
Chapter 11

Examples of Markov
Processes

Section 11.1 looks at the evolution of densities under the action
of the logistic map; this shows how deterministic dynamical systems
can be brought under the sway of the theory we’ve developed for
Markov processes.

Section 11.2 finds the transition kernels for the Wiener process,
as an example of how to manipulate such things.

Section 11.3 generalizes the Wiener process example to other
processes with stationary and independent increments, and in doing
so uncovers connections to limits of sums of IID random variables
and to self-similarity.

11.1 Probability Densities in the Logistic Map

Let’s revisit the first part of Exercise 5.3, from the point of view of what we now
know about Markov processes. The exercise asks us to show that the density
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is invariant under the action of the logistic map with a = 4.

Let’s write the mapping as F (x) = 4x (1− x). Solving a simple quadratic
equation gives us the fact that F−1 (x) is the set
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Notice, for later use, that the two solutions add up to 1. Notice also that
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cumulative distribution function of Xn+1, P (Xn+1 ≤ x).

P (Xn+1 ≤ x)
= P (Xn+1 ∈ [0, x]) (11.1)
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)
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ρn (y) dy (11.4)

where ρn is the density of Xn. So we have an integral equation for the evolution
of the density,

∫ x
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This sort of integral equation is complicated to solve directly. Instead, take
the derivative of both sides with respect to x; we can do this through the
fundamental theorem of calculus. On the left hand side, this will just give
ρn+1 (x), the density we want.

ρn+1 (x) (11.6)

=
d

dx

∫ 1
2 (1−

√
1−x)

0
ρn (y) dy +

d

dx

∫ 1

1
2 (1+

√
1−x)

ρn (y) dy

= ρn

(
1
2

(
1−

√
1− x

)) d

dx

(
1
2

(
1−

√
1− x

))
(11.7)

−ρn

(
1
2

(
1 +

√
1− x

)) d

dx

(
1
2

(
1 +

√
1− x

))

=
1

4
√

1− x

(
ρn

(
1
2

(
1−

√
1− x

))
+ ρn

(
1
2

(
1 +

√
1− x

)))
(11.8)

Notice that this defines a linear operator taking densities to densities. (You
should verify the linearity.) In fact, this is a Markov operator, by the terms of
Definition 117. Markov operators of this sort, derived from deterministic maps,
are called Perron-Frobenius or Frobenius-Perron operators, and accordingly de-
noted by P . Thus an invariant density is a ρ∗ such that ρ∗ = Pρ∗. All the
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problem asks us to do is to verify that 1

π
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is such a solution.
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Since ρ∗ (x) = ρ∗ (1− x), it follows that
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= ρ∗ (11.14)

as desired.
By Lemma 135, for any distribution ρ, ‖Pnρ − Pnρ∗‖ is a non-increasing

function of n. However, Pnρ∗ = ρ∗, so the iterates of any distribution, under
the map, approach the invariant distribution monotonically. It would be very
handy if we could show that any initial distribution ρ eventually converged on
ρ∗, i.e. that ‖Pnρ − ρ∗‖ → 0. When we come to ergodic theory, we will see
conditions under which such distributional convergence holds, as it does for the
logistic map, and learn how such convergence in distribution is connected to
both pathwise convergence properties, and to the decay of correlations.

11.2 Transition Kernels and Evolution Opera-
tors for the Wiener Process

We have previously defined the Wiener process (Examples 38 and 79) as the
real-valued process on R+ with the following properties:

1. W (0) = 0;

2. For any three times t1 ≤ t2 ≤ t3, W (t3) −W (t2) |= W (t2) −W (t1) (inde-
pendent increments);

3. For any two times t1 ≤ t2, W (t2) − W (t1) ∼ N (0, t2 − t1) (Gaussian
increments);

4. Continuous sample paths (in the sense of Definition 73).
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In Exercise 4.1, you showed that a process satisfying points (1)–(3) above
exists. To show that any such process has a version with continuous sample
paths, invoke Theorem 97 (Exercise 11.3). Here, however, we will show that
it is a homogeneous Markov process, and find both the transition kernels and
the evolution operators. Markovianity follows from the independent increments
property (2), while homogeneity and the form of the transition operators comes
from the Gaussian assumption (3).

