
Chapter 15

Convergence of Feller
Processes

This chapter looks at the convergence of sequences of Feller pro-
cesses to a limiting process.

Section 15.1 lays some ground work concerning weak convergence
of processes with cadlag sample paths.

Section 15.2 states and proves the central theorem about the
convergence of sequences of Feller processes.

Section 15.3 examines a particularly important special case, the
approximation of ordinary differential equations by pure-jump Markov
processes.

15.1 Weak Convergence of Processes with Cad-
lag Paths (The Skorokhod Topology)

Recall that a sequence of random variables X1, X2, . . . converges in distribution
on X, or weakly converges on X, Xn

d→ X, if and only if E [f(Xn)] → E [f(X)],
for all bounded, continuous functions f . This is still true when Xn are ran-
dom functions, i.e., stochastic processes, only now the relevant functions f are
functionals of the sample paths.

Definition 196 (Convergence in Finite-Dimensional Distribution) Ran-
dom processes Xn on T converge in finite-dimensional distribution on X, Xn

fd→
X, when, ∀J ∈ Fin(T ), Xn(J) d→ X(J).

Lemma 197 (Finite and Infinite Dimensional Distributional Conver-
gence) Convergence in finite-dimensional distribution is necessary but not suf-
ficient for convergence in distribution.
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Proof: Necessity is obvious: the coordinate projections πt are continuous
functionals of the sample path, so they must converge if the distributions con-
verge. Insufficiency stems from the problem that, even if a sequence of Xn all
have sample paths in some set U , the limiting process might not: recall our
example (79) of the version of the Wiener process with unmeasurable suprema.
!

Definition 198 (The Space D) By D(T,Ξ) we denote the space of all cadlag
functions from T to Ξ. By default, D will mean D(R+,Ξ).

D admits of multiple topologies. For most purposes, the most convenient one
is the Skorokhod topology, a.k.a. the J1 topology or the Skorokhod J1 topology,
which makes D(Ξ) a complete separable metric space when Ξ is itself complete
and separable. (See Appendix A2 of Kallenberg.) For our purposes, we need
only the following notion and propositions.

Definition 199 (Modified Modulus of Continuity) The modified modulus
of continuity of a function x ∈ D(T,Ξ) at time t ∈ T and scale h > 0 is given
by

w(x, t, h) ≡ inf
(Ik)

max
k

sup
r,s∈Ik

ρ(x(s), x(r)) (15.1)

where the infimum is over partitions of [0, t) into half-open intervals whose length
is at least h (except possibly for the last one). Because x is cadlag, for fixed x
and t, w(x, t, h) → 0 as h → 0.

Proposition 200 (Weak Convergence in D(R+,Ξ)) Let Ξ be a complete,
separable metric space. Then a sequence of random functions X1, X2, . . . ∈
D(R+,Ξ) converges in distribution to X ∈ D if and only if

i The set Tc = {t ∈ T : X(t) = X(t−)} has a countable dense subset T0,
and the finite-dimensional distributions of the Xn converge on those of X
on T0.

ii For every t,

lim
h→0

lim sup
n→∞

E [w(Xn, t, h) ∧ 1] = 0 (15.2)

Proof: See Kallenberg, Theorem 16.10, pp. 313–314. !

Proposition 201 (Sufficient Condition for Weak Convergence) The fol-
lowing three conditions are all equivalent, and all imply condition (ii) in Propo-
sition 200.

1. For any sequence of a.s.-finite FXn-optional times τn and positive con-
stants hn → 0,

ρ(Xn(τn), Xn(τn + hn)) P→ 0 (15.3)
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2. For all t > 0, for all

lim
h→0

lim sup
n→∞

sup
σ,τ

E [ρ(Xn(σ), Xn(τ)) ∧ 1] = 0 (15.4)

where σ and τ are FXn-optional times σ, τ ≤ t, with σ ≤ τ ≤ τ + h.

3. For all t > 0,

lim
δ→0

lim sup
n→∞

sup
τ≤t

sup
0≤h≤δ

E [ρ(Xn(τ), Xn(τ + h)) ∧ 1] = 0 (15.5)

where the supremum in τ runs over all FXn-optional times ≤ t.

Proof: See Kallenberg, Theorem 16.11, pp. 314–315. !

15.2 Convergence of Feller Processes

We need some technical notions about generators.

