variable and let F0 = σ(Y0), but then we25

would also have to expand Fn to σ(Y0, . . . , Yn).) Suppose that the gambler devises a system26

for determining how much Wn ≥ 0 to bet on the nth play. We assume that Wn is Fn−127

measurable for each n. This forces the gambler to choose the amount to bet before knowing28

what will happen. Now, define Zn = Y0 +
∑n

j=1WjYj . Since29

E(Wn+1Yn+1|Fn) = Wn+1E(Yn+1|Fn) = Wn+1E(Yn+1),30

and Wn+1 ≥ 0, we have that E(Wn+1Yn+1|Fn) is ≥ 0, = 0, or ≤ 0 according as E(Yn+1) ≥ 0,31

= 0, or ≤ 0. That is, {(Zn,Fn)}∞n=1 is a submartingale, a martingale, or a supermartingale32

according as {(Xn,Fn)}∞n=1 is a submartingale, a martingale, or a supermartingale. This33

result is often described by saying that gambling systems cannot change whether a game is34

favorable, fair, or unfavorable to a gambler.35
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Definition 300. A sequence {Wn}∞n=1 of random variables such that Wn is Fn−1/B1-1

measurable is called previsible . (If there is no F0, then require that W1 be constant.)2

Example 301. Let {(Xn,Fn)}∞n=1 be a martingale, and let {Wn}∞n=1 be previsible. De-3

fine Z1 = X1 and Zn+1 = Zn +Wn+1(Xn+1 −Xn) for n ≥ 1. Then Zn is Fn/B1-measurable4

and5

E(Zn+1|Fn) = Zn +Wn+1E(Xn+1 −Xn|Fn) = Zn,6

for all n ≥ 1. This makes {(Zn,Fn)}∞n=1 a martingale. This is called a martingale transform.7

Example 299 is an example of this.8

Theorem 302. (Doob decomposition) {(Xn,Fn)}∞n=1 is a submartingale if and only9

if there is a martingale {(Zn,Fn)}∞n=1 and a nondecreasing previsible process {An}∞n=1 with10

A1 = 0 such that Xn = Zn + An for all n. The decomposition is unique (a.s.).11

Proof. For the “if” direction, notice that12

E(Zn+1 + An+1|Fn) = Zn + An+1 ≥ Zn + An = Xn.13

For the “only if” dirction, Define A1 = 0 and14

An =

n
∑

k=2

(E(Xk|Fk−1) −Xk−1) ,
15

for n > 1. Also, define Zn = Xn − An. Because E(Xk|Fk−1) ≥ Xk−1 for all k > 1, we16

have An ≥ An−1 for all k > 1, so {An}∞n=1 is nondecreasing. Also, E(Xk|Fk−1) is Fn−1/B1-17

measurable for all 1 < k ≤ n, so {An}∞n=1 is previsible. Finally, notice that18

E(Zn+1|Fn) = E(Xn+1|Fn) − An+119

= E(Xn+1|Fn) −
n+1
∑

k=2

[E(Xk|Fk−1) −Xk−1]
20

= Xn −
n
∑

k=2

[E(Xk|Fk−1) −Xk−1] = Zn,
21

so Zn is a martingale.22

For uniqueness, suppose that Xn = Yn + Wn is another decomposition so that Yn is a23

martingale and Wn is previsible. Then write24

n
∑

k=2

[E(Xk|Fk−1) −Xk−1] =

n
∑

k=2

[E(Yk +Wk|Fk−1) −Xk−1]
25

=

n
∑

k=2

(Yk−1 +Wk −Xk−1)
26

=

n
∑

k=2

(Wk −Wk−1) = Wk.
27

It follows that Wk = Ak a.s., hence Yk = Zk a.s.�28

The previsible process in Theorem 302 is called the compensator for the submartingale.29
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Stopping Times. Let (Ω,F , P ) be a probability space, and let {Fn}∞n=1 be a filtration.1

Definition 303. A positive4 extended integer valued random variable τ is called a2

stopping time with respect to the filtration if {τ = n} ∈ Fn for all finite n. A special σ-field,3

Fτ is defined by4

Fτ = {A ∈ F : A ∩ {τ ≤ k} ∈ Fk, for all finite k} .5

If {Xn}∞n=1 is adapted to the filtration and if τ < ∞ a.s., then Xτ is defined as Xτ(ω)(ω).6

(Define Xτ equal to some arbitrary random variable X∞ for τ = ∞.)7

Example 304. Let {Xn}∞n=1 be adapted to the filtration and let τ = k0, a constant.8

Then {τ = n} is either Ω or ∅ and it is in every Fn, so τ is a stopping time. Also,9

A ∩ {τ ≤ k} =

{

A if k0 ≤ k,
∅ if k0 > k.10

So A ∩ {τ ≤ k} ∈ Fk for all finite k if and only if A ∈ Fk0
. So Fτ = Fk0

.11

Example 305. Let {Xn}∞n=1 be adapted to the filtration. Let B be a Borel set and let12

τ = inf{n : Xn ∈ B}. As usual, inf ∅ = ∞. For each finite n,13

{τ = n} = {Xn ∈ B}
⋂

k<n

{Xk ∈ BC} ∈ Fn.
14

So, τ is a stopping time.15

We can show that τ and Xτ are both Fτ measurable. For example, to show that Xτ is16

Fτ measurable, we must show that, for all B ∈ B1 X−1
τ (B) ∈ F and for all 1 ≤ k < ∞,17

{τ ≤ k} ∩X−1
τ (B) ∈ Fk. Now,18

X−1
τ (B) =

∞
⋃

k=1

(

{τ = k} ∩ [X−1
k (B)]

)

∪
(

{τ = ∞} ∩X−1
∞ (B)

)