First, here’s how the Gaussian increments property gives us the transition
probabilities:

P (W (t2) ∈ B|W (t1) = w1) = P (W (t2)−W (t1) ∈ B − w1) (11.15)

=
∫

B−w1

du
1√

2π(t2 − t1)
e−

u2
2(t2−t1)(11.16)

=
∫

B
dw2

1√
2π(t2 − t1)

e−
(w2−w1)2

2(t2−t1) (11.17)

≡ µt1,t2(w1, B) (11.18)

Since this evidently depends only on t2 − t1, and not the individual times, the
process is homogeneous. Now, assuming homogeneity, we can find the time-
evolution operators for well-behaved observables:

Ktf(w) = E [f(Wt + s)|Ws = w] (11.19)

=
∫

f(u)µt(w, du) (11.20)

=
∫

f(u)
1√
2πt

e−
(u−w)2

2t du (11.21)

= E
[
f(w +

√
tZ)

]
(11.22)

where Z is a standard Gaussian random variable independent of Ws.
To show that W (t) is a Markov process, we must show that, for any finite

collection of times t1 ≤ t2 ≤ . . . ≤ tk,

L (Wt1 ,Wt2 , . . . Wtk) = µt1,t2µt2,t3 . . . µtk−1,tk (11.23)

Let’s just go through the k = 3 case, as the others are fundamentally similar,
but with more notation. Notice that W (t3) − W (t1) = (W (t3) − W (t2)) +
(W (t2)−W (t1)). Because increments are independent, then, W (t3)−W (t1) is
the sum of two independent random variables, W (t3)−W (t2) and W (t2)−W (t1).
The distribution of W (t3) −W (t1) is then the convolution of distributions of
W (t3) −W (t2) and W (t2) −W (t1). Those are N (0, t3 − t2) and N (0, t2 − t1)
respectively. The convolution of two Gaussian distributions is a third Gaus-
sian, summing their parameters, so according to this argument, we must have
W (t3) −W (t1) ∼ N (0, t3 − t1). But this is precisely what we should have, by
the Gaussian-increments property. Since the trick we used above to get the
transition kernel from the increment distribution can be applied again, we con-
clude that µt1,t2µt2,t3 = µt1,t3 . The same trick applies when k > 3. Therefore
(Theorem 106), W (t) is a Markov process, with respect to its natural filtration.
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11.3 Lévy Processes and Limit Laws

Let’s think a bit more about the trick we’ve just pulled with the Wiener process.
We wrote the time evolution operators in terms of a random variable,

Ktf(w) = E
[
f(w +

√
tZ)

]
(11.24)

Notice that
√

tZ ∼ N (0, t), i.e., it is the increment of the process over an interval
of time t. This can be generalized to other processes of a similar sort. These
are one natural way of generalizing the idea of a sum of IID random variables.

Definition 137 (Processes with Stationary and Independent Incre-
ments) A stochastic process X is a stationary, independent-increments process,
or has stationary, independent increments when

1. The increments are independent; for any collection of indices t1 ≤ t2 ≤
. . . ≤ tk, with k finite, the increments X(ti) − X(ti−1) are all jointly
independent.

2. The increments are stationary; for any τ > 0,

L (X(t2)−X(t1), X(t3)−X(t2), . . . X(tk)−X(tk−1)) (11.25)
= L (X(t2 + τ)−X(t1 + τ), X(t3 + τ)−X(t2 + τ), . . . X(tk + τ)−X(tk−1 + τ))

Definition 138 (Lévy Processes) A Lévy process is a process with station-
ary and independent increments and cadlag sample paths, which start at zero,
X(0) = 0.

Example 139 (Wiener Process is Lévy) The Wiener process is a Lévy
process (since it has not just cadlag but continuous sample paths).

Example 140 (Poisson Counting Process) The Poisson counting process
with intensity λ is the integer-valued process N on R+ where N(0) = 0, N(t) ∼
Poisson(λt), and independent increments. It defines a Poisson point process
(in the sense of Example 20) by assigning the interval [0, t] the measure N(t),
the measure extending to other Borel sets in the usual way. Conversely, any
Poisson process defines a counting process in this sense. N can be shown to be
continuous in probability, and so, via Theorem 96, to have a cadlag modification.
(Exercise 11.5.) This is a Lévy process.

It is not uncommon to see people writing just “processes with independent
increments” when they mean “stationary and independent increments”.

Theorem 141 (Processes with Stationary Independent Increments are
Markovian) Any process with stationary, independent increments is Markovian
with respect to its natural filtration, and homogeneous in time.
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Proof: The joint distribution for any finite collection of times factors into
a product of incremental distributions:

L (X(t1), X(t2), . . . X(tk)) (11.26)
= L (X(t1))L (X(t2)−X(t1)) . . .L (X(tk)−X(tk−1))

Define µt(x,B) = P (X(t1 + t)−X(t1) + x ∈ B). This is a probability ker-
nel. Moreover, it satisfies the semi-group property, since X(t3) − X(t1) =
X(t3) − X(t2) + X(t2) + X(t1) (and similarly for more indices). Thus the
µt, so defined, are transition probability kernels (Definition 105). By Theorem
106, X is Markovian with respect to its natural filtration. !