Definition 202 (Closed and Closable Generators, Closures) A linear op-
erator A on a Banach space B is closed if its graph —

{
f, g ∈ B2 : f ∈ Dom(A), g = Af

}

— is a closed set. An operator is closable if the closure of its graph is a function
(and not just a relation). The closure of a closable operator is that function.

Notice, by the way, that because A is linear, it is closable iff fn → 0 and
Afn → g implies g = 0.

Definition 203 (Core of an Operator) Let A be a closed linear operator on
a Banach space B. A linear subspace D ⊆ Dom(A) is a core of A if the closure
of A restricted to D is, again A.

The idea of a core is that we can get away with knowing how the operator
works on a linear subspace, which is often much easier to deal with, rather than
controlling how it acts on its whole domain.

Lemma 204 (Feller Generators Are Closed) The generator of every Feller
semigroup is closed.

Proof: We need to show that the graph of G contains all of its limit points,
that is, if fn ∈ Dom(G) converges (in L∞) on f , and Gfn → g, then f ∈ Dom(G)
and Gf = g. First we show that f ∈ Dom(G).

lim
n→∞

(I −G)fn = lim
n

fn − lim
n

Gfn (15.6)

= f − g (15.7)



CHAPTER 15. CONVERGENCE OF FELLER PROCESSES 110

But (I −G)−1 = R1. Since this is a bounded linear operator, we can exchange
applying the inverse and taking the limit, i.e.,

R1 lim
n

(I −G)fn = R1(f − g) (15.8)

lim
n

R1(I −G)fn = R1(f − g) (15.9)

lim
n

fn = R1(f − g) (15.10)

f = R1(f − g) (15.11)

Since the range of the resolvents is contained in the domain of the generator,
f ∈ Dom(G). We can therefore say that f − g = (I −G)f , which implies that
Gf = g. Hence, the graph of G contains all its limit points, and G is closed. !

Theorem 205 (Convergence of Feller Processes) Let Xn be a sequence
of Feller processes with semigroups Kn,t and generators Gn, and X be another
Feller process with semigroup Kt and a generator G containing a core D. Then
the following are equivalent.

1. If f ∈ D, there exists a sequence of fn ∈ Dom(Gn) such that ‖fn − f‖∞ →
0 and ‖Anfn −Af‖∞ → 0.

2. For every t > 0, Kn,tf → Ktf for every f ∈ C0

3. ‖Kn,tf −Ktf‖∞ → 0 for each f ∈ C0, uniformly in t for bounded positive
t

4. If Xn(0) d→ X(0) in Ξ, then Xn
d→ X in D.

Proof: See Kallenberg, Theorem 19.25, p. 385. !
Remark: The important versions of the property above are the second —

convergence of the semigroups — and the fourth — converge in distribution
of the processes. The other two are there to simplify the proof. The way the
proof works is to first show that conditions (1)–(3) are all equvialent, i.e., that
convergence of the operators in the semi-group implies the apparently-stronger
conditions about uniform convergence as well as convergence on the core. Then
one establishes the equivalence between the second condition and the fourth. To
go from convergence in distribution to convergence of conditional expectations
is fairly straightforward; to go the other way involves using both the first and
third condition, and the first part of Proposition 201. This last step uses the
Feller proporties to bound, in expectation, the amount by which the process can
move in a small amount of time.

Corollary 206 (Convergence of Discret-Time Markov Processes on
Feller Processes) Let X be a Feller process with semigroup Kt, generator
G and core D as in Theorem 205. Let hn be a sequence of positive real con-
stants converging (not necessarily monotonically) to zero. Let Yn be a sequence
of discrete-time Markov processes with evolution operators Hn. Finally, let
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Xn(t) ≡ Yn(*t/hn+), with corresponding semigroup Kn,t = H&t/hn'
n , and gener-

ator An = (1/hn)(Hn − I). Even though Xn is not in general a homogeneous
Markov process, the conclusions of Theorem 205 remain valid.

Proof: Kalleneberg, Theorem 19.28, pp. 387–388. !
Remark 1: The basic idea is to show that the process Xn is close (in the

Skorokhod-topology sense) to a Feller process X̃n, whose generator is An. One
then shows that X̃n converges on X, using Theorem 205, and that X̃n

d→ Xn.
Remark 2: Even though Kn,t in the corollary above is not, strictly speaking,

the time-evolution operator of Xn, because Xn is not a Markov process, it is a
conditional expectation operator. Much more general theorems can be proved
on when non-Markov processes converge on Markov processes, using the idea
that Kn,t → Kt. See Kurtz (1975).