∈ F .
19

This shows that Xτ is F -measurable. Next, fix k and write20

{τ ≤ k} ∩X−1
τ (B) =

k
⋃

j=1

[

X−1
j (B) ∩ {τ = j}

]

∈ Fk.
21

This proves that Xτ is Fτ measurable. Suppose that τ1 and τ2 are two stopping times such22

that τ1 ≤ τ2. Let A ∈ Fτ1 . Since A∩ {τ2 ≤ k} = A∩ {τ1 ≤ k} ∩ {τ2 ≤ k} for every event A,23

it follows that A ∩ {τ2 ≤ k} ∈ Fk and A ∈ Fτ2. Hence Fτ1 ⊆ Fτ2 . As an example, let τ be24

an arbitrary stopping time (not necessarily finite a.s.) and define τk = min{k, τ} for finite25

k. Then τk is a finite stopping time with τk ≤ τ . Hence Xτk
is Fτk

measurable for each k26

and so Xτk
is Fτ measurable. Similarly, τk ≤ k so that Fτk

⊆ Fk and Xτk
is Fk measurable.27

4If your filtration starts at n = 0, you can allow stopping times to be nonnegative valued. Indeed, if your
filtration starts at an arbitrary integer k, then a stopping time can take any value from k on up. There is a
trivial extension of every filtration to one lower subscript. For example, if we start at n = 1, we can extend
to n = 0 by defining F0 = {Ω, ∅}. Every martingale can also be extended by defining X0 = E(X1). For the
rest of the course, we will assume that the lowest possible value for a stopping time is 1.
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Example 306. The gambler in Example 299 can try to build a stopping time into a1

gambling system. For example, let τ = min{n : Zn ≥ Y0 + x} for some integer x > 0. This2

would seem to guarantee winning at least x. There are two possible drawbacks. One is that3

there may be positive probability that τ = ∞. Even if τ < ∞ a.s., it might require infinite4

resources to guarantee that we can survive until τ . For example, let Y0 = 0 and let Yn have5

equal probability of being 1 or −1 all n. So, we stop as soon as we have won x more than6

we have lost. If we modify the problem so that we have only finite resources (say k units)7

then this becomes the classic gambler’s ruin problem. The probability of achieving Zn = x8

before Zn = −k is k/(k + x), which goes to 1 as k → ∞. So, if we have infinite resources,9

the probability is 1 that τ <∞, otherwise, we may never achieve the goal. If the probability10

of winning on each game is less than 1/2, then P (τ = ∞) > 0.11

Suppose that we start with a martingale {(Xn,Fn)}∞n=1 and a stopping time τ . We can12

define13

X∗
n =

{

Xn if n ≤ τ ,
Xτ if n > τ

= Xmin{τ,n}.
14

We can call this the stopped martingale. It turns out that {X∗
n}∞n=1 is also a martingale15

relative to the filtration. First, note that Xmin{τ,n} is Fn measurable. Next, notice that16

E(|X∗
n|) =

n−1
∑

k=1

∫

{τ=k}
|Xk|dP +

∫

{τ≥n}
|Xn|dP

17

≤
n
∑

k=1

E(|Xk|) <∞.
18

Finally, let A ∈ Fn. Then A ∩ {τ > n} ∈ Fn, so19

∫

A∩{τ>n}
Xn+1dP =

∫

A∩{τ>n}
XndP,

20

because Xn = E(Xn+1|Fn). It now follows that21

∫

A

X∗
n+1dP =

∫

A∩{τ>n}
Xn+1dP +

∫

A∩{τ≤n}
XτdP

22

=

∫

A∩{τ>n}
XndP +

∫

A∩{τ≤n}
XτdP

23

=

∫

A

X∗
ndP.24

It follows that X∗
n = E(X∗

n+1|Fn) and the stopped martingale is also a martingale. Notice25

that limn→∞X∗
n = Xτ a.s., if τ <∞ a.s.26

Example 307. Consider the stopping time in Example 306 with x = 1. That is τ is the27

first time that a gambler, betting on iid fair coin flips, wins 1 more than he/she has lost.28

This τ < ∞ a.s. It follows that limn→∞X∗
n = Xτ a.s. However, E(X∗

n) = 0 for all n while29

E(Xτ ) = 1 because Xτ = 1 a.s.30
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Optional Sampling. Let {(Xn,Fn)}n=1 be a martingale. Consider a sequence of1

a.s. finite stopping times {τn}∞n=1 such that 1 ≤ τj ≤ τj+1 for all j. Then we can con-2

struct {(Xτn ,Fτn)}∞n=1 and ask whether or not it is a martingale. In general, an unpleasant3

integrability condition is needed to prove this. We shall do a simplified case.4

Theorem 308. (Optional sampling theorem) Let {(Xn,Fn)}∞n=1 be a (sub)martingale.5

Suppose that for each n, there is a finite constant Mn such that τn ≤ Mn a.s. Then6

{(Xτn ,Fτn)}∞n=1 is a (sub)martingale.7

The proof is given in a separate document.8

The unpleasant integrability condition that can replace P (τn ≤Mn) = 1 is the following:9

For every n,10

• P (τn <∞) = 1,11

• E(|Xτn |) <∞, and12

• lim infm→∞ E(|Xm|I(m,∞)(τn)) = 0.13

Because we can use a constant stopping time to stop a martingale, it follows that martin-14

gale theorems will apply to finite sequences of random variables as well as infinite sequences.15

Martingale Convergence. The upcrossing lemma says that a submartingale cannot16

cross a fixed nondegenerate interval very often with high probability. If the submartingale17

were to cross an interval infinitely often, then its lim sup and lim inf would have to be different18

and it couldn’t converge.19

Lemma 309. (Upcrossing lemma) Let {(Xk,Fk)}n
k=1 be a submartingale. Let r < q,20

and define V to be the number of times that the sequence X1, . . . , Xn crosses from below r21

to above q. Then22

E(V ) ≤ 1

q − r
(E|Xn| + |r|) .(310)

23

We will only give an outline of the proof of Lemma 309. Let Yk = max{0, Xk − r}. Then24

V is the number of times that Yk moves from 0 to above q − r, and {(Yk,Fk)}∞k=1 is a25

submartingale. Figure 1 shows an example of the path of Yk indicating those times that it is

Fig. 1. Step in the proof of Lemma 309.