Remark: The assumption that the increments are stationary is not necessary
to prove Markovianity. What property of X does it then deliver?

Theorem 142 (Time-Evolution Operators of Processes with Station-
ary, Independent Increments) If X has stationary and independent incre-
ments, then its time-evolution operators Kt are given by

Ktf(x) = E [f(x + Zt)] (11.27)

where L (Zt) = L (X(t)−X(0)), the increment from 0 to t.

Proof: Exactly parallel to the Wiener process case.

Ktf(x) = E [f(Xt)|F0] (11.28)
= E [f(Xt)|X0 = x] (11.29)

=
∫

f(y)µt(x, dy) (11.30)

Since µt(x,B) = P (X(t1 + t)−X(t1) + x ∈ B), the theorem follows. !
Notice that so far everything has applied equally to discrete or to continuous

time. For discrete time, we can chose the distribution of increments over a single
time-step, L (X(1)−X(0)), to be essentially whatever we like; stationarity and
independence then determine the distribution of all other increments. For con-
tinuous time, however, our choices are more constrained, and in an interesting
way.

By the semi-group property of the time-evolution operators, we must have
KsKt = Kt+s for all times s and t. Applying Theorem 142, it must be the case
that

Kt+sf(x) = E [f(x + Zt+s)] (11.31)
= KsE [f(x + Zt)] (11.32)
= E [f(x + Zs + Zt)] (11.33)

where Zs |= Zt. That is, the distribution of Zt+s must be the convolution of
the distributions of Zt and Zs. Let us in particular pick s = t; this implies
L (Z2t) = L (Zt) % L (Zt), where % indicates convolution. Writing νt for L (Zt),
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another way to phrase our conclusion is that νt = νt/2 % νt/2. Clearly, this
argument could be generalized to relate νt to νt/n for any n:

νt = ν"n
t/n (11.34)

where the superscript %n indicates the n-fold convolution of the distribution
with itself. Equivalently, for each t, and for all n,

Zt
d=

n∑

i=1

Di (11.35)

where the IID Di ∼ νt/n. This is a very curious-looking property with a name.

Definition 143 (Infinitely-Divisible Distributions and Random Vari-
ables) A probability distribution ν is infinitely divisible when, for each n, there
exists a νn such that ν = ν"n

n . A random variable Z is infinitely divisible when,
for each n, there are n IID random variables D(n)

i such that Z
d=

∑
i D(n)

i , i.e.,
when its distribution is infinitely divisible.

Clearly, if ν is an infinitely divisible distribution, then it can be obtained as
the limiting distribution of a sum of IID random variables D(n)

i . (To converge,
the individual terms must be going to zero in probability as n grows.) More
remarkably, the converse is also true:

Proposition 144 (Limiting Distributions Are Infinitely Divisible) If ν
is the limiting distribution of a sequence of IID sums, then it is an infinitely-
divisible distribution.

Proof: See, for instance, Kallenberg (2002, Theorem 15.12). !
Remark: This should not be obvious. If we take larger and larger sums of

(centered, standardized) IID Bernoulli variables, we obtain a Gaussian as the
limiting distribution, but at no time is the Gaussian the distribution of any of
the finite sums. That is, the IID sums in the definition of infinite divisibility
are not necessarily at all the same as those in the proposition.

Theorem 145 (Infinitely Divisible Distributions and Stationary In-
dependent Increments) If X is a process with stationary and independent
increments, then for all t, X(t)−X(0) is infinitely divisible.

Proof: See the remarks before the definition of infinite divisibility. !

Corollary 146 (Infinitely Divisible Distributions and Lévy Processes)
If ν is an infinitely divisible distribution, there exists a Lévy process where
X(1) ∼ ν, and this determines the other distributions.

Proof: If X(1) ∼ ν, then by Eq. 11.34, X(n) ∼ ν∗n for all integer n.
Conversely, the distribution of X(1/n) is also fixed, since ν = L (X(1/n))∗n,
which means that the characteristic function of ν is equal to the nth power of
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that of X(1/n); inverting the latter then gives the desired distribution. Because
increments are independent, X(n+1/m) d= X(n)+X(1/m), hence L (X(1)) fixes
the increment distribution for all rational time-intervals. By continuity, however,
this also fixes it for time intervals of any length. Since the distribution of
increments and the condition X(0) = 0 fix the finite-dimensional distributions, it
remains only to show that the process is cadlag, which can be done by observing
that it is continuous in probability, and then using Theorem 96. !