15.3 Approximation of Ordinary Differential Equa-
tions by Markov Processes

The following result, due to Kurtz (1970, 1971), is essentially an application of
Theorem 205.

First, recall that continuous-time, discrete-state Markov processes work es-
sentially like a combination of a Poisson process (giving the time of transitions)
with a Markov chain (giving the state moved to on transitions). This can be
generalized to continuous-time, continuous-state processes, of what are called
“pure jump” type.

Definition 207 (Pure Jump Markov Process) A continuous-parameter
Markov process is a pure jump process when its sample paths are piece-wise
constant. For each state, there is an exponential distribution of times spent in
that state, whose parameter is denoted λ(x), and a transition probability kernel
or exit distribution µ(x,B).

Observe that pure-jump Markov processes always have cadlag sample paths.
Also observe that the average amount of time the process spends in state x, once
it jumps there, is 1/λ(x). So the time-average “velocity”, i.e., rate of change,
starting from x,

λ(x)
∫

Ξ
(y − x)µ(x, dy)

Proposition 208 (Pure-Jump Markov Processea and ODEs) Let Xn be
a sequence of pure-jump Markov processes with state spaces Ξn, holding time
parameters λn and transition probabilities µn. Suppose that, for all n Ξn is a
Borel-measurable subset of Rk for some k. Let Ξ be another measurable subset
of Rk, on which there exists a function F (x) such that |F (x)−F (y)| ≤ M |x−y|
for some constant M . Suppose all of the following conditions holds.
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1. The time-averaged rate of change is always finite:

sup
n

sup
x∈Ξn∩Ξ

λn(x)
∫

Ξn

|y − x|µn(x, dy) < ∞ (15.12)

2. There exists a positive sequence εn → 0 such that

lim
n→∞

sup
x∈Ξn∩Ξ

λn(x)
∫

|y−x|>ε
|y − x|µn(x, dy) = 0 (15.13)

3. The worst-case difference between F (x) and the time-averaged rates of
change goes to zero:

lim
n→∞

sup
x∈Ξn∩Ξ

∣∣∣∣F (x)− λn(x)
∫

(y − x)µn(x, dy)
∣∣∣∣ = 0 (15.14)

Let X(s, x0) be the solution to the initial-value problem where the differential is
given by F , i.e., for each 0 ≤ s ≤ t,

∂

∂s
X(s, x0) = F (X(s, x0)) (15.15)

X(0, x0) = x0 (15.16)

and suppose there exists an η > 0 such that, for all n,

Ξn ∩
{

y ∈ Rk : inf
0≤s≤t

|y −X(s, x0)| ≤ η

}
⊆ Ξ (15.17)

Then lim Xn(0) = x0 implies that, for every δ > 0,

lim
n→∞

P
(

sup
0≤s≤t

|Xn(s)−X(s, x0)| > δ

)
= 0 (15.18)

The first conditions on the Xn basically make sure that they are Feller
processes. The subsequent ones make sure that the mean time-averaged rate of
change of the jump processes converges on the instantaneous rate of change of
the differential equation, and that, if we’re sufficiently close to the solution of
the differential equation in Rk, we’re not in some weird way outside the relevant
domains of definition. Even though Theorem 205 is about weak convergence,
converging in distribution on a non-random object is the same as converging in
probability, which is how we get uniform-in-time convergence in probability for
a conclusion.

There are, broadly speaking, two kinds of uses for this result. One kind is
practical, and has to do with justifying convenient approximations. If n is large,
we can get away with using an ODE instead of the noisy stochastic scheme, or
alternately we can use stochastic simulation to approximate the solutions of ugly
ODEs. The other kind is theoretical, about showing that the large-population
limit behaves deterministically, even when the individual behavior is stochastic
and strongly dependent over time.
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15.4 Exercises

Exercise 15.1 (Poisson Counting Process) Show that the Poisson counting
process is a pure jump Markov process.

Exercise 15.2 (Exponential Holding Times in Pure-Jump Processes)
Prove that pure-jump Markov processes have exponentially-distributed holding
times, i.e., that if X is a Markov process with piecewise-constant sample paths,
and εx = inf t > 0X(t) .= x, that εx|X(0) = x is exponentially distributed.

Exercise 15.3 (Solutions of ODEs are Feller Processes) Let F : Rd /→
Rd be a sufficiently smooth vector field that the ordinary differential equation
dx/dt = F (x) as a unique solution for every initial condition x0. Prove that the
set of solutions forms a Feller process.