26

crossing up. It is easy to see that V is at most the sum of the upcrossing increments divided27

by q − r. That is,28

V ≤ 1

q − r

n
∑

k=2

(Yk − Yk−1)IEk
,

29
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where Ek is the event that the path is crossing up at time k. Notice that Ek ∈ Fk−1 for all1

k. Hence, for each k ≥ 2,2

E([Yk − Yk−1]IEk
) =

∫

Ek

(Yk − Yk−1)dP =

∫

Ek

[E(Yk|Fk−1) − Yk−1]dP.
3

Because E(Yk|Fk−1) − Yk−1 ≥ 0 a.s. by the submartingale property, we can expand the4

integral from Ek to all of Ω to get5

E([Yk − Yk−1]IEk
) ≤

∫

[E(Yk|Fk−1) − Yk−1]dP = E(Yk − Yk−1).
6

It follows that E(V ) ≤ E(Yn) − E(Y1) ≤ E(Yn) because Y1 ≥ 0. Because max{0, x} is a7

convex function of x, E(Yn) ≤ E(|Xn|) + r. The full proof is in another course document.8

Theorem 311. (Martingale convergence theorem) Let {(Xn,Fn)}∞n=1 be a sub-9

martingale such that supn E|Xn| <∞. Then X = limn→∞Xn exists a.s. and E|X| <∞.10

Proof. Let X∗ = lim supn→∞Xn and X∗ = lim infn→∞Xn. Let B = {ω : X∗(ω) <11

X∗(ω)}. We will prove that P (B) = 0. We can write12

B =
⋃

r < q, r, q rational

{ω : X∗(ω) ≥ q > r ≥ X∗(ω)}.
13

Now, X∗(ω) > q > r ≥ X∗(ω) if and only if the values of Xn(ω) cross from being below r to14

being above q infinitely often. For fixed r and q, we now prove that this has probability 0;15

hence P (B) = 0. Let Vn equal the number of times that X1, . . . , Xn cross from below r to16

above q. According to Lemma 309,17

sup
n

E(Vn) ≤ 1

q − r

(

sup
n

E(|Xn|) + |r|
)

<∞.
18

The number of times the values of {Xn(ω)}∞n=1 cross from below r to above q equals19

limn→∞ Vn(ω). By the monotone convergence theorem,20

∞ > sup
n

E(Vn) = E( lim
n→∞

Vn).
21

It follows that P ({ω : limn→∞ Vn(ω) = ∞}) = 0.22

Since P (B) = 0, we have that X = limn→∞Xn exists a.s. Fatou’s lemma says E(|X|) ≤23

lim infn→∞ E(|Xn|) ≤ supn E(|Xn|) <∞. �24

Example 312. For the Lévy martingale of Example 298,25

E(|Xn|) = E(|E[X|Fn]|) ≤ EE(|X||Fn) = E(|X|) <∞,26

for all n, so the martingale converges. In Theorem 316, we can say even more about the27

limit.28
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Example 313. For the random walk martingale of Example 292, if the Yn’s are iid with1

finite variance σ2, then Xn/
√
n converges in distribution so Xn can’t converge a.s. Indeed,2

the Markov inequality says that3

E(|Xn|)√
nc

≥ P (|Xn| > c
√
n) → 2

[

1 − Φ
( c

σ

)]

,
4

for each positive c. So, eventually E(|Xn|) ≥
√
n[1 − Φ(c/σ)] and limn→∞ E(|Xn|) = ∞.5

Example 314. For the martingale of Example 292, if
∑∞

n=1 Var(Yn) < ∞, then Theo-6

rem 202 already told us that the sum converges a.s.7

We need the following result before we can identify the limit of a Lévy martingale. The8

proof is given in another course document.9

Lemma 315. Let {Fn}∞n=1 be a sequence of σ-fields. Let E(|X|) < ∞. Define Xn =10

E(X|Fn). Then {Xn}∞n=1 is a uniformly integrable sequence.11

Theorem 316. (Lévy’s theorem) Let {Fn}∞n=1 be an increasing sequence of σ-fields.12

Let F∞ be the smallest σ-field containing all of the Fn’s. Let E(|X|) < ∞. Define Xn =13

E(X|Fn) and X∞ = E(X|F∞). Then limn→∞Xn = X∞, a.s.14

The proof of Theorem 316 is in another course document.15

Lemma 317. Let {(Xn,Fn)}∞n=1 be a nonnegative supermartingale. Then Xn converges16

a.s. to a random variable with finite mean.17

Proof. Let Yn = −Xn. Then {(Yn,Fn)}∞n=1 is a submartingale.18

E(|Yn|) = E(Xn) = E[E(Xn|Fn−1)] ≤ E(Xn−1).19

It follows that E(|Yn|) ≤ E(X1) <∞ for all n, so Theorem 311 applies and Yn converges a.s.20

Trivially −Yn = Xn also converges. �21

Reversed Martingales.22

Definition 318. For n = −1,−2, . . ., let sub-σ-field’s Fn−1 ⊆ Fn, suppose that Xn is23

Fn measurable, E(|Xn|) < ∞, and E(Xn|Fn−1) = Xn−1. Then {(Xn,Fn)}−∞
n=−1 is a reversed24

martingale.25

An equivalent way to think about reversed martingales is through a decreasing sequence of26

σ-field’s {Fn}∞n=1 such that Fn+1 ⊆ Fn for n ≥ 1. The proofs of the next two theorems are27

similar to the corresponding theorems for forward martingales.28

Theorem 319. (Reversed martingale convergence theorem) If29

{(Xn,Fn)}−∞
n=−1 is a reversed martingale, then X = limn→−∞Xn exists a.s. and E(X) =30

E(X−1).31
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Proof. Just as in the proof of Theorem 311, we let Vn be the number of times that the1

finite sequence Xn, Xn+1, . . . , X−1 crosses from below a rational r to above another rational2

q (for n < 0). Lemma 309 says that3

E(Vn) ≤
1

q − r
(E(|X−1|) + |r|) <∞.