We have established a correspondence between the limiting distributions of
IID sums, and processes with stationary independent increments. There are
many possible applications of this correspondence; one is to reduce problems
about limits of IID sums to problems about certain sorts of Markov process,
and vice versa. Another is to relate discrete and continuous time processes. For
0 ≤ t ≤ 1, set

X(n)
t =

1√
n

$nt%∑

i=0

Yi (11.36)

where Y0 = 0 but otherwise the Yi are IID with mean 0 and variance 1. Then
each X(n) is a Markov process in discrete time, with stationary, independent
increments, and its time-evolution operator is

Knf(x) = E



f(x +
1√
n

[nt]∑

i=1

Yi)



 (11.37)

As n grows, the normalized sum approaches a standard Gaussian random vari-
able, which suggests that in some sense X(n) should be approaching the Wiener
process W . This is in fact true, but we will have to go deeper into the structure
of the operators concerned before we can make it precise, as a first form of the
functional central limit theorem. Just as the infinitely divisible distributions are
the limits of IID sums, processes with stationary and independent increments
are the limits of the corresponding random walks.

There is a yet further sense which the Gaussian distribution is a special kind
of limiting distribution, which is reflected in another curious property of the
Wiener process. Gaussian random variables are not only infinitely divisible, but
they can be additively decomposed into more Gaussians. Distributions which
can be infinitely divided into others of the same kind will be called “stable”
(under convolution or averaging). “Of the same kind” isn’t very mathematical;
here is a more precise expression of the idea.

Definition 147 (Self-similarity) A process is self-similar if, for all t, there
exists a measurable h(t), the scaling function, such that h(t)X(1) d= X(t).

Definition 148 (Stable Distributions) A distribution ν is stable if, for any
Lévy process X where X(1) ∼ ν, X is self-similar.
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Theorem 149 (Scaling in Stable Lévy Processes) In a self-similar Lévy
process, the scaling function h(t) must take the form tα for some real α, the
index of stability.

Proof: Exercise 11.7. !
It turns out that there are analogs to the functional central limit theorem

for a broad range of self-similar processes, especially ones with stable increment
distributions; Embrechts and Maejima (2002) is a good short introduction to
this topic, and some of its statistical implications.

11.4 Exercises

Exercise 11.1 (Wiener Process with Constant Drift) Consider a process
X(0) which, like the Wiener process, has X(0) = 0 and independent increments,
but where X(t2) −X(t1) ∼ N (a(t2 − t1),σ2(t2 − t1)). a is called the drift rate
and σ2 the diffusion constant. Show that X(t) is a Markov process, following
the argument for the standard Wiener process (a = 0, σ2 = 1) above. Do such
processes have continuous modifications for all (finite) choices of a and σ2? If
so, prove it; if not, give at least one counter-example.

Exercise 11.2 (Perron-Frobenius Operators) Verify that P defined in the
section on the logistic map above is a Markov operator.

Exercise 11.3 (Continuity of the Wiener Process) Show that the Wiener
process has continuous sample paths, using its finite-dimensional distributions
and Theorem 97.

Exercise 11.4 (Independent Increments with Respect to a Filtration)
Let X be adapted to a filtration {F}t. Then X has independent increments with
respect to {F}t when Xt −Xs is independent of Fs for all s ≤ t. Show that X
is Markovian with respect to {F}t, by analogy with Theorem 141.

Exercise 11.5 (Poisson Counting Process) Consider the Poisson counting
process N of Example 140.

1. Prove that N is continuous in probability.

2. Prove that N has a cadlag modification. Hint: Theorem 96 is one way,
but there are others.

Exercise 11.6 (Poisson Distribution is Infinitely Divisible) Prove, di-
rectly from the definition, that every Poisson distribution is infinitely divisible.
What is the corresponding stationary, independent-increment process?



CHAPTER 11. MARKOV EXAMPLES 88

Exercise 11.7 (Self-Similarity in Lévy Processes) Prove Theorem 149.

Exercise 11.8 (Gaussian Stability) Find the index of stability a standard
Gaussian distribution.

Exercise 11.9 (Poissonian Stability?) Is the standard Poisson distribution
stable? If so, prove it, and find the index of stability. If not, prove that it is
not.

Exercise 11.10 (Lamperti Transformation) Prove Lamperti’s Theorem: If
Y is a strictly stationary process and α > 0, then X(t) = tαY (log t) is self-
similar, and if X is self-similar with index of stability α, then Y (t) = e−αtX(et)
is strictly stationary. These operations are called the Lamperti transformations,
after Lamperti (1962).