4

As in the proof of Theorem 311, it follows that X = limn→−∞Xn exists with probability 1.5

Since Xn = E(X−1|Fn) for each n < −1, Lemma 315 says that6

E(X) = lim
n→−∞

E(Xn) = E(X−1). �
7

Notice that reversed martingales are all of the Lévy type. Not surprisingly, there is a version8

of Lévy’s theorem 316 for reversed martingales. We state it in terms of decreasing σ-field’s.9

Theorem 320. Let {Fn}∞n=1 be a decreasing sequence of σ-fields. Let F∞ =
⋂∞

n=1 Fn.10

Let E(|X|) <∞. Define Xn = E(X|Fn) and X∞ = E(X|F∞). Then limn→∞Xn = X∞ a.s.11

Proof. It is easy to see that {(X−n,F−n)}−∞
n=−1 is a reversed martingale and that12

E(|X1|) < ∞. By Theorem 319, it follows that limn→−∞X−n = Y exists and is finite13

a.s. To prove that Y = X∞ a.s., note that X∞ = E(X1|F∞) since F∞ ⊆ F1. So, we must14

show that Y = E(X1|F∞). Let A ∈ F∞. Then15

∫

A

Xn(ω)dP (ω) =

∫

A

X1(ω)dP (ω),
16

since A ∈ Fn and Xn = E(X1|Fn). Once again, using Lemma 315, it follows that17

lim
n→∞

∫

A

Xn(ω)dP (ω) =

∫

A

Y (ω)dP (ω) =

∫

A

X1(ω)dP (ω),
18

hence Y = E(X1|F∞). �19

Theorem 320 allows us to prove a strong law of large numbers that is even more general than20

the usual version. The greater generality comes from the fact that it applies to sequences21

that are not necessarily independent.22

Exchangeability. A sequence of random quantities {Xn}∞n=1 is exchangeable if, for23

every n and all distinct j1, . . . , jn, the joint distribution of (Xj1, . . . , Xjn) is the same as the24

joint distribution of (X1, . . . , Xn).25

Example 321. (Conditionally iid random quantities) Let {Xn}∞n=1 be condi-26

tionally iid given a σ-field C. Then {Xn}∞n=1 is an exchangeable sequence. The result follows27

easily from the fact that28

µXj1
,...,Xjn |C = µX1,...,Xn|C, a.s.29
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Example 322. Let {Xn}∞n=1 be Bernoulli random variables such that1

P (X1 = x1, . . . , Xn = xn) =
1

(n+ 1)
(

n
y

) ,
2

where y =
∑n

j=1 xj. One can show that this specifies consistent joint distributions. One can3

also check that the Xn’s are not independent.4

P (X1 = 1) =
1

2
,

5

P (X1 = 1, X2 = 1) =
1

3
6=
(

1

2

)2

.
6

Theorem 323. (Strong law of large numbers) Let {Xn}∞n=1 be an exchangeable7

sequence of random variables with finite mean. Then limn→∞
1
n

∑n
j=1Xj exists a.s. and has8

mean equal to E(X1). If, the Xj’s are independent, then the limit equals E(X1) a.s.9

Proof. Define Yn = 1
n

∑n
j=1Xj and let Fn be the σ-field generated by all function of10

(X1, X2, . . .) that are invariant under permutations of the first n coordinates. (For example,11

Yn is such a function.) Let Zn = E(X1|Fn). Theorem 320 says that Zn converges a.s.12

to E(X1|F∞), where F∞ =
⋂∞

n=1 Fn. We prove next that Zn = Yn, a.s. Since Yn is Fn13

measurable, we need only prove that, for all A ∈ Fn, E(IAYn) = E(IAX1). Notice that IA is14

a function of X1, X2, . . . that is invariant under permutations of X1, . . . , Xn since it depends15

on X1, . . . , Xn only through Yn. That is, there are functions g and h such that16

IA(ω) = h(X1(ω), X2(ω), . . .)(324)17

= g(X1(ω) + · · ·+Xn(ω), Xn+1(ω), Xn+2(ω), . . .).18

For all j = 1, . . . , n, X1h(X1, X2, . . .) has the same distribution as19

Xjh(Xj , X2, . . . , Xj−1, X1, Xj+1, . . .). But20

h(Xj, X2, . . . , Xj−1, X1, Xj+11, . . .) = h(X1, X2, . . .) = IA,21

according to (324). Hence, for all j = 1, . . . , n, IAXj has the same distribution as IAX1. It22

follows that23

E(IAX1) =
1

n

n
∑

j=1

E(IAXj) = E(IAYn).
24

Clearly E(X1|F∞) has mean E(X1). If the Xn’s are independent, then the limit, being mea-25

surable with respect to the tail σ-field, must be constant a.s., by Theorem 168 (Kolmogorov26

0-1 law). The constant must equal the mean of the random variable, which is E(X1). �27

Example 325. In Example 322, we know that Yn converges a.s., hence it converges in28

distribution. We can compute the distribution of Yn exactly: P (Yn = k/n) = 1/(n + 1) for29

k = 0, . . . , n. Hence, Yn converges in distribution to uniform on the interval [0, 1], which30

must be the distribution of the limit. The limit is not a.s. constant.31
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The rest of this material was not covered in class, but is left here for your information.1

There is a very useful theorem due to deFinetti about exchangeable random quantities2

that relies upon the strong law of large numbers. To state the theorem, we need to recall the3

concept of “random probability measure” that was introduced in Example 173. Let (X ,B)4

be a Borel space, and let P be the set of all probability measures on (X ,B). We can think5

of P as a subset of the function space [0, 1]B, hence it has a product σ-field. Recall that the6

product σ-field is the smallest σ-field such that for all B ∈ B, the function fB : P → [0, 1]7

defined by fB(Q) = Q(B) is measurable. These are the coordinate projection functions.8

Example 326. (Empirical probability measure) Let X1, . . . , Xn be random quan-9

tities taking values in X . For each B ∈ B, define Pn(ω)(B) = 1
n

∑n
j=1 IB(Xj(ω)). For each10

ω, Pn(ω)(·) is clearly a probability measure, so Pn : Ω → P is a function that we could prove11

was measurable, but that proof will not be given here. Theorem 323 says that Pn(ω)(B)12

converges to E(IB(X1)|F∞)(ω) for all B and almost all ω. If we assume that the Xn’s take13

values in a Borel space, then E(IB(X1)|F∞) = Pr(X1 ∈ B|F∞) is part of an rcd. This rcd14

plays an important roll in deFinetti’s theorem.15

DeFinetti’s theorem says that a sequence of random quantities is exchangeable if and only if it16

is conditionally iid given a random probability measure, and that random probability measure17

is the limit of the empirical probability measures of X1, . . . , Xn. That is, Example 321 is18

essentially the only example of exchangeable sequences. The proof is given in another course19

document.20

Theorem 327. (DeFinetti’s theorem) A sequence {Xn}∞n=1 of random quantities is21

exchangeable if and only if Pn (the empirical probability measure of X1, . . . , Xn) converges22

a.s. to a random probability measure P and the Xn’s are conditionally iid with distribution23

Q given P = Q.24

Example 328. In Example 322, the empirical probability measure is equivalent to Yn =25

∑n
k=1Xk/n, since Yn is one minus the proportion of the observations less than or equal to 0.26

So P is equivalent to the limit of Yn, the limit of relative frequency of 1’s in the sequence.27

Conditional on the limit of relative frequency of 1’s being x, the Xk’s are iid with Bernoulli28

distribution with parameter x.29
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Optional Sampling Theorem1

Proof of Theorem 308. Without loss of generality, assume that Mn ≤ Mn+1 for2

every n. Since τn ≤Mn,3

E(|Xτn |) =

Mn
∑

k=1

∫

{τn=k}
|Xk|dP ≤

Mn
∑

k=1

E(|Xk|) <∞.
4

We already know that Xτn is Fτn measurable. Let A ∈ Fτn . We need to show that5
∫

A
Xτn+1

dP (≥) =
∫

A
XτndP . Write6

∫

A

[Xτn+1
−Xτn]dP =

∫

A∩{τn+1>τn}
[Xτn+1

−Xτn ]dP.
7

Next, for each ω ∈ {τn+1 > τn}, write8

Xτn+1
(ω) −Xτn(ω) =

∑

All k such that τn(ω) < k ≤ τn+1(ω)

[Xk(ω) −Xk−1(ω)].
9

The smallest k such that τn < k is k = 2, So,10

∫

A

[Xτn+1
−Xτn ]dP =

∫

A

Mn+1
∑

k=2

I{τn<k≤τn+1}(Xk −Xk−1)dP.
11

Since A ∈ Fτn and {τn < k ≤ τn+1} = {τn ≤ k − 1} ∩ {τn+1 ≤ k − 1}C , it follows that12

Bk = A ∩ {τn < k ≤ τn+1} ∈ Fk−1,13

for each k. So14

∫

A

[Xτn+1
−Xτn ]dP =

Mn+1
∑

k=2

∫

Bk

(Xk −Xk−1)dP
15

(≥) =

Mn+1
∑

k=2

∫

Bk

[Xk − E(Xk|Fk−1)]dP = 0.
16

because Xk−1(≤) = E(Xk|Fk−1) and Bk ∈ Fk−1. �17
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Upcrossing Lemma1

Lemma 309. (Upcrossing lemma) Let {(Xk,Fk)}n
k=1 be a submartingale. Let r < q,2

and define V to be the number of times that the sequence X1, . . . , Xn crosses from below r3

to above q. Then4

(310) E(V ) ≤ 1

q − r
(E|Xn| + |r|) .

5

6

Proof. Let Yk = max{0, Xk − r} for every k so that {(Yk,Fk)}n
k=1 is a submartingale.7

Note that a consecutive set of Xk(ω) cross from below r to above q if and only if the8

corresponding consecutive set of Yk(ω) cross from 0 to above q− r. Let T0(ω) = 0 and define9

Tm for m = 1, 2, . . . as10

Tm(ω) = inf{k ≤ n : k > Tm−1(ω), Yk(ω) = 0}, if m is odd,11

Tm(ω) = inf{k ≤ n : k > Tm−1(ω), Yk(ω) ≥ q − r}, if m is even,12

Tm(ω) = n+ 1, if the corresponding set above is empty.13

Now V (ω) is one-half of the largest even m such that Tm(ω) ≤ n. Define, for k = 1, . . . , n,14

Rk(ω) =

{

1 if Tm(ω) < k ≤ Tm+1(ω) for m odd,
0 otherwise.15

Then (q−r)V (ω) ≤
∑n

k=1Rk(ω)[Yk(ω)−Yk−1(ω)] = X̂, where Y0 ≡ 0 for convenience. First,16

note that for all m and k, {Tm(ω) ≤ k} ∈ Fk. Next, note that for every k,17

{ω : Rk(ω) = 1} =
⋃

m odd

(

{Tm ≤ k − 1} ∩ {Tm+1 ≤ k − 1}C
)

∈ Fk−1.(329)
18

19

E(X̂) =

n
∑

k=1

∫

{ω:Rk(ω)=1}
[Yk(ω) − Yk−1(ω)]dP (ω)

20

=
n
∑

k=1

∫

{ω:Rk(ω)=1}
[E(Yk|Fk−1)(ω) − Yk−1(ω)]dP (ω)

21

≤
n
∑

k=1

∫

[E(Yk|Fk−1)(ω) − Yk−1(ω)]dP (ω)
22

=

n
∑

k=1

[E(Yk) − E(Yk−1)] = E(Yn),
23

where the second equality follows from (329) and the inequality follows from the fact that24

{(Yk,Fk)}n
k=1 is a submartingale. It follows that (q − r)E(V ) ≤ E(Yn). Since E(Yn) ≤25

|r| + E(|Xn|), it follows that (310) holds. �26
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Lévy’s Theorem1

Lemma 315. Let {Fn}∞n=1 be a sequence of σ-fields. Let E(|X|) < ∞. Define Xn =2

E(X|Fn). Then {Xn}∞n=1 is a uniformly integrable sequence.3

Proof. Since E(X|Fn) = E(X+|Fn) − E(X−|Fn), and the sum of uniformly integrable4

sequences is uniformly integrable, we will prove the result for nonnegative X. Let Ac,n =5

{Xn ≥ c} ∈ Fn. So
∫

Ac,n
Xn(ω)dP (ω) =

∫

Ac,n
X(ω)dP (ω). If we can find, for every ǫ > 0,6

a C such that
∫

Ac,n
X(ω)dP (ω) < ǫ for all n and all c ≥ C, we are done. Define η(A) =7

∫

A
X(ω)dP (ω). We have η ≪ P and η is finite. Absolute continuity implies that for every8

ǫ > 0 there exists δ such that P (A) < δ implies η(A) < ǫ. By the Markov inequality,9

P (Ac,n) ≤
1

c
E(Xn) =

1

c
E(X),

10

for all n. Let C = 2E(X)/δ. Then c ≥ C implies P (Ac,n) < δ for all n, so η(Ac,n) < ǫ for all11

n. �12

Theorem 316. (Lévy’s theorem) Let {Fn}∞n=1 be an increasing sequence of σ-fields.13

Let F∞ be the smallest σ-field containing all of the Fn’s. Let E(|X|) < ∞. Define Xn =14

E(X|Fn) and X∞ = E(X|F∞). Then limn→∞Xn = X∞, a.s.15

Proof. By Lemma 315, {Xn}∞n=1 is a uniformly integrable sequence. Let Y be the limit16

of the martingale guaranteed by Theorem 311. Since Y is a limit of functions of the Xn, it17

is measurable with respect to F∞. It follows from uniform integrability that for every event18

A, limn→∞ E(XnIA) = E(Y IA). Next, note that, for every m and A ∈ Fm,19

∫

A

Y dP = lim
n→∞

∫

A

E(X|Fn)dP
20

= lim
n→∞

∫

A

XndP
21

=

∫

A

XdP,
22

where the last equality follows from the fact that A ∈ Fn for all n ≥ m so
∫

A
XndP =

∫

A
XdP23

because Xn = E(X|Fn). Since
∫

A
Y dP =

∫

A
XdP for all A ∈ Fm for all m, it holds for all24

A in the field F =
⋃∞

n=1 Fn. Since |X| is integrable and F is a field, we can conclude25

that the equality holds for all A ∈ F∞, the smallest σ-field containing F . The equality26

E(XIA) = E(Y IA) for all A ∈ F∞ together with the fact that Y is F∞ measurable is27

precisely what it means to say that Y = E(X|F∞) = X∞. �28
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Solutions to Exercises1

Exercise 13: For notational convenience, define F ≡ ∪∞
n=1Fn.2

For the first part, it is clear that Ω ∈ F and that F is closed under complements. If3

A ∈ F and B ∈ F , then for some n, A ∈ Fn and for some m, B ∈ Fm. Thus, A∪B ∈ Fk ⊂ F4

for k ≥ max{n,m}.5

For the second part, consider the given example and define the set An to be {n} if n is6

even, and to be ∅ if n is odd. Clearly, An ∈ Fn ⊂ F for each n. But, ∪∞
n=1An 6∈ F . To see7

this, consider that ∪∞
n=1An is the set of all positive, even integers. The class Fn includes the8

set of positive, even integers less than or equal to n. While it is true that n→ ∞, there is9

no Fn which has ∪∞
n=1An as a member, so it cannot be in F .10

Exercise 17: Examples include:11

1. The set of all closed intervals,12

2. All intervals [a, b) where a, b ∈ IR,13

3. All intervals (a,∞) where a ∈ IR,14

4. All intervals [a,∞) where a ∈ IR,15

5. All intervals (−∞, b) where b ∈ IR,16

6. All intervals (−∞, b] where b ∈ IR.17

Exercise 18: Yes. See, for example, page 45 in Billingsley or Exercise 6 on page 34 of Ash18

and Doleans-Dade.19

Exercise 22: If Ω = ZZ, F = 2Ω and µ is counting measure, then let A1 = {0} and20

Ak = {−(k− 1), k− 1} for k > 1. It is impossible to construct a countable sequence of sets,21

each with a finite number of elements, whose union is an uncountable set.22

Exercise 27: Not here yet...23

Exercise 30: First, recall that24

lim sup
n→∞

xn = inf
n

sup
k≥n

xk
25

and26

lim inf
n→∞

xn = sup
n

inf
k≥n

xk.
27

Then we can write28

Ilim supn→∞
An = lim sup

n→∞
IAn29
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and1

Ilim infn→∞ An = lim inf
n→∞

IAn .2

Exercise 31:3

lim sup
n→∞

An = (−1, 1] and lim inf
n→∞

An = {0}
4

Exercise 33: Not here yet...5

Exercise 35: Let (Ω,F) = (IR,B1), let µ be Lebesgue measure, and let An = (n,∞). Then6

µ(An) = ∞ for all n but limn→∞An = ∅.7

Exercise 41: For Proposition 39, it is clear that Ω ∈ C and that C is closed under comple-8

ments since C is a λ-system. Further, if A1, A2, . . . ∈ C, then9

n
⋃

i=1

Ai = A1 ∪
(

A2 ∩AC
1

)

∪
(

A3 ∩ AC
1 ∩ AC

2

)

∪ · · · ,
10

and AC
1 ∈ C since C is a λ-system, A2 ∩ AC

1 ∈ C since C is a π-system, A1 ∪
(

A2 ∩ AC
1

)

∈ C11

since C is a λ-system, and so forth.12

For Proposition 40, note that A ∩BC = (AC ∪ (A ∩B))C .13

Exercise 44: If we define C to be the class of subsets of Ω = IR of the form (−∞, a]14

with a ∈ IR, then C is a π-system and σ(C) = B1. Also note that P is σ-finite since it is a15

probability measure. Thus, there is a unique extension of P from C to B1.16

Exercise 45: If we define the value of P ({b}) we will define the measure on the σ-field17

generated by the sets {a, b} and {b, c}. This is the case since the class of sets over which P18

is defined is now a π-system.19



Exercise 51:1

First, we show that µ∗ extends µ. We only need to show that µ∗(A) = µ(A) for all A ∈ C.2

Clearly, µ∗(A) ≤ µ(A) for all A ∈ C. To show the reverse inequality, let {Ai}∞i=1 be disjoint3

elements of C such that A ⊆
⋃∞

i=1Ai, and let Bi = Ai ∩ A so that A =
⋃∞

i=1Bi. Countable4

additivity of µ gives us5

µ(A) =

∞
∑

i=1

µ(Bi) ≤
∞
∑

i=1

µ(Ai).
6

Since every sum in (52) is a case of the rightmost sum in the equation immediately above,7

we have µ(A) ≤ µ∗(A).8

Next, we show that µ∗ is monotone and subadditive. Clearly, B1 ⊆ B2 implies µ∗(B1) ≤9

µ∗(B2). It is also easy to see that µ∗(B1∪B2) ≤ µ∗(B1)+µ∗(B2) for all B1, B2 ∈ 2Ω. In fact,10

if {Bn}∞n=1 ∈ 2Ω, then µ∗(
⋃∞

i=1Bi) ≤
∑∞

i=1 µ
∗(Bi). To see this, first choose ǫ > 0. Note that11

there must exist a sequence of sets Ai1, Ai2, . . . ∈ C such that µ∗(Bi) >
∑∞

j=1 µ(Aij) − ǫ/2i
12

and Bi ⊆ ∪∞
j=1Aij for each i. Thus,13

∞
∑

i=1

µ∗(Bi) >

[ ∞
∑

i=1

∞
∑

j=1

µ(Aij)

]

− ǫ ≥ µ∗

( ∞
⋃

i=1

Bi

)

− ǫ
14

since the {Aij} cover ∪∞
i=1Bi. Thus, µ∗(∪∞

i=1Bi) <
∑∞

i=1 µ
∗(Bi) + ǫ for any ǫ > 0, the desired15

inequality holds.16

Next, we show that C ⊆ A. Let A ∈ C and C ∈ 2Ω. Since µ∗ is subadditive, we only17

need to show that µ∗(C) ≥ µ∗(C ∩ A) + µ∗(C ∩ AC). If µ∗(C) = ∞, this is clearly true. So18

let µ∗(C) < ∞. From the definition of µ∗, for every ǫ > 0, there exists a collection {Ai}∞i=119

of elements of C such that
∑∞

i=1 µ(Ai) < µ∗(C) + ǫ. Since µ(Ai) = µ(Ai ∩ A) + µ(Ai ∩ AC)20

for every i, we have21

µ∗(C) + ǫ >
∞
∑

i=1

µ(Ai ∩A) +
∞
∑

i=1

µ(Ai ∩ AC)
22

≥ µ∗(C ∩ A) + µ∗(C ∩ AC).23

Since this is true for every ǫ > 0, it must be that µ∗(C) ≥ µ∗(C ∩ A) + µ∗(C ∩ AC), hence24

A ∈ A.25

Next, we show that A is a field. It is clear that Ω ∈ A and A ∈ A implies AC ∈ A by26

the symmetry in the definition of A. Let A1, A2 ∈ A and C ∈ 2Ω. We can write27

µ∗(C) = µ∗(C ∩ A1) + µ∗(C ∩ AC
1 )28

= µ∗(C ∩ A1) + µ∗(C ∩ AC
1 ∩ A2) + µ∗(C ∩AC

1 ∩AC
2 )29

≥ µ∗(C ∩ [A1 ∪ A2]) + µ∗(C ∩ [A1 ∪ A2]
C),30

where the two equalities follow from A1, A2 ∈ A, and the inequality follows from the subad-31

ditivity of µ∗. Another application of subadditivity shows that A1 ∪ A2 ∈ A.32

Next, we prove that µ∗ is finitely additive on A. If A1, A2 are disjoint elements of A,33

then A1 = (A1 ∪A2) ∩A1 and A2 = (A1 ∪A2) ∩AC
1 . It follows that34

µ∗(A1 ∪ A2) = µ∗(A1) + µ∗(A2).35



By induction, µ∗ is finitely additive on A.1

Next, we prove that A is a σ-field. (We have already shown that A is a field.) Let2

{An}∞n=1 ∈ A; then we can write A =
⋃∞

i=1Ai =
⋃∞

i=1Bi, where each Bi ∈ A and the Bi are3

disjoint. (This just makes use of complements and finite unions of elements of A being in4

A.) Let Dn =
⋃n

i=1Bi and C ∈ 2Ω. By the same argument we used in proving that µ∗ is5

finitely additive, we have6

µ∗(C ∩ [B1 ∪ B2]) = µ∗(C ∩B1) + µ∗(C ∩ B2).7

A simple induction argument extends this to8

µ∗(C ∩Dn) =

n
∑

i=1

µ∗(C ∩ Bi).
9

Since AC ⊆ DC
n and Dn ∈ A for each n, we have10

µ∗(C) = µ∗(C ∩Dn) + µ∗(C ∩DC
n )11

≥ µ∗(C ∩Dn) + µ∗(C ∩ AC)12

=
n
∑

i=1

µ∗(C ∩ Bi) + µ∗(C ∩ AC).
13

Since this is true for every n,14

µ∗(C) ≥
∞
∑

i=1

µ∗(C ∩Bi) + µ∗(C ∩AC)
15

≥ µ∗(C ∩ A) + µ∗(C ∩ AC),16

where the last inequality follows from subadditivity. The reverse inequality holds by subad-17

ditivity, so, A ∈ A, and A is a σ-field.18

Next, we show that µ∗ is countably additive when restricted to A. (We already proved19

that µ∗ is finitely additive.) Let A =
⋃∞

i=1Ai, where each Ai ∈ A and the Ai are disjoint.20

Since
⋃n

i=1Ai ⊆ A, we have, for every n, µ∗(A) ≥ ∑n
i=1 µ

∗(Ai), which implies µ∗(A) ≥21

∑∞
i=1 µ

∗(Ai). By subadditivity, we get the reverse inequality, hence µ∗ is countably additive22

on A.23

Next, we prove uniqueness. Suppose that µ′ also extends µ to A. Since C is a π-system24

and µ is σ-finite on C, Theorem 43 implies that µ′ = µ on σ(C). It is straightforward to25

prove that µ′ = µ on the completion of σ(C). (See Theorem 1.3.8 in Ash and Dade.)26

Finally, we prove completeness. Since we already proved that µ∗ is monotone, we need27

only prove that A contains all B such that µ∗(B) = 0. Let µ∗(B) = 0. Then µ∗(B ∩C) = 028

for all C ∈ 2Ω. By subadditivity and monotonicity, we have29

µ∗(C) ≤ µ∗(C ∩B) + µ∗(C ∩BC) = µ∗(C ∩BC) ≤ µ∗(C).30

It follows that B ∈ A.31



Exercise 57: Nothing yet...1

Exercise 61: The result is true if we can prove that D = {A ∈ A : f−1(A) ∈ F} is a2

σ-field. Clearly S ∈ D. Since inverse image commutes with complement, A ∈ D implies3

AC ∈ D. Since inverse image commutes with union, An ∈ D for all n implies
⋃∞

n=1An ∈ D.4

So, D is a σ-field.5

Exercise 63: Nothing yet...6

Exercise 64: Let f be a monotone increasing function. Then, for each a, there exists b7

such that f−1((−∞, a]) is an interval of the form (−∞, b) or (−∞, b]. A similar result holds8

for decreasing functions. Hence, monotone functions are measurable.9

Exercise 73: For part 1,10

{ω : lim sup
n

fn ≥ a} =
∞
⋂

m=1

{fn ≥ a− 1/m, i.o.},
11

a measurable set. Similarly for part 2. For part 3, the set in question is the set where the12

difference of two measurable functions is 0, a measurable set. Part 4 is clear from the first13

three parts, but you can fill in the details in a homework problem. The functions in parts 1,14

2, and 4 might be extended real-valued.15

Exercise 78: Let Ω = ZZ
2 with the σ-field 2Ω, while S = ZZ with σ-field 2S. Let f(x, y) = x.16

Let µ be counting measure. Then, for each integer x, f−1({x}) = {(x, y) : y ∈ ZZ} and17

ν({x}) = ∞. Even though µ is σ-finite, ν is not.18

Exercise 90: Let g = I[a,b]f . Every lower Riemann sum is the integral of a simple function19

φ1 ≤ g and every upper Riemann sum is the integral of a simple function φ2 ≥ g. It follows20

that21
∫

φ1dµ ≤
∫

gdµ ≤
∫

φ2dµ.
22

But for each ǫ > 0, φ1 and φ2 can be chosen so that
∫

φ2dµ −
∫

φ1dµ < ǫ. So, limits of the23

upper and lower sums both equal
∫

gdµ.24

Exercise 95: Let X put probability 1/2 on c and −c.25

Exercise 109: Clearly, ν is nonnegative and ν(∅) = 0, since fI∅ = 0, a.e. [µ]. Let {An}∞n=126

be disjoint. For each n, define gn = fIAn and fn =
∑n

i=1 gi. Define A =
⋃∞

n=1An. Then27

0 ≤ fn ≤ fIA, a.e. [µ] and fn converges to fIA, a.e. [µ]. So, the monotone convergence28

theorem says that29

lim
n→∞

∫

fndµ = ν(A).(330)
30



Also, ν(Ai) =
∫

gidµ, for each i. It follows from Theorem 100 that1

ν

(

n
⋃

i=1

Ai

)

=

∫

fndµ =
n
∑

i=1

∫

gidµ =
n
∑

i=1

ν(Ai).(331)
2

Take the limit as n→ ∞ of the second and last terms in (331) and compare to (330) to see3

that ν is countably additive.4


